Робототехническая медицинская реабилитационная техника pdf. Восстановление подвижности конечностей при помощи роботизированной механотерапии. Роботы для реабилитации инвалидов

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Подобные документы

    Рассмотрение принципа работы медицинского робота "Да Винчи", позволяющего хирургам выполнять сложные операции, не касаясь пациента и с минимальным повреждением его тканей. Применение роботов и современных нанотехнологий в медицине и их значение.

    реферат , добавлен 12.01.2011

    Описание истории развития робототехники и применения ее в хирургических операциях на примере программно-управляемого автоматического манипулятора Да Винчи с инструментом Endo Wrist. Создание плавающей капсулы с камерой и эндолюминальной системы ARES.

    реферат , добавлен 07.06.2011

    Правильная и своевременная обработка рук как залог безопасности медицинского персонала и пациентов. Уровни обработки рук: бытовой, гигиенический, хирургический. Основные требования к антисептикам для рук. Европейский стандарт обработки рук EN-1500.

    презентация , добавлен 24.06.2014

    Применение в медицине микроскопических устройств на основе нанотехнологий. Создание микроустройств для работы внутри организма. Методы молекулярной биологии. Нанотехнологические сенсоры и анализаторы. Контейнеры для доставки лекарств и клеточной терапии.

    реферат , добавлен 08.03.2011

    Оказание первой медицинской помощи при несчастных случаях, бедствиях и авариях. Общие правила переноски и подъема пострадавших на носилках и без них при различны травматических повреждениях. Способы выноса пострадавших из очага бедствия или аварии.

    реферат , добавлен 27.02.2009

    Этиология, пато- и морфогенез рака прямой кишки. Маркеры онкогенеза, их прогностическая значимость. Основные критерии оценки результатов иммуногистихимического исследования и результаты состояния РПК у пациентов после радикального хирургического лечения.

    дипломная работа , добавлен 19.05.2013

    Общая характеристика и отличительные признаки различных методик обследования пациентов, используемых в современной медицине. Порядок и инструментарий для проведения обследования. Понятие и причины, разновидности одышки, направления ее исследования.

    реферат , добавлен 12.02.2013

    Разнообразие интересов и талантов Леонардо да Винчи. Проведение анатомических вскрытий художником, создание системы изображений органов и частей тела в поперечном сечении. Исследования в области сравнительной анатомии, содержание дневниковых записей.

    презентация , добавлен 28.10.2013

". Перевод на русский язык редакции сайт

2.3 Медицина и робототехника

2.3.1 Обзор области

Здравоохранение и роботы

В результате демографических изменений во многих странах системы здравоохранения сталкиваются с возрастающей нагрузкой, поскольку им приходится обслуживать стареющее население. На фоне роста спроса на услуги совершенствуются процедуры, что приводит к улучшению результатов. Одновременно растут затраты на оказание медицинских услуг, несмотря на снижение числа людей, занятых в области оказания медицинской помощи.

Применение технологий, включая робототехнику, представляется частью возможного решения. В данном документе отрасль медицины разделена на три подобласти:

- Роботы для больниц (Clinical Robotics) : Можно определить соответствующие робототехнические системы, как те, что обеспечивают процессы "заботы" и "излечения". Прежде всего - это роботы для диагностики, лечения, хирургического вмешательства и ввода медикаментов, а также в системах экстренной помощи. Такие роботы управляются персоналом больницы или обученными специалистами в области заботы о пациентах.

- Роботы для реабилитации (Rehabilitation) : Такие роботы обеспечивают послеоперационную или посттравматическую помощь, когда прямое физическое взаимодействие с робототехнической системой будет либо ускорять процессс восстановления (выздоровления), либо обеспечивать замену утраченной функциональности (например, когда речь идет о протезе ноги или руки).

- Вспомогательные роботы (Assistive robotics) : В этот сегмент относят другие аспекты робототехники, применяемой в медицинской практике, когда первичным назначением робототехнических систем является обеспечение поддержки либо тому, кто оказывает медицинскую помощь, либо непосредственно пациенту, независимо от того, идет ли речь о больнице или о другом медицинском учреждении.

Все перечисленные поддомены характеризуются тем, что требуют обеспечения системами безопасности, которые принимают в расчет клинические потребности пациентов. В типовом случае управлением или настройками таких систем занимается квалифицированный больничный персонал.

Медицинская робототехника - больше, чем просто технология

Кроме развития непосредственно робототехнических технологий, важно, чтобы соответствующие роботы внедрялись, как часть процессов лечения в больнице или других медицинских процедур. Требования к системе должны формироваться на основе четко выявленных потребностей пользователя и получателя услуг. При разработке таких систем, принципиально важно демонстрировать ту дополнительную пользу, которую они могут обеспечить при их внедрении, это критически важно для дальнейшего успеха на рынке. Получение дополнительной пользы требует прямого вовлечения в процесс разработки данной техники профессионалов в области медицины, а также пациентов, как на стадии дизайна, так и на стадии внедрения при разработке роботов. Разработка систем в контексте среды их будушего применения обеспечивает вовлечение заинтересованных сторон. Ясное понимание существующей медицинской практики, очевидная необходимость обучения медицинского персонала пользованию системой, владение различной информацией, которая может потребоваться для разработки, - критически необходимые факторы при создании пригодной к дальнейшему внедрению системы. Введение роботов в медицинскую практику потребует адаптации всей системы оказания медицинских услуг. Это деликатный процесс, в рамках которого технология и практика оказания медицинских услуг оказывают взаимное влияние и должны будут адаптироваться друг к другу. С момента начала разработки, важно принимать во внимание этот аспект "взаимозависимости".

Разработка роботов для нужд медицины включает очень широкий набор различных потенциальных приложений. Рассмотрим их ниже, в контексте выделенных ранее трех основных сегментов рынка.

Роботы для больниц

Этот сегмент представлен разнообразными приложениями. Можно выделить, например, такие категории:

Системы, которые непосредственно расширяют возможности хирурга в плане ловкости (гибкости и точности) и силы;

Системы, которые позволяют проводить дистанционную диагностику и вмешательства. В эту категорию можно включать, как телеуправляемые системы, когда врач может находиться на большем или меньшем удалении от пациента, так и системы для использования внутри тела пациента;

Системы, которые обеспечивают поддержку во время диагностических процедур;

Системы, которые обеспечивают поддержку во время хирургических процедур.

Кроме этих приложений для больниц, существует некоторое количество вспомогательных приложений для больниц, включая роботов для взятия образцов, лабораторных исследований образцов ткани, а также других услуг, необходимых в больничной практике.

Роботы для реабилитации

Реабилитационная робототехника включает такие устройства, как протезы или например, роботизированные экзоскелеты или ортезы, которые обеспечивают тренировку, поддержку или замену утраченных активностей или нарушенной функциональностей человеческого тела и его структуры. Такие устройства могут применяться, как в больницах, так и в повседневной жизни пациентов, но как правило требуют первичной настройки медицинскими специалистами и последующего наблюдения за их правильной работой и взаимодействием с пациентом. Постоперационное восстановление, особенно в ортопедии, согласно прогнозам, будет основной сферой применения таких роботов.

Поддержка специалистов и ассистивная робототехника

Этот сегмент включает ассистивных роботов, предназначенных для использования в больницах или в домашней среде, которые разработаны для того, чтобы помогать персоналу больниц или сиделкам выполнять рутинные операции. Можно отметить существенную разницу в дизайне и внедрениях робототехнических систем, связанную с местом и условиями их использования. В контексте использования квалифицированным персоналом, будь то условия больницы или домашние условия при использовании робота для заботы о пожилом человеке, разработчики могут рассчитывать на то, что роботом управляет квалифицированный специалист. Такой робот должен соответствовать требованиям и стандартам больницы и системы здравоохранения и обладать соответствующими сертификатами. Эти роботы будет оказывать помощь персоналу соответствующих медицинских учреждений в их повседневной работе, особенно медсестрам и сиделкам. Такие робототехнические системы должны позволять сиделке проводить больше времени с пациентами, сокращая физическую нагрузку, например, робот сможет поднимать пациента для того, чтобы провести с ним необходимые рутинные операции.

2.3.2 Возможности в настоящее время и в перспективе

Робототехника для медицины - это чрезвычайно сложное направление для разработок в силу мультидисциплинарной природы и необходимости соблюдения различных жестких требований, а также из-за того, что во многих случаев медицинские робототехнические системы физически взаимодействуют с людьми, которые к тому же могут находиться в весьма уязвимом состоянии. Приведем основные возможности, существующие в выделенных нами сегментах медицины.

2.3.2.1 Больничные роботы

Это роботы для хирургии, диагностики и терапии. Рынок роботов для хирургического вмешательства велик по размерам. Робото-ассистивные возможности могут использоваться практически во всех областях - кардиологии, сосудологии, ортопедии, онкологии и неврологии.

С другой стороны, есть множество технических проблем, связанных с ограничениями на размеры, емкость, связанных с окружающей средой и небольшим числом технологий, которые доступны для немедленного использования в больничных условиях.

Кроме технологических проблем, есть и коммерческие. Например, связанные с тем, что США старается сохранять монопольное положение на этом рынке за счет объемной интеллектуальной сосбственности. Обойти эту ситуацию можно только за счет разработки принципиально нового "железа", ПО и концепций управления. Также для таких разработок требуется солидная финансовая поддержка высокозатратных, но необходимых разработок и соответствующих клинических испытаний. Типичные области, где сейчас есть возможности:

Минимально инвазивная хирургия (MIS)

Здесь можно добиться успеха за счет разработки систем, способных расширить возможности гибкости движений инструментов за пределы, обеспечиваемые анатомией рук хирурга, повысить эффективность, или дополнить системы обратной связью (например, позволяющей судить о силе нажатия), или дополнительными данными, помогающими осуществлять процедуру. Успехи рыночного внедрения могут зависеть от ценовой эффективности продукта, сокращенного времени его развертывания (подготовки к работе) и сокращения уровня дополнительного обучения, которое необходимо, чтобы научиться использованию роботизированной сситемы. Любая разработанная система должна наглядно демонстрировать "добавленную ценность" в контексте хирургии. Клинические опытные внедрения и оценки в ходе такого тестирования в клиниках являются обязательными для того, чтобы систему приняло хирургическое сообщество.

Если сравнивать с другими направлениями малоинвазивной хирургии, робото-ассистивные системы потенциально обеспечивают хирургу лучшее управление хирургическими инструментами, а также лучший обзор во время операции. От хирурга более не требуется стоять все время операции, поэтому он не устает столь же быстро, как при традиционном подходе. Тремор рук может быть почти полностью отфильтрован программным обеспечением робота, что особенно важно для применения в хирургии, имеющей дело с микромасштабами, например, хирургии глаза. В теории, хирургический робот можно использовать почти 24 часа в день, заменяя бригады хирургов, которые с ним работают.

Робототхеника может обеспечивать быстрое восстановление, сокращение травматизма и снижение негативного влияния на ткани пациента, а также снижение нобходимой радиационной дозы. Роботизированные хирургические инструменты могут разгрузить мозг врача, сократить "кривую обучения" и повысить эргономику рабочего процесса для хирурга. Способы терапии, использование которых сдерживают границы возможностей человеческого тела, также становятся возможными при переходе к использованию робототехнических технологий. Например, новое поколение гибких роботов и инструментов, позволяющих добраться до органов, глубоко скрытых в теле человека, позволяют сократить размер входного разреза в человеческом теле или обойтись естественными отверстиями в человеческом теле для выполнения хирургических операций.

В долгоросрочной перспективе, использование обучающихся систем в хирургии может сократить сложность проведения операции за счет увеличения потока полезной информации, которую хирург будет получать в ходе операции. Другие потенциальные преимущества включают возможность повышения уровня возможностей бригад парамедиков ("скорой помощи") при проведении с помощью роботов стандартных клинических экстренных процедур в полевых условиях, а также проведение теле-хирургических операций на удаленных объектах, где есть только соответствующий робот и нет квалифицированного хирурга.

Можно выделить следующие возможности:

Новые совместимые инструменты, обеспечивающие повышение уровня безопасности, при сохранении всех возможностей манипулции ими, включая негнущиеся инструменты. За счет использования новых методов управления или специальных решений (которые, например, могут встраиваться в инструмент или являться внешними по отношениюк к нему) функционирование инструметов может подстраиваться в реальном времени так, чтобы обеспечить совместимость или стабильность, когда что важнее;

Введение усовершенствованных ассистивных технологий, которые ведут и предупреждают хирурга во время операции, что позволяет говорить об упрощении решения задач хирургии и снижении числа ошибок медиков. Такая "обучающая поддержка" должна повысить "совместимость" оборудования и хирурга, что обеспечит интуитивность и отсутствие сомнений при использовании системы.

Применение подходящих уровней автономии роботов в хирургической практике вплоть до полной автономности конкретных хорошо детерминированных процедур, например: автономная аутопсия; взятие образцов крови (Veebot); биопсия; автоматизация части хирургических действий (затягивание узлов, поддержка камеры...). Повышение автономности обладает потенциалом повышения эффективности.

- "Умные" хирургические инструменты по-сути условно управляются хирургами. Эти инструменты находятся в прямом контакте с тканью и повышают уровень мастерства хирурга. Миниатюризация и упрощение хирургических инструментов в будущем, также как и доступности хирургических процедур внутри и снаружи "операционного театра" - основной путь развития таких технологий.

Обучение : Обеспечение физически точных моделей, что достигается за счет использования инструментов с тактильной обратной связью обеспечивают потенциал улучшения обучения, как на ранних стадиях обучения, так и при достижении уверенных навыков работы. Возможность симулирования широкого разнообразия условий и сложностей также могут повышать эффективность данного типа обучения. Сейчас качество тактильной обратной связи еще содержит ряд ограничений, что создает сложности в демонстрировании превосходства данного типа обучения.

Клинические образцы : Есть много областей для применения автономных систем для взятия образцов - от систем для взятия анализов крови и образцов ткани для биопсии до менее инвазивных методов аутопсии.

2.3.2.2 Робототехника для реабилитации и протезирования

Робототехника для реабилитации покрывает широкий диапазон различных форм реабилитации и может быть разделена на подсегменты. В Европе существует достаточно сильная промышленность в данном секторе и активное взаимодействие с ней ускорит технологическое развитие.

Средства реабилитации

Это средства, которые могут использоваться после травмы или после операции для тренировки и поддержки восстановления. Роль этих средств - поддержка выздоровления и ускорение восстановления, при одновременной защите пользователя и его поддержке. Такие системы могут использоваться в больничных условиях под надзором врачебного персонала или выступать самостоятельным упражнением, когда устройство управляет движениями или ограничивает движения - в зависимости от того, что требуется в данном конкретном случае. Такие системы также могут обеспечивать ценную данные о процессе восстановления и мониторить состояние более непосредственно чем даже при наблюдении за пациентом в условиях больницы.

Средства функциональной замены

Назначение такой робототехнической системы - это замена утраченной функциональности. Это может быть результатом старения или травматического ранения. Такие устройства разрабатывают с целью повышения мобильности и моторных навыков пациента. Они могут выполняться, как протезы, экзоскелеты или ортопедические устройства.

В развитых реабилитационных системах критически важно, чтобы существующие европейские производители были вовлечены в процесс в качестве известных участников рынка, а релевантные клиники и партнеры клиник были вовлечены в процесс разработки. Европа в настоящее время лидирует в мире в этой области.

Нейро-реабилитация

(Сеть COST TD1006, Европейская сеть Робототехники для Нейро-реабилитации обеспечивает платформу для обмена стандартизации определений и примеров разработок по всей Европе).

В настоящее время используется немного роботизованных устройств для нейро-реабилитации, поскольку еще не удалось обеспечить их широкого распространения. Робототехника используется для после-инсультной реабилитации в после-острой фазе и других нейро-моторных патологий, таких, как болезнь Паркинсона, множественный склероз и атаксия. Позитивные результаты с использованием роботов (не хуже или лучше, чем при использовании традиционной терапии) в реабилитационных целях начинают подтверждаться результатами исследований. В последнее время позитивные результаты также подтвержадются исследованиями в области нейро-визуализации. Было доказано, что интеграция с FES показала усиление позитивного результата (как для мышечной системы, так и периферийной и для центральной моторной). Упражнения с биологической обратной связью и игровыми интерфейсами начинают рассматриваться как решения, которые можно реализовать, но такие системы все еще находятся на ранней стадии разработки.

Для того, чтобы разрабатывать работоспособные системы необходимо решить несколько проблем. Это низкая стоимость устройств, проверенные результаты клинических испытаний, хорошо определенный процесс оценки состояния пациента. Возможности систем по корректной идентификации намерений пользователя и тем самым предотвращение травм, в настоящее время ограничивает эффективность таких систем. Управление и мехатроника, интегрированные для того, чтобы отвечать возможностям человеческого тела, включая когнитивную нагрузку, находятся на ранних стадиях развития. Должны быть достигнуты улучшения в надежности и в продолжительности рабочего времени до того, как могут быть разработаны пригодные к коммерческому использованию системы. Также целями разработки должны быть быстрое время развертывания и востребованность терапевтами.

Протезирование

Существенный прогресс может быть получен в области производства умных протезов, которые способны адаптироваться к особенностям движений пользователя и к условиям окружающей среды. Робототехника обладает потенциалом для комбинирования улучшенных способностей самообучения и повышенной гибкости и управления, особенно по части протезов верхних конечностей и кистевых протезов. Частные области исследований включают возможности адаптации к персональному, полу-автономному управлению, обеспечение искуственной чувствительности за счет обратной связи, улучшенная проверка, улучшенная энергоэффективность, self power recovery, улучшенный процессинг миоэлектрических сигналов. Смарт протезы и ортезы, управляемые активностью мышц пациента, позволят воспользоваться преимуществами таких систем обширным группам пользователей.

Системы поддержки мобильности

Пациенты с сокращением физических возможностей, временным или постоянным, могут воспользоваться преимуществами, связанными с повышением мобильности. Роботизированные системы могут обеспечивать поддержку и упражнения, необходимые для увеличения мобильности. Уже есть примеры разработок таких систем, но они находятся на ранней стадии развития.

В будущем возможно что такие системы смогут компенсировать даже когнитивные расстройства, предотвращая падения и несчастные случаи. Ограничения таких систем связаны с их стоимостью, а также с возможностью длительно носить на себе такие системы.

В ряде реабилитационных приложений, есть возможность использования натуральных интерфейсов, таких как миоэлектрика, снятие сигналов с головного мозга, а также интерфейсов, основанных на речи и жестах.

2.3.2.3 Поддержка специалистов и ассистивные роботы.

Поддержка со стороны специалистов и ассистивная робототехника могут быть разделены на ряд областей применения.

Системы поддержки заботящегося о пациенте : Поддерживающие системы, используемые лицами, заботящимися о пациентах, которые взаимодействуют с пациентами или системы, используемые пациентами. Они могут включать роботизированные системы, которые обеспечивают использование лекарственных средств, берут образцы, улучшают гигиену или процессы восстановления.

Подъем и перемещение пациента : Системы подъема и позиционирования пациента могут обладать различными возможностями от точного позиционирования во время хирургических вмешательств или сеансов лучевой терапии до содействия младшему медицинскому персоналу или лицам, заботящимся о пациенте, в подъеме человека с кровати или укладывании на нее, а также в транспортировке пациентов по больнице. Такие системы могут быть разработаны так, чтобы их можно было конфигурировать в зависимости от состояния пациента и использовать их так, чтобы у пациента была определенная степень управления их положением. Ограничения здесь могут быть связаны с необходимостью получения сертификатов безопасности и безопасного управления силами, достаточными для перемещения пациентов так, чтобы исключить возможные травмы пациентов. Энергоэффективные структуры и дизайн, выполненный с учетом необходимости экономии пространства, будут критичны для эффективных внедрений.

При разработке ассистивных робототехнических решений, важно придерживаться набора базовых принципов. Разработка должна фокусироваться на поддержке дефицита функциональности, а не на создании специфических условий. Решения должны быть практичными с точки зрения их использования и обеспечивать заметные преимущества для пользователя. Это может включать использование технологий для мотивирования пациентов делать для себя как можно больше, при одновременном сохранении безопасности. Внедрение таких систем не будет жизнеспособным и востребованным, если они не обеспечат воможности снижения нагрузки на персонал, создавая экономический кейс для внедрения, при одновременной надежности и безопасности использования.

Роботы для биомедицинских лабораторий для медицинских исследований

Роботы уже находят примнение в биомедицинских лабораториях, где они сортируют образцы и манипулируют ими в процессе проведения исследований. Приложения для создания сложных роботизированных систем расширяют возможности еще более, например, в область усовершенствованного скрининга клеток и манипуляций, связанных с клеточной терапией и избирательной сортировкой клеток.

2.3.2.4 Требования в среднесрочном периоде

Следующий список представляет "точки роста" в области медицинской робототехники

Экзоскелеты для нижней части туловища, которые подстраивают свое функционирование к индивидуальным особенностям поведения пациента и/или особенностям его анатомии, оптимизируя поддержку в зависимости от пользователя или условий окружающей среды. Системы могут адаптироваться пользователем к различным условиям и выполнению различных задач. Области применение: нейро-реабилитация и поддержка работников.

Роботы, предназначенные для автономной реабилитации (например, реабилитация в "игровом" режиме, реабилитация верхних конечностей после инсульта) должны воспринимать нужды пациента и его реакции, а также подстраивать под них терапевтическое воздействие.

Роботы, предназначенные для поддержки мобильности и возможностей пациента к манипуляции, должны поддерживать натуральные интерфейсы, гарантируя безопасность и работоспособность в условиях окружающей среды, близкой к "натуральной".

Реабилитационные роботы, разработанные для того, чтобы обеспечивать интеграцию сенсоров и двигателей, за счет обеспечения двунаправленной связи, включая мультирежимный ввод команд (миоэлектрика + инерциальная сенсорика) и мультирежимной обратной связи (электро-тактильной, вибро-тактильной и/или визуальной).

Протезы рук, запяться, кисти, которые автоматически адаптируются к пациенту, позволяя ему управлять по-отдельности любым пальцем, вращением большого пальца, кистевыми DOF-ами. Это должно сопровождаться применением множественных сенсоров и алгоритмов распознавания паттернов, чтобы обеспечить естественность управления (постоянное управление силой) за счет возможных DOFs. Области применения: восстановление функциональности руки для ампутантов.

Протезы и реабилитационные роботы, оснащенные системами полу-автоматического управления для улучшения качества функционирования и/или сокращения когнитивной нагрузки на пользователя. Системы должны позволять восприятие и интерпретацию окружения вплоть до определенного уровня, чтобы сделать возможным автономное принятие решений.

Протезы и реабилитационные роботы способные задействовать разнообразные онлайн-ресурсы (хранилища информации, процессинг) за счет использования облачных вычислений, чтобы внедрить усовершенствованную функциональность, которая находится существенно за пределами возможностей "бортовой" электроники и/или возможностей прямого управления со стороны пользователя.

Недорогие протезы и робототехнические решения, созданные с использованием аддитивных технологий или массовых производств (3D-печать и т.п)

Надомная терапия, снижающая интенсивность невропатической боли или фантомной боли верхних конечностей за счет усовершенствованной интерпретации сигналов, снимаемых с мышц, благодаря использованию роботизированных конечностей (с меньшей гибкостью, чем в предыдущих примерах) и/или "виртуальной реальности".

Биомиметрическое управление взаимодействием с роботом-хирургом.

Адекватные технологии механической актуации и сенсорики для разработки гибких миниатюрных роботов с силовой обратной связью, а также инструментов для усовершенствованной и расширенной хирургии с минимальной инвазивностью.

Системы подзарядки от окружающей среды для имплантируемых микро-роботов.

Для получения биомиметрического управления процессами реабилитации: интеграция волевых "импульсов" при движении субъекта, при поддержке FES для улучшенного повторного обучения моторике, при управлении роботом.

Разработка применимых в условиях больницы методов для восстановления двигательной активности, которая выходит за пределы парадигмы обычно используемых статичных механизмов с ручной настройкой.

На низком TRL

Автоматизированное когнитивное понимание необходимых задач в действующем окружении. Бесшовное физическое объединение человек-робот для условий "обычной" окружающей среды на базе дополнительного управляющего интерфейса. Полноценная, не требующая настроек адаптивность к пациенту. Надежность выявления намерений.

Все большую роль играют микророботы способные самостоятельно функционировать внутри человеческого организма. Отметим что медицинские робототехнические системы являются медицинскими по своей сути объединяя в единое целое механические и электронные компоненты функционирующие в составе интеллектуальной робототехнической системы. Роботы для реабилитации инвалидов. Медицинские роботы реабилитации предназначены главным образом для решения двух задач: восстановления функций утраченных конечностей и жизнеобеспечения инвалидов прикованных к...


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Введение

Последнее десятилетие отмечено бурным развитием высоких медицинских технологий, формирующих облик медицины 21 века. Во многих развитых странах активно ведутся разработки различных мехатронных устройств медицинского назначения. Основные направления развития медицинской мехатроники – разработка систем для реабилитации инвалидов, выполнения сервисных операций, а также для клинического применения. Основные направления развития медицинской мехатроники представлены на рис. 1.

Рисунок 1. Основные направления развития медицинской мехатроники.

Все большую роль играют микророботы, способные самостоятельно функционировать внутри человеческого организма. Отметим, что медицинские робототехнические системы являются медицинскими по своей сути, объединяя в единое целое механические и электронные компоненты, функционирующие в составе интеллектуальной робототехнической системы. ниже рассмотрены основные достижения в области медицинской мехатроники и намечены перспективы ее дальнейшего развития.

Роботы для реабилитации инвалидов.

Медицинские роботы реабилитации предназначены главным образом для решения двух задач: восстановления функций утраченных конечностей и жизнеобеспечения инвалидов, прикованных к постели (с нарушениями зрения, опорно-двигательного аппарата и другими тяжкими заболеваниями).

История протезирования насчитывает не одно столетие, но к мехатронике непосредственное отношение имеют лишь так называемые протезы с усилением. Современные автоматизированные протезы не нашли широкого применения из-за конструктивных и эксплуатационных несовершенств и малой надежности в работе. Но уже сейчас делается многое, чтобы улучшить их характеристики за счет внедрения в их конструкцию новых материалов и элементов, таких, как пленочные тензодатчики для управления силой сжатия пальцев руки-протеза, электронно-оптические датчики, монтируемые в оправе очков для управления протезом руки с помощью глаз пациента и т.п.

В Японии разработана механическая рука, исполнительный орган которой имеет шесть степеней свободы и систему управления протезом. В Оксфорде (Великобритания) создана система управления для манипуляторов, предназначенных для протезирования, особенностью которых является способность выполнения заданий заранее не запрограммированных. Они обеспечивают обработку сенсорной информации, включая систему распознавания речи. Одной из проблем является формирование управляющих сигналов пациентом без помощи конечностей. Известны устройства для помощи пациентам с двумя или четырьмя ампутированными или парализованными конечностями, приводимые в движение с помощью электрического сигнала, возникающими в результате сокращения мышц головы или туловища. Разработана конструкция механической руки с телесистемой, управление которой осуществляется датчиками на голове больного, реагирующими на движение головы или бровей и подающими сигналы микропроцессору, управляющему исполнительным органом манипулятора.

Для решения задач жизнеобеспечения неподвижных больных созданы различные варианты роботизированных систем. Качественно новым конструктивным решением является антропоморфная рука – манипулятор, смонтированная на инвалидной коляске и управляемая ЭВМ. Данная система позволяет больному с минимальным уровнем подготовки управлять рукой - манипулятором для удовлетворения физиологических потребностей, пользования телефоном и т.д.

Известны медицинские роботизированные комплексы, функционирование которых осуществляется через центральный контрольный пост или с помощью различных командных устройств, задание для которых пациент формирует с помощью речевых команд. Система включает в себя антропоморфную руку - манипулятор, управляющую аппаратуру, командное устройство, телевизионный монитор, а также автоматизированную транспортную тележку. По желанию больного включаются телевизор, радио, осветительные приборы, изменяется положение больного на кровати, приводится в действие манипулятор.

Важной проблемой, связанной с реабилитацией инвалидов, является создание для них рабочих мест. В Великобритании разработано автоматизированное рабочее место для инвалидов с нарушениями опорно-двигательной системы. Робот представляет собой манипуляционную систему, которая управляет речевыми командами оператора; он способен по желанию пациента выбирать музыкальные диски, книги, переворачивать листы читаемой книги, переключать периферийные устройства компьютера, набирать номера телефонов.

В США было разработано автоматизированное рабочее место с антропоморфной рукой – манипулятором для инвалидов, страдающих тяжелой формой нарушения опорно–двигательной системы. Пациент с минимальным уровнем подготовки может управлять роботом, предназначенным для приема пищи, питья, ухода за волосами, чистки зубов, чтения, пользования телефоном, а также для работы на персональном компьютере. Контроллер, размещенный под подбородком пациента, для управления автоматизированным рабочим местом может монтироваться на инвалидной коляске или на столе рабочего места. Это делает, в частности, возможным использование большого числа автоматизированных рабочих мест для одновременного кормления группы пациентов. Такие мероприятия обеспечивают пациентам возможность общения друг с другом и способствуют их осознанию себя как полноправного члена общества.

Сервисные роботы.

Медицинские роботы сервисного назначения призваны решать транспортные задачи по перемещению пациентов, различных предметов, связанных с их обслуживанием и лечением, а также выполнять необходимые действия по уходу за больными, прикованными к постели.

Внедрение в систему здравоохранения роботов этой группы позволит освободить медперсонал от рутинной вспомогательной работы, предоставив ему возможность заниматься своими профессиональными делами.

Разработан робот, выполняющий функции, связанные с приложением больших усилий – транспортировка, укладывание больных и т.п. Робот представляет собой электрогидравлическую систему с автономным источником питания. Возможность управлять роботом предоставляется как пациенту, так и мед персоналу. Он оснащен сенсорной системой. Робот способен обслуживать больного, масса которого не превышает 80 кг.

В Великобритании разрабатывается роботизированное устройство, способное выполнять операции по переворачиванию лежачих тяжелобольных с целью устранения у них пролежней. В результате появляется возможность устранить вынужденные потери и освободить медсестер от выполнения этой изнурительной работы. Такие устройства позволяют, в частности, одному медработнику мыть в ванне тяжелобольных, не прибегая к помощи других сотрудников.

В Японии разработан образец мобильного робота – поводыря Meldog для слепых, представляющий собой небольшую траспортную четырехколесную полноприводную тележку, система управления которой оснащена системой технического зрения и ЭВМ. В память ЭВМ записан маршрут движения в пределах данного населенного пункта. Одни датчики робота по месторасположению стен домов и выбранных опорных точек идентифицируют уличные перекрестки, другие обнаруживают дорожные препятствия. По сигналам с датчиков бортовая ЭВМ робота вырабатывает стратегию преодоления препятствий. Робот – поводырь управляет движением слепого пациента с помощью элементов связи, которые расположены на мягком прилегающем к телу инвалида поясе. Электрические импульсы, генерируемые этим поясом, являются командами для пациента при остановке робота или его повороте налево или направо. Робот контролирует скорость своего передвижения и останавливается в 1..2 м впереди ведомого слепого пациента. В перспективе появление подобных мобильных роботов с улучшенной системой управления, основанной на принципах вероятностной логики.

Внедрение транспортных мобильных роботов в инфраструктуру медицинских учреждений России значительно облегчит решение вопроса о нехватке младшего медицинского персонала.

Основными видами транспортировочных работ, которые предполагается поручать медицинским мобильным роботам, является: централизованная доставка медицинских материалов и оборудования, лотков и поддонов с пищей для пациентов, лабораторных анализов, готовых медикаментов, почты для больных, а также утилизация и транспортировка материалов и отходов из служебных помещений.

В США разработан транспортный мобильный робот для госпиталей. В госпитале г. Данбэри этот робот в автономном режиме управления развозит лотки с пищей. Госпиталь насчитывает 450 коек для больных. Ежедневно робот развозит около 90 поддонов или лотков с пищей для вновь прибывших пациентов.

Медицинский робот Helpmate оснащен системой технического зрения, состоящей из нескольких цветных ТВ – камер, акустических локаторов и неконтактных НК – датчиков для обнаружения дорожных препятствий, измерения расстояния до них и составления маршрута безопасного движения. На передней стенке робота расположены также электровыключатель экстренной остановки (продублированный на задней стенке), сигнальная лампа – вспышка и сигналы поворота.

На заднюю стенку робота выведены устройства считывания карты местности: клавишная панель, переключатель вида работ, шкаф для лотков с пищей и ниша для аккумуляторов.

Стратегия преодоления препятствий решается с помощью бортовой ЭВМ на базе составленной карты местности. Данные, полученные с датчиков первичной информации, логически обрабатываются и выводятся на карту местности. Датчики сканируют местность спереди передвигающегося робота, так что в случае появления препятствия робот по сигналам с датчиков останавливается. В течение нескольких минут ЭВМ обрабатывает данные и подтверждает наличие преграды. Если препятствие движется, то робот ожидает до тех пор, пока оно не исчезнет. Если же объект стоит неподвижно, то робот начинает маневрировать в целях обхода препятствия сбоку. Все процессы маневрирования записываются в память машины. В случае неудачи все записанные параметры маневрирования сравниваются с истинным положением робота и проводится корректировка программы и системы управления. Время обучения мобильного робота передвижению в автономном режиме зависит от сложности маршрута, размеров коридоров и дверных проёмов в больнице.

Помимо робота Helpmate в США разработана госпитальная роботизированная система Robotek упрощенной конструкции и меньшей стоимости.

В Канаде ведутся исследования по созданию медицинского мобильного робота автономного управления с высокими тактико-техническими характеристиками. В целях обеспечения высокой функциональной надежности система управления робота оснащена резервной системой управления, а также системой самодиагностики, способной в автоматическом режиме определять отказы в системе управления и их причины.

В Японии для транспортировки лежачих больных в пределах госпиталя разрабатывается медицинская мобильная робототехническая система, представляющая собой дистанционно управляемую транспортную тележку. Робот оснащен устройством для перекладки больного с больничной койки на транспортировочное средство, состоящей из доски с крепежными мягкими ремнями вверху и внизу. Это подвижное устройство может перемещаться между пациентом и его коечным матрацем и позволяет самому больному передвигаться на доске, которая подвешивается на роботе в двух местах, позволяющих ей принимать конфигурацию кресла.

По мнению экспертов Japan Industrial Robot Association (JIRA ), японский рынок госпитальных мобильных роботов возрос с 1000 в 1995 году до 3200 в 2000 г.

За последние годы повысился интерес к мобильным госпитальным роботам и в ряде европейских стран. Во Франции и Италии ряд ведущих робототехнических и электронных компаний включились в разработку роботизированных систем для транспортировки продуктов, как в госпитале, так и в офисе. Ведутся работы по созданию роботов для эвакуации раненых из зон природных и техногенных катастроф.

Клинические роботы.

Клинические роботы предназначены для решения трех главных задач: диагностики заболеваний, терапевтического и хирургического лечения.

Ряд существующих диагностических систем с изображением на экране исследуемой области (например томографический прибор, управляемый от ЭВМ), уже использует элементы мехатроники и робототехники. Предполагается, что массовое появление медицинских приборов различного назначения, управляемых ЭВМ, окажет сильное влияние на врачебную практику.

В Японии запатентован микроманипулятор, предназначенный для проведения медицинских и биологических исследований на клеточном уровне, позволяющий измерять электрическое сопротивление клетки, делать микроинъекции в клетку медицинских препаратов и ферментов, менять конструкцию клетки и извлекать ее содержимое.

Другой областью применения роботов является радиотерапия, где они используются в целях понижения уровня радиационной опасности для медицинского персонала. Использование роботов считается наиболее целесообразным при проведении замены нескольких дорогостоящих стационарных радиоактивных источников во многолучевых установках. Разработка манипуляторов для радиотерапевтических отделений находится в экспериментальной фазе. На этой же фазе находятся работы по созданию робота – массажера.

Существует ряд сложных хирургических операций, выполнение которых сдерживается отсутствием опытных хирургов, поскольку такие операции требуют высокой точности исполнения. Например, в микрохирургии глаза существует такая операция, как радиальные разрезы роговой оболочки (radial keratotomy ), с помощью которой можно корректировать фокусное расстояние глаза при устранения близорукости. Идеальная глубина надреза оболочки глаза должна не превышать 20 мкм. Опытный хирург при проведении этой операции может выполнять надрезы на глубину 100 мкм. В Канаде разрабатывается медицинский робототехнический комплекс, способный делать высокоточные надрезы на глазной роговице и обеспечивать нужную кривизну глаза. Другим примером исполнения хирургических операций высокой точности является микронейрохирургия. В Великобритании уже разработан медицинский робот для микрохирургии мозга.

Созданный в США медицинский робот с манипулятором «Пума» продемонстрировал возможность извлечения кусочка ткани головного мозга для проведения биопсии. С помощью специального сканирующего устройства с трёхмерной системой отображения информации определялись место и скорость ввода двухмиллиметрового сверла для забора образцов мозговой ткани.

Во Франции разрабатывается медицинский робот – ассистент для оказания помощи при проведении хирургических операций на позвоночнике, когда любая ошибка хирурга может привести к полной парализации пациента. В Японии созданный медицинский робот продемонстрировал возможность трансплантации роговицы глаза, взятой у мертвого донора.

К достоинствам медицинских роботов относится их способность воспроизводить требуемую последовательность сложных движений исполнительных инструментов. В Великобритании продемонстрирован медицинский робот – тренажер для обучения врачей и моделирования процессов хирургических операций на простате, в ходе которых производится серия сложных надрезов в различных направлениях, последовательность исполнения которых трудна для запоминания и выполнения.

В США запатентована роботизированная система для помощи хирургу при выполнении операций на костях. Данная система применяется в ортопедических операциях, при которых важнейшим является точное позиционирование инструмента относительно коленного сустава. Роботизированная система состоит из операционного стола, неподвижного устройства, робота, контроллера и супервизора. Пациент размещен так, чтобы бедро было неподвижно закреплено внутри устройства. Другое бедро пациента закреплено к операционному столу ремнями.

Основание робота прочно закрепляется на операционном столе. Инструмент устанавливается на роботе, манипулятор которого может перемещаться имея 6 степеней подвижности. Манипулятор содержит позиционно – сенсорное устройство для выработки сигналов, указывающих положение манипулятора относительно координатной системы. В составе робота используется серийный манипулятор PUMA 200, который благодаря своей относительной простоте легко адаптируется к хирургическим операциям. Контроллер отслеживает все все движения робота и передает их на супервизор. Команды на перемещения и управление вспомогательными операциями, вырабатываемые контроллером, передаются роботу сигналами позиционирования, поступающими по соединительным кабелям.

Существует несколько способов управления движением робота. При изготовлении робот оснащается дополнительным устройством с учебной программой. Устройство для обучения представляет собой прибор с полуавтоматическим управлением маневрированием робота. Маневрирование состоит из серии отдельных шагов – перемещений. Контроллер записывает эти шаги так, чтобы робот мог затем сам повторить их. Для управления роботом могут применяться речевые команды или другой тип управления. Робот может перемещаться и пассивным образом, для чего в манипуляторе предусмотрено ручное управление движением.

Супервизор, так же как и контроллер, обеспечивается управляющими командами и программами на языке VAL – 11. При работе с супервизором все команды на движение проходят через контроллер. Перед дисплеем устанавливается специальный экран, известный под торговой маркой « Touch window » (TSW ), который используется в качестве прибора для ввода команд в процессе операции. Все изменения на кости отображаются на экране монитора. В операционной этот экран покрывается стерильной пленкой, что позволяет хирургу непосредственно управлять хирургическим операционным процессом. Программы операций базируются на геометрических соотношениях между параметрами протеза, параметрами костных разрезов и осями сверления отверстий. Робот будет перемещать инструмент по определенным позициям в соответствующих плоскостях. Началом системы координат будет некоторая фиксированная точка на опорной поверхности.

В последние годы в области автоматизации хирургических процессов появились сообщения о попытках создания роботизированных систем для дистанционной хирургии с помощью телевизионных установок, когда хирург и пациент разделены большими расстояниями.

К числу наиболее актуальных задач относится диагностика и хирургия сосудистых заболеваний. В Японии, Италии, России ведутся работы по созданию мобильных микророботов, предназначенных для разрушения атеросклеротических отложений в кровеносных сосудах. Предполагается, что мобильные микророботы будут работать в автоматическом режиме, перемещаясь по анатомическому руслу кровеносной системы.

В настоящее время в МГТУ им. Н.Э. Баумана ведутся работы по созданию роботизированной системы, позволяющей решать эти задачи. Система включает артериальный носитель – микроробот, способный перемещаться по кровеносному руслу и оснащенному ультразвуковым микродатчиком, а также необходимым рабочим инструментом. Функциональная схема этой системы приведена на рис.2. Хирург – оператор, получая информацию о состоянии сосуда, имеет возможность с помощью микроробота осуществлять процедуры как медикаментозного, так и хирургического характера.

В Канаде проводятся экспериментальные исследования телеоператора – робота для лапароскопических операций. Новая медицинская технология основана на применении миниатюрной камеры и специальных инструментов, вводимых через брюшную стенку. Видеоизображение передается на монитор, и ассистент координирует движения оперирующей группы в заданном направлении. Положение миниатюрной видеокамеры в брюшной полости координируется с помощью манипулятора, управляемого хирургом.

Рисунок 2. Функциональная схема робототехнической системы для внутрисосудистой диагностики и хирургии

Отметим, что клинические робототехнические системы являются эргатическими т.е. функционируют при участии оператора. Высокий уровень технологий позволяет существенно расширить возможности оперативного вмешательства. Примером может служить дистанционно управляемая манипуляционная система для проведения операций на сердце. В последнем случае хирург получает возможность проводить операции с разрешением, в 2-3 раза меньшим, чем позволяет его рука при непосредственной работе с инструментом. Следует подчеркнуть, что подобного рода операции возможны только при достаточно высоком уровне информационных технологий, использовании активного интерфейса и экспертных систем, обеспечивающих диалог хирурга с робототехнической системой на протяжении всей операции, контролирующих его действия и предотвращающих возможные ошибки. Наряду с непосредственным управлением движением мини – манипуляторами и микророботами с помощью органов ручного управления хирург имеет возможность использовать речевые команды для управления как рабочим инструментом, так и средствами информационного обеспечения. Таким образом, использование клинических робототехнических систем позволяет не только отказаться в ряде случаев от традиционных медицинских технологий, но и существенно облегчить условия труда хирурга и врача – диагноста.

Заключение.

Из вышеизложенного следует, что медицинская мехатроника находится в состоянии быстрого подъема, темпы которого значительно выше, чем в традиционных областях мехатроники. Вместе с тем необходимо упомянуть и о факторах, сдерживающих применение мехатронных устройств в медицинской практике, которые справедливы не только для России, но и для всех развитых стран. Важнейшим среди них является психологический фактор, связанный с дегуманизацией медицинского обслуживания и проявляющийся не только со стороны пациентов, но и со стороны медицинского персонала. Этот фактор вызывает отторжение идеи применения мехатроники для столь деликатной сферы, как организм человека. Его преодоление требует отношения к мехатронике, в первую очередь, как к средству, инструменту медицинской практики врача, хирурга. Необходимо обратить внимание на обеспечение надежности мехатронных систем и их безопасность для пациента.

Другим сдерживающим фактором является разобщенность и неполное взаимное понимание специалистов в области техники и медицины. Это обстоятельство требует подготовки специалистов нового типа, владеющих не только инженерными знаниями, но и хорошо знакомыми с особенностями медицинских технологий. Необходимо обратить внимание на тот факт, что в настоящее время еще не сложилась в полной мере биотехническая методология, предусматривающая системный подход к проектированию мехатроных медицинских систем.

Наиболее трудноразрешимая задача, возникающая при проектировании медицинских мехатронных систем, заключается в согласовании между собой отдельных элементов системы. При этом можно выделить следующие условия совместимости:

  1. биофизическая совместимость характеристик биологического объекта и технических элементов мехатронной системы;
  2. информационная совместимость мехатронной системы и оператора системы;
  3. эргономическая совместимость мехатронной системы по отношению как к оператору, так и к пациенту;
  4. психологическая совместимость технической части системы с оператором и пациентом.

Соблюдение этих условий позволит уже в ближайшее время преодолеть факторы, сдерживающие широкое применение мехатронных систем в медицинской практике.


Медицинские роботы

Реабилита- ционные

ервисные

Клинические

Протезы

Манипуляторы

Автоматическое рабочее место

Диагностика

Поводырь

Терапия

Хирургия

Эвакуация пострадавших

Уход за больными

Хирург - оператор

Система безопасности

Ручное управление

Компьютер

Монитор

Интерфейс связи

Система внедрения

Микроробот

Ультразвуковой датчик

Микродвигатель

Хирургический инструмент

Кровеносный сосуд

Биологический объект

Состояние пациента

АРМХ

Другие похожие работы, которые могут вас заинтересовать.вшм>

18942. Реабилитации детей-инвалидов в отделении дневного пребывания (на примере Республиканского центра реабилитации детей с ограниченными возможностями «Идегел» республики Тыва) 63.62 KB
Именно поэтому решение проблем детей-инвалидов на сегодняшний день является одним из важнейших необходимых действий социальной политики государства социальных учреждений специалистов по социальной работе и общественных организаций. Создание условий для успешной социализации детей-инвалидов в современном обществе - это задача не только государственных и социальных учреждений но и общественных организаций. В России как и во всем мире наблюдается тенденция роста числа детей-инвалидов. в органах социальной защиты населения состояло на...
11800. ПРОБЛЕМА РЕАБИЛИТАЦИИ ДЕТЕЙ-ИНВАЛИДОВ В ОТДЕЛЕНИИ ДНЕВНОГО ПРЕБЫВАНИЯ 64.55 KB
Сегодня в России, согласно официальным статистическим данным, проживает более 8 миллионов инвалидов, и ожидается дальнейший численный рост этой группы. Кроме них есть миллионы людей с ограниченными возможностями, не имеющие официального, юридически оформленного статуса инвалидов. Известно, что таким людям значительно труднее, чем здоровым, адаптироваться в постоянно меняющейся ситуации. Им нужна для этого квалифицированная помощь.
9210. Клинические роботы 10.48 KB
Манипулятор содержит позиционно – сенсорное устройство для выработки сигналов указывающих положение манипулятора относительно координатной системы. Началом системы координат будет некоторая фиксированная точка на опорной поверхности. Предполагается что мобильные микророботы будут работать в автоматическом режиме перемещаясь по анатомическому руслу кровеносной системы. Баумана ведутся работы по созданию роботизированной системы позволяющей решать эти задачи.
5561. Промышленные роботы 704.93 KB
Среди самых распространённых действий совершаемых промышленными роботами можно назвать следующие: перемещение деталей и заготовок от станка к станку или от станка к системам сменных палет; сварка швов и точечная сварка; покраска; выполнение операций резанья с движением инструмента по сложной траектории...
1933. Манипуляционные роботы 648.12 KB
Манипуляционный робот состоит из манипулятора исполнительных устройств устройств очувствления устройств связи с оператором и ЭВМ. Их также называют автоматическими программными манипуляторами или промышленными роботами. Характерной особенностью интеллектуальных роботов является их способность вести диалог с человеком распознавать и анализировать сложные ситуации планировать движения манипулятора и осуществлять их реализацию в условиях ограниченной информации о внешней среде. Управление манипуляторами этого типа роботов...
9211. Промышленные и мобильные роботы 412.87 KB
В энциклопедическом словаре роботом называется автоматическая система машина оснащенная датчиками воспринимающими информацию об окружающей среде и исполнительными механизмами способная с помощью блока управления целенаправленно вести себя в изменяющейся обстановке. Роботы можно классифицировать по: областям применения – производственные промышленные военные боевые обеспечивающие исследовательские медицинские; среде обитания эксплуатации – наземные подземные надводные подводные воздушные космические; степени...
2414. Спортивно-медицинская классификация инвалидов 37.08 KB
Лекция Тема: Спортивномедицинская классификация инвалидов Дисциплина: Врачебный контроль в адаптивной физической культуре Специальность: 032102 специалист по адаптивной физической культуре Факультет очного обучения педагогический Разработала: Флянку И. Спортивномедицинская классификация спортсменовинвалидов с врожденными и ампутационными дефектами конечностей 9 классов. Спортивномедицинская классификация спортсменовинвалидов с последствиями травм позвоночника и спинного мозга 6 классов. Спортивномедицинская классификация...
7805. СОЦИАЛЬНАЯ АДАПТАЦИЯ ПОЖИЛЫХ И ИНВАЛИДОВ 17.99 KB
Стадии социальной адаптации. Механизмы социальной адаптации. Напротив понятия адаптация и адаптационный процесс используются сегодня в биологии и социальной психологии философии и кибернетике социологии и экологии и т. Это происходит в первую очередь в силу динамичного характера социальной жизни приводящего к постоянным изменениям среды жизнедеятельности человека.
17536. Сестринский процесс в реабилитации пациентов перенесших ОНМК 133.15 KB
Сестринский процесс в поэтапной реабилитации постинсультных пациентов определяет основные направления мероприятий которые способствуют улучшению их качества жизни пациента. Выявление этих симптомов является частью работы по постановке сестринского диагноза и выявления основных проблем пациента. Таким образом основными проблемами пациента вострый период инсульта являются: боль головная боль боль в парализованных конечностях. Медицинская реабилитация в первую очередь показана пациентам у которых вследствие заболевания имеется высокий...
20367. ВЛИЯНИЕ ВОЗРАСТНОГО ФАКТОРА НА РЕЗУЛЬТАТЫ РЕАБИЛИТАЦИИ ПАЦИЕНТОВ С НЕВРОЛОГИЧЕСКОЙ ПАТОЛОГИЕЙ 851.54 KB
Оценка эффективности анализа лечения и реабилитации пациентов. Острые нарушения мозгового кровообращения являются одной из причин стойкой утраты трудоспособности населения во всем мире. Инсульт является одной из основных причин инвалидизации взрослого населения поскольку даже в случае своевременного оказания...
Опубликовано: Архипов М.В., Головин В.Ф., Журавлев В.В. Мехатроника, автоматизация, управление, № 8, М., 2011, с. 42 – 50

Обзор состояния робототехники в восстановительной медицине

1. Классификация медицинских роботов

Чтобы систематизировать известные и возможные робототехнические системы (РТС) в медицине предложен ряд классификаций . В качестве признаков классификации использованы следующие: инвазивность процедуры, безопасность, мобильность, эргономичность, контроль как управление или диагностика. Один из вариантов классификации, учитывающий последние достижения в медицинской робототехнике приведен на рис.1 . Основные три класса – это роботы для восстановительной медицины, роботы для жизнеобеспечения и роботы для хирургии, терапии и диагностики. Они представляют собой основные области медицинской робототехники, хотя эти классы и их подклассы не являются независимыми по указанным выше признакам. Далее в разделах 3 – 5 рассматриваются представители обозначенных в классификации подклассов восстановительной медицины.

Рис.1

2. Концепция разработки и внедрения роботов в восстановительной медицине для здоровых людей

Восстановительная медицина представляет систему медицинской деятельности, направленной на диагностику функциональных резервов, сохранение и восстановление здоровья человека посредством оздоровления и медицинской реабилитации. Под оздоровлением следует понимать комплекс профилактических мероприятий, направленных на восстановление сниженных функциональных резервов и адаптивных возможностей организма у практически здоровых лиц . Особенную роль профилактической медицины отмечал Нобелевский лауреат И.П. Павлов (рис.2). По его словам: “Профилактическая медицина достигает своих социальных целей только в случае перехода от медицины патологии к медицине здоровья здоровых”.

Рис.2

Понятие восстановительная медицина отличается по существу от понятия медицинская реабилитация, которая представляет комплекс диагностических и лечебно-профилактических мероприятий, направленных на восстановление или компенсацию нарушенных функций организма человека и трудоспособности у больных лиц и инвалидов.

Реабилитация – это закрепление лечебного эффекта в процессе выздоровления больного после болезни. В отличие от реабилитации, обеспечивающей восстановление здоровья у больного человека, восстановительная медицина направлена на воспроизводство утраченных резервов здоровья. Лечебно-оздоровительный арсенал восстановительной медицины обеспечивает человеку социально-творческую активность в своей профессии, то есть работоспособность в тех условиях, в которых протекает его профессиональная деятельность. Реабилитация по преимуществу сосредоточена на органной патологии, и соответственно её критериальный аппарат оценивает степень возвращения к норме. Методический инструментарий восстановительной медицины перенацеливается с поиска симптомов болезни на оценку резервных функциональных возможностей организма, именно к тем нагрузкам, условиям труда, в которых работает человек.

В основу концепции развития здравоохранения и медицинской науки в Российской Федерации на период до 2010 г. положена здоровьецентрическая модель системы здравоохранения, разработанная РНЦВМиК под руководством академика А.Н.Разумова (рис.3). Суть модели состоит в акценте на сохранение здоровья здорового человека а, следовательно, на восстановительную медицину .

Рис.3

В дальнейшем большинство исследований этой монографии будет связано с контингентом не только травмированных в военных действиях, на производстве, в спорте людей, больных детским церебральным параличом, постинсультных больных, но и людей здоровых, устающих от физической и умственной деятельности, снижающих свою работоспособность. Например, преподаватели и студенты университетов. Уместно сказать здесь о развивающейся в настоящее время системе интенсивного информатизированного обучения, которая для повышения эффективности обучения предполагает концентрацию усилий как обучающихся, так и преподавателей без ущерба их здоровья. Для них необходимой является рассматриваемая в монографии восстановительная медицина.

Восстановительная медицина включает ряд терапий, в том числе, немедикоментозные, одним из видов которых является механотерапия. Среди множества известных средств механотерапии наибольшими возможностями обладает робототехника.

О необходимости применения аппаратных средств оздоровительного массажа именно для здоровых людей писал в своей диссертации “Материалы к вопросу о действии массажа на здоровых людей” в 1882 г русский учёный Н.В. Заблудовский (рис.4). “Нельзя ли воспользоваться усовершенствованиями механики для устройства таких машин, которые заменили бы действия рук, или не будет ли даже действие машин предпочтительнее действия рук? Стоило бы изобрести машину, силу которой можно было бы в каждый момент определять в цифрах и вместо работы массёра, зависящей от субъективного мышечного чувства, иметь дело с работой, выраженной в цифрах. Другими словами – вместо того, чтобы количество целебного средства взять на глазок, взвешивать его на точных весах”.

Рис.4

В те времена это было фантастикой, и учёный лишь мечтал о возможности дозирования воздействий на аппаратных средствах будущего. В настоящее время мечты великого предсказателя могут быть реализованы при обращении к развитой адаптивной интеллектуальной робототехнике. Проблема для медицины, в первую очередь, состоит в развитии концепции Н.В. Заблудовского о новом подходе к физической культуре человека с участием не только волевых и пассивных движений, но и массажа. Массаж может иметь как функцию релаксации, так и мобилизации. В оптимальном объединении этих функций физическая культура сможет в большей степени способствовать сохранению и повышению запасов здоровья и повышению работоспособности в физическом и умственном труде.

Поэтому существом концепции разработки и внедрения роботов в ВМ для здоровых людей является использование адаптивных и интеллектуальных роботов в сочетании с другими видами терапий: аромо-, мело-, психотерапией для сохранения повышения запасов здоровья людей, повышения их работоспособности.

Конечно, робототехническая система является автоматизированным средством, лишь временно работая автоматически, подчиняясь человеку на уровне принятия сложных решений и являясь разумным, а не только физическим помощником.

В соответствии с классификацией, предложенной выше, проведен обзор состояния робототехники для восстановительной медицины по трём направлениям: манипуляции на суставах или движения конечностей в суставах; манипуляции на мягких тканях, т.е. разнообразный массаж; активные и биоуправляемые протезы.

3. Роботы для выполнения движений конечностей в суставах

Движения конечностей в суставах руками врача широко используются в спортивной, восстановительной медицине, в лечении и обучении пациентов с последствиями инсульта, детского церебрального паралича. Пассивные и активные движения конечностей в суставах часто выполняются вместе с массажем, в том числе, и в оздоровительных целях. Механотерапия заменяет руки врача руками манипулятора. Одни из первых работ, в которых был предложен манипуляционный шестиприводной робот для массажа и движения конечностей в суставах появились в 1997г. . Позднее появляются одноприводные роботы американской фирмы ”Biodex ”, швейцарской фирмы “Con -Trex ”и четырёхприводной робот швейцарской фирмы “Lokomat ” .

Робот швейцарской фирмы “Lokomat” является наиболее ярким представителем подкласса реабилитационных роботов для выполнения движений конечностей в бедренных, коленных и голеностопных суставах. Существует концепция нейропластичности, которая предполагает "постановку задачи специфического обучения" и заключается в том, что с помощью многократно повторяющихся тренировок можно улучшить повседневную двигательную активность у пациентов с неврологическими нарушениями. Роботизированная терапия на комплексе Lokomat отвечает вышеописанным требованиям и дает возможность проведения интенсивной локомоторной терапии с обратной связью. Общий вид комплекса представлен на рис. 5.

Рис. 5

Lokomat состоит из четырёх приводов для навязывания движений ходьбы и системы разгрузки веса пациента и беговой дорожки.

Пациенты, находящиеся в инвалидном кресле, могут быть без особого
труда переведены на полотно беговой дорожки и закреплены с помощью специальных фиксаторов. Управляемые компьютером приводы синхронизированы со скоростью беговой дорожки. Они задают ногам пациента траекторию движения, которая формирует ходьбу, близкую к естественной.

Усиленная мотивация пациента осуществляется за счет управления нагрузкой с помощью биологической обратной связи при выводе текущего состояния на монитор (рис. 6).

Рис. 6

Для задач ортопедии (взрослая и детская), спортивной медицины, производственной реабилитации, профилактики и лечения остеоартритов известен робот американской фирмы “Biodex ”. Принцип действия основан на электронной динамометрии. Система обеспечивает быструю и точную диагностику, лечение и документирование нарушений, являющихся причиной функциональных расстройств мышц и суставов. Система позволяет проводить мобилизацию суставов в направлении сгибание / разгибание, отведение / приведение и ротация, что необходимо для полноценного восстановления их утраченных функций.

В комплектацию входит набор приспособлений для работы с тазобедренным, коленным, плечевым и локтевым суставами, а также с голеностопом и запястьем. Общий вид системы, работающей с верхними и нижними конечностями, представлен на рис. 7.

Рис. 7

Роботы для восстановления верхних и нижних конечностей были представлены на симпозиуме по медицинской робототехнике в Пенсильвании . На рис.8 слева: манипулятор GENTLE /s , разработка University of Reading , Великобритания; в центре: манипулятор ARMguide , разработка Rehabilitation Institute of Chicago ; справа: манипулятор Manipulandum , разработка Rehabilitation Institute of Chicago .

Рис.8 Манипуляторы для восстановления верхних конечностей

На рис.9 вверху слева: робот AutoAmbulator , разработка HealthSouth , США; вверху справа: тренажёр для ходьбы, разработка University of California , США); внизу слева: робот GaitMaster 2, разработка University of Tsukuba , Япония); внизу справа: робот для движений конечностей, а также для массажа, разработка Российской Академии Наук) подробно описанная ниже.


Рис.9 Роботы для восстановления суставов нижних конечностей

Воздействия с помощью рассмотренных выше роботов относят к механотерапии. Механотерапия - метод лечебной физкультуры, основанный на выполнении дозированных движений (преимущественно для отдельных сегментов конечностей), выполняемых с помощью специальных приспособлений. Механотерапия применяется в качестве восстановительного лечения при различных двигательных расстройствах, когда необходимо увеличить амплитуду движений в суставах и силу определенных мышечных групп. На некоторых аппаратах можно заниматься сразу после оперативного вмешательства. Выбор движений, выполняемых на механотерапевтических аппаратах, определяется характером ограничения движений и анатомическими особенностями сустава.

    Роботы для выполнения манипуляций на мягких тканях (роботы для массажа)

История появления роботов в ВМ для массажа такова. В 1997 г. на втором форуме IARP по медицинской робототехнике была представлена только одна работа с использованием робототехники для восстановительной медицины – робот для массажа . В 2002 г. на сайте голландской фирмы появился робот для массажа Tickle - щекочущая букашка. В 2003 г. появился российский патент – робот для шлейф-массажа . В 2005 г. на сайте Силиконовой долины появилось сообщение об использовании робота Puma для массажа. За основу этого робота была взята идея, изложенная в российской работе . К сожалению, развитие этой разработки неизвестно. Перечисленные выше работы представляют большинство известных роботов для массажа, если не иметь ввиду многочисленных аппаратных средства для массажа.

Разнообразные аппаратные средства издавна применяются для облегчения труда массажиста, предупреждения профессиональных заболеваний кистей его рук. Простейшие из них: вибраторы, роллеры, насадки для акупунктуры и акупрессуры представляют средства механизации, которые перемещает массажист (рис. 10).


Рис.10. Аппаратные средства восстановительной медицины

Следует заметить, что робот может быть носителем упомянутых аппаратных средств.

Более сложными являются средства автоматизации, например, массажные кресла. Массажные кресла (рис.11) в качестве актуаторов имеют воздушные подушки с регулируемым давлением, ролики с управляемыми усилиями прижатия. Зоны воздействия массажа: шейно-плечевой отдел, спина, поясничный отдел, ягодицы, бёдра, голени, ступни. Виды массажа: разминающий, похлопывающий, поколачивающий, вибрационный, Шиатсу. С пульта управления можно установить желаемый уровень интенсивности массажа.

Рис.11

Пользуются популярностью полуавтоматические аппаратные средства массажа, частично разгружающие массажиста. На рис.12 показана рука производства американской фирмы Meilis, помогающая выполнять прижимные приёмы.

Рис.12

Робот голландской фирмы Tickle весьма прост по конструкции (рис. 13). В металлическом корпусе находятся два электромотора, аккумуляторная батарея и четыре датчика, позволяющих следить за наклоном поверхности, по которой передвигается робот-массажист. Движение осуществляется с помощью двух силиконовых "гусениц", покрытых выступами, создающими массажный эффект. Принцип движения робота напоминает принцип движения танка: каждый из моторов приводит в движение свою гусеницу. Воздействия робота – поглаживающие и щекочушие, вызывающие эффект релаксации.

Рис.13

Робот для шлейф-массажа выполняет плоскостное, непрерывное, прямолинейное поглаживание на больших поверхностях тела (спина, грудь, живот, конечности). Такого рода поверхностное поглаживание отличается особо нежными и легкими движениями, оказывающими успокоительное воздействие на нервную систему, вызывает мышечное расслабление и улучшение кровообращения. Конструкция робота представляет каретку с электродвигателем, перемещающеюся по траверсе вдоль тела пациента (рис.14). Траверса профилирована по рельефу задней поверхности номинального пациента и не может быть перепрограммирована. С каретки свешиваются поглаживающие щётки и прижимаются к пациенту упругими пластинками.

Рис.14

В 2007 году в Японии разработан робот для массажа лица WAO-1 (Waseda Asahi Oral Rehabilitation Robot 1). Робот (рис.15) оснащен двумя 50-сантиметровыми механическими руками, которые массируют лицо пациента с обеих сторон. Безопасность обеспечивается силометрической ограничительной системой, которая раздвигает руки робота в стороны, стоит ему только приложить слишком большое усилие.
Лицевой массаж признан весьма эффективным средством борьбы с сухостью во рту, поскольку стимулирует дополнительное слюноотделение, а также помогает исправить нарушения ротовой структуры.

Рис. 15

Эффективность аппаратных средств массажа определяется адекватностью механического контакта с пациентом. Этот контакт осуществляется через инструмент аппаратного средства. Поэтому в техниках, воспроизводящих руки человека, инструмент должен имитировать контактные свойства человеческой руки: упругость, теплоту, влажность, фрикционные свойства (шероховатость, гладкость, скользкость), координационные возможности (многопальцевость, способность захватывать). В большей степени перечисленные свойства может обеспечить многосуставный манипуляционный робот.

В Московском Государственном Индустриальном Университете разработан робот для выполнения приёмов массажа и движения конечностей в суставах . Основой этого робота является промышленный робот РМ-01, манипуляционная рука которого антропоморфна по размерам и кинематике (рис.16). В контакте с телом робот развивает усилие до 60 Н. Необходимые усилия развиваются и контролируется за счёт позиционно – силовой системы управления, расширяющей возможности штатного робота.

Рис.16

Шестиприводной робот с указанными данными может выполнять множество известных манипуляций непосредственно на мягких тканях, т.е. разнообразный массаж, а также манипуляции на суставах в виде пассивных и активных движений конечностей, постизометрической релаксации в виде сочетаний нагружений и разгрузок мышц конечностей. На рис.17 робот выполняет выжимание длинных мышц спины девочки.

Рис.17

    Активные биоуправляемые протезы верхних и нижних конечностей

Биопротезирование верхних и нижних конечностей, утраченных в результате травм или болезни опирается на более простые решения. Некоторые простейшие решения в какой-то степени лишь эстетически восстанавливают внешность конечностей, другие решения восстанавливают некоторые функции. На рис.18 приведена классификация протезов, в которой выделены классы активных и биоуправляемых протезов.

Рис.18

Разработанные на основе теории баллистических синергий , протезы нижних конечностей не являются активными и не используют биосигналы, но эффективно используют упругость пружин протезов.

В тяговых протезах верхних конечностей, вначале как пассивных, движения схвата кисти вызывались за счёт дополнительных движений сохранившейся части руки или за счёт движения туловища. Передающим звеном вначале были гибкие тяги, впоследствии появились активные тяговые протезы, в которых движения тяг воспроизводились встроенными двигателями.

Активными, но не биоуправляемыми, являются миотонические протезы, в которых управляющими сигналами являются усилия инвалида. Датчики в виде микровыключателей или тензоэлементов измеряют эти усилия и передают на исполнительные приводы кисти.

Рассмотренные способы протезирования без использования биосигналов имеют ряд недостатков. Управляющие тяги обременяют инвалида, затрудняют движения плечевого пояса, число управляющих команд так же, как при миотоническом управлении, ограничено (одна-две команды). Помехами для управления являются случайные внешние толчки в гильзу культи протеза. Тем не менее, простейшие протезы разработаны в виде модульных конструкций и выпускаются серийно .

Развитию биоуправляемых протезов способствовали достижения в области электрофизиологии, биомеханики, микроэлектроники, адаптивных систем управления с обратными связями.

В настоящее время известна немецкая фирма “Otto Bock ”, серийно выпускающая пассивные и активные протезы. На рис.19 приведен активный протез коленного сустава.

Рис.19

Наиболее значительные результаты по биопротезированию в 70-80-х годах в России известны по работам ЦНИИ ПП . В работах ЦНИИПП родилось принципиально новое направление в протезировании конечностей - создание протезов с биоэлект-рической системой управления или биоуправляемых протезов. Сущность нового принципа построения искусственных конеч-ностей состоит в том, что управление внешними источниками энергии, за счет которой работает протез, в своей основе по-добно естественной координации движений здорового человека.

В живом организме управляющие воздействия передаются мышцам посредством биоэлектрических импульсов, отража-ющих команды центральной нервной системы. Подобно этому в протезе руки с биоэлектрическим управлением роль команд-ных сигналов выполняют биотоки, отводимые от усеченных мышц культи. Механизмом, исполняющим команды, является искусственная кисть, снабженная малогабаритным электри-ческим приводом с автономным питанием.

По материалам симпозиума 2004 г. в Пенсильвании известны активные протезы и экзоскелетоны, приведенные на рис.20.

Рис.20 Активные протезы и экзоскелетоны

Одними из первых работ в области активных протезов и экзоскелетонов являются работы Миомира Вукобратовича . Под его руководством были разработаны экзоскелетоны, в одном варианте с электрическими, в другом с пневматическими приводами тазобедренного, коленного и голеностопного суставов для обеих ног пациента (рис.21). Экзоскелетон предназначался для усиления дистрофически слабых мышц нижних конечностей человека во время ходьбы.

Рис.21

Японская компания Matsushita разработала роботизированный костюм, который поможет реабилитации частично парализованных людей (рис.22). Когда человек, страдающий параличом на одну руку, делает движение здоровой рукой, парализованная рука делает то же самое движение, напрягая и сгибая компрессоры, которые играют роль мускулатуры. Повторяя движения здоровой руки, человек в роботизированном костюме может тренировать свою больную руку до восстановления нормального функционирования конечности.

Рис.22

Костюм весит 1,8 кг. Он был разработан совместно компанией

Были проведены испытания костюма в госпитале, и планируется поставить производство на коммерческую основу. Приблизительная цена костюма для использования в реабилитационных клиниках составит 17000 долл., для домашнего использования – около 2000 долл.

Другая токийская компания Cyberdine разработала автоматизированный костюм HAL (Hybrid Assistive Limb) (рис. 23), который помогает пожилым людям и людям с ограниченными способностями ходить. Устройство с датчиками будет доступно в Японии за арендную плату, составляющую 2200$ в месяц. 22-фунтовая компьютерная система, работающая от батареи, крепится к талии. Она управляет приводами на скобах, которые крепятся ремнями к бедрам и коленям, и обеспечивают автоматизированную помощь во время ходьбы.

Рис.23

Выводы

1. Судя по публикациям организаций- разработчиков и медицинских центров области применения медицинских роботов, в том числе для восстановительной медицины, расширяются и спрос на них увеличивается.

2. Медицинские роботы в сравнении другими аппаратными средствами имеют ряд преимуществ. Это – быстрая перепрограммируемость, высокая точность повторения движений, неутомимость, отсутствие субъективных факторов (добросовесность), дружественный интерфейс (психоэмоциональный контакт), партнёрство (для детей вовлечение в игры, в разнообразные движения, например, в утреннюю зарядку). Также адаптация к индивидуальным особенностям человека (позиционно-силовое управление), наличие интеллекта (накопление опыта, анализ, генерация программ), повышенная безопасность за счёт адаптации и интеллекта.

3. В сравнении с руками врача медицинские роботы сегодняшнего дня часто уступают в чувствительности и координации в сложных движениях.

4. Концепция разработки и внедрения роботов в ВМ для здоровых людей состоит в применении адаптивных и интеллектуальных роботов для сохранения и увеличения запасов здоровья населения, восстановлении работоспособности трудящихся.

5. При разработке и внедрении роботов в ВМ следует делать компромиссный выбор между многофункциональными роботами и экономичными специализированными с малым числом приводов.

6. Для разработанных аппаратных средств ВМ, включая роботы, манипулирующие на мягких тканях и суставах, активные и биоуправляемые протезы, эффективно используется тактильная и силометрическая информация, как для разомкнутых, так и для замкнутых силовых и позиционно-силовых систем управления.

7.Биоинформация используется непосредственно как управляющие сигналы, образует замкнутые системы или образует биологические обратные связи через зрение и нервную систему человека.

Список литературы

    Головин В.Ф. Проблемы развития робототехники в восстановительной медицине. Труды конференции “Мехатроника”, СПб., 2008

    Саврасов Г.В. Медицинская робототехника: состояние, проблемы и общие принципы проектирования. // Вестник МГТУ им. Баумана Н.Э. Спецвыпуск «Биомедицинская техника и технология, серия «Приборостроение», 1998

    Разумов А.Н., Головин В.Ф. Массаж как культура повседневной жизни здоровых людей, Вестник оздоровительной медицины, М.: 2010, №6

    Разумов А.Н., Здоровье здорового человека. - М. “Медицина”, 2007

    Разумов А.Н., Пономаренко В.А., Пискунов В.А. Здоровье здорового человека. М.: Медицина, 1996

    Дубровский В.И., Валеология. Здоровый образ жизни. – М.: Retorika- A, 2001.

    Разумов А.Н., Покровский В.И. Здоровье здорового человека, научные основы восстановительной медицины, М.: РАМН РНЦ ВМК, 2007

    Заблудовский В.И., диссертация “Материалы к вопросу о действии массажа на здоровых людей”- СПб.: 1882 г

    Golovin V.F. Robot for massage. Proceedings of JARP 2nd Workshop on Medical Robotics Heidelberg, Germany, 1997

    Biodex system 3. Manual, 20 Ramsay Road, Shirley, New York 11967-4704

    Ковражкина Е.А., Румянцева Н.А., Старицын А.Н., Суворов А.Ю., Иванова Г.Е., Скворцова В.И. Роботизированные механотренажеры в восстановлении функции ходьбы у больных с инсультом. // М.: Расмирби, №1 (24) 2008, с. 11-16.

    Assistive technologies. Proceedings IARP, Workshop on medical robotics. Hidden Valley, Pennsylvania, USA, 2004

    Rehabilitation robotics, Proceedings IARP, Workshop on medical robotics. Hidden Valley, Pennsylvania, USA, 2004

    Мансуров О.И., Мансуров И.Я. Способ аппаратного поверхностного массажа и реализующий этот способ робот для шлейф-массажа. Рос.патент №2005130736/14 от 05.10.2005

    Jones, Kenny C., Du, Winncy, “Development a Massage Robot for Medical Therapy,” Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM’03), July 23-26, 2003, Kobe, Japan, pp. 1096-1101

    Golovin V.F., Grib A.N. Mechatronic system for manual therapy and massage. Proc. 8-th Mehatronics Forum International Conference, University of Twente, Netherlands, 2002

    Golovin V.F. Robot for massage and mobilization. Proceedings of workshop of AMETMAS-NoE, Moscow, Russia, 1998

    Golovin V.F., Grib A.N. Computer assisted robot for massage and mobilization. Proc. “Computer Science and Information Technologies”, Conference Greece University of Patras, 2002

    Головин В.Ф., Саморуков А.Е. Способ массажа и устройство для его осуществления. Рос. патент № 2145833, 1998

    Головин В.Ф. Мехатронная система для манипуляции на мягких тканях. / Мехатроника, автоматизация, управление. – М.: 2002, №7

    Питкин М.Р. Биомеханика построения протезов нижних конечностей.-СПб.: Изд-во “Человек и здоровье”, 2006.-131с.

    Конструкции протезно-ортопедических изделий. Под ред. Кужекина А.П. М. “Лёгкая и пищевая промышленность”, 1984

    Якобсон Я. С., Морейнис И. Ш., Кужекин А.П. Конструкции протезно-ортопедических изделий /Под редакцией А.П. Кужекина. М., : Лёгкая и пищевая промышленность, 1984

    Вукобратович М. Шагающие и антропоморфные механизмы. Изд.-во “Мир”, М. 1976

ООО «ОЛМЕ» Санкт-Петербург., к.м.н. Вагин А.А.

Развитие робототехники в восстановительной медицине, реабилитация обездвиженных больных - проблемы и решения.

Конкуренцию на сегодняшний день определяет не обладание большими ресурсами или потенциалом производства, а объем знаний накопленный предыдущими поколениями, способность его структурировать, им управлять и персонально использовать.
Одной из важных задач Всемирной организации здравоохранения (ВОЗ) является внедрение в клиническую медицину перспективных ИИТ с методами и средствами ИИ для совместного информационного взаимодействия и использования.

Современная концепция интеллектуальных информационных систем предполагает объединение электронных записей о больных (electronic patient records) с архивами медицинских изображений, данными мониторинга с медицинских приборов, результатами работы визированных лабораторий и следящих систем, наличие современных средств обмена информацией (электронной внутрибольничной почты, Internet, видеоконференций и т.д.) .

В настоящее время активное становление и интенсивное развитие получило перспективное профилактическое направление в виде восстановительной медицины, сложившееся на основе принципов санологии и валеологии. Высокая заболеваемость и смертность, неуклонное снижение качества жизни, отрицательный прирост народонаселения способствовали разработке и внедрению в практическую медицину самостоятельного профилактического направления.

Однако, существующие на сегодняшний день экономические, социальные, правовые, медицинские учреждения выполняют функции в основном по лечению и реабилитации инвалидов, вопросами предупреждения и реабилитационного лечения болезни занимаются недостаточно. Экономическая и социальная ситуация в нашей стране способствует появлению чувства страха и напряженности при наличии травмы или болезни у человека, является источником психосоциальных проблем.

Необходимость активного сохранения здоровья в условиях инфраструктуры медицинских организаций определяется стремлением вывести медицину на новый виток развития. Однако дальнейшее реформирование ее затруднено не только из-за недостаточного финансирования данной отрасли, но и четких единых нормативов и методик планирования, ценообразования, тарификации медицинских услуг, а также распределением ответственности между органами исполнительной власти и ее субъектов за выполнением определенных объемов медицинской помощи.

За последнее десятилетие был достигнут значительный прогресс в медицинской робототехнике. Сегодня несколько тысяч операций на предстательной железе выполняются при помощи медицинских роботов с минимально возможной травматичностью для пациентов. Медицинские роботы позволяют обеспечить минимальную травматичность хирургических операций, более быстрое восстановление пациентов, минимальный риск инфекции и побочных эффектов. Хотя число медицинских процедур, которые выполняют роботы еще сравнительно невелико, следующее поколение робототехники сможет предоставить хирургам более широкие возможности для визуализации операционного поля, обратной связи с хирургическим инструментом и окажет огромное влияние на прогресс в хирургии.

По мере старения населения, число людей, страдающих сердечно-сосудистыми заболеваниями, инсультами и другими заболеваниями продолжает расти. После перенесенного инфаркта, инсульта, позвоночно-спинальной травмы очень важно, чтобы пациент, насколько это возможно, регулярно занимался физическими упражнениями.

К сожалению, пациент обычно вынужден заниматься физической терапией в лечебном учреждении, что зачастую невозможно. Следующее поколение медицинских роботов поможет пациентам выполнять хотя бы часть необходимых физических упражнений в домашних условиях.
Робототехника также начинает использоваться в здравоохранении для ранней диагностики аутизмы,
тренировки памяти у людей с особенностями психического развития.

Развитие робототехники в других странах.

Европейская комиссия недавно приступила к осуществлению программы развития робототехники, в которую вложило 600 млн. евро чтобы укрепить обрабатывающую промышленность и сферу услуг. Корея планирует вложить 1 млрд. долларов США в развитие робототехники в течение 10-ти лет. Подобные, но меньшие программы существуют в Австралии, Сингапуре и Китае. В Соединенных Штатах, финансирование исследований и разработок в области робототехники осуществляется, в основном, в оборонной промышленности, в частности, для беспилотных систем. Но существует и программы развития робототехники в области здравоохранения и услуг. Несмотря на то, что промышленные отрасли робототехники родился в США, мировое лидерство в этой области в настоящее время принадлежит Японии и Европе. И не очень понятно, как США смогут сохранить их лидирующие позиции в течение длительного времени без национальной приверженности развития и внедрения технологий робототехники .

Существующие структурные подразделения осуществляют этапность реабилитационных мероприятий по принципу: стационар – стационарно-курортное лечение – поликлиника. На I этапе стационарной помощи больному устраняются и предупреждаются осложнения острого заболевания, осуществляется стабилизация процесса, проводится физическая и психическая адаптация.

Санаторно-курортный этап (II) – это промежуточное звено между стационаром и поликлиникой, где при относительной стабилизации клинико-лабораторных показателей, проводится медицинская реабилитация больных на основе использования целебных природных факторов. Ш этап – это поликлиника, основное назначение которой на современном уровне амбулаторно-поликлинической помощи выявить компенсаторные возможности организма, их развитие в разумных пределах, а также осуществить комплекс мероприятий, направленных на борьбу с факторами риска сопутствующих осложнений и ухудшений заболеваний. Однако, эта система помощи на практике не всегда осуществима.

Основная трудность – значительные экономические и финансовые затраты на госпитализацию больных, особенно с пограничной стадией заболевания, высокая стоимость санаторно-курортного лечения, недостаточная оснащенность поликлиник современными методами обследования и лечения.

В настоящее время существует несколько международных стандартов регистрации клинических данных в МИС лечебных учреждений:

  • SNOMED International (College of American Pathologists, США);
  • Unified medical language system (National Medical Library, США);
  • Read clinical codes (Центр по кодированию и классификации национальной системы здравоохранения, Великобритания) .

В последние годы в США большинство крупных медицинских центров уже не работают без информационных систем (ИС), на которые приходится более 10% расходов больниц .
В здравоохранении США объем расходов на информационные технологии составляет примерно 20 млрд. долларов в год. Особый интерес вызывают медицинские системы, которые непосредственно помогают врачу увеличить эффективность работы и повысить качество лечения больных .

Проведенные исследования за последние пять лет дали возможность более полно понять процессы происходящие при травме спинного мозга и ее последствиях, а также принципах воздействия на негативные моменты происходящие в зоне повреждения. Такое пристальное внимание именно к этой категории пациентов объяснимо тяжестью последствий возникающих в процессе травмы и последующего дальнейшего развития травматической болезни спинного мозга.

Морфологическое изучение травмированного спинного мозга (СМ) указывает на то, что повреждение тканей не ограничивается областью воздействия разрушающей силы, а, захватывая первично интактные участки, приводит к образованию более обширного повреждения. При этом в процесс вовлекаются структуры головного мозга, а также периферической и вегетативной нервной систем. Установлено, что сенсорные системы изменяются гораздо глубже, чем моторные .

Современная концепция патогенеза травматического повреждения СМ рассматривает два основных взаимосвязанных механизма гибели клеток: некроз и апоптоз.
С некрозом связывают непосредственное первичное повреждение мозговой ткани в момент приложения травматической силы (контузия или сдавление паренхимы мозга, дисциркулляторные сосудистые расстройства). Некротический очаг впоследствии эволюционирует в глиально-соединительнотканный рубец, вблизи которого в дистальном и проксимальном отделах СМ образуются мелкие полости, образующие посттравматические кисты различного размера .

Апоптоз является механизм отсроченного (вторичного) повреждения клеток, представляющего собой их физиологическую гибель, необходимую в норме для обновления и дифференцировки тканей . Развитие апоптоза при травме СМ связано с воздействием на геном клетки возбуждающих аминокислот (глутамат), ионов Са2+, медиаторов воспаления, ишемии и пр. .
Первоначально наблюдается апоптоз нейронов вблизи от некротического очага (пик гибели - 4-8 часов). Затем развивается апоптоз микро- и олигодендроглии (пик гибели – третьи сутки). Следующий пик глиального апоптоза наблюдается через 7-14 суток на отдалении от места травмы и сопровождается гибелью олигодендроцитов.
Вторичные патологические изменения включают петехиальные кровоизлияния и геморрагический некроз, свободнорадикальное окисление липидов, увеличение протеазной активности, воспалительный нейронофагоцитоз и тканевую ишемию с дальнейшим высвобождением ионов Са2+, возбуждающих аминокислот, кининов, серотонина. Всё это в конечном итоге проявляется распространенной восходящей и нисходящей дегенерацией и демиелинизацией нервных проводников, гибелью части аксонов и глии.

Расстройства в деятельности ряда органов и систем, непосредственно не пострадавших при травме, создают новые многообразные патологические ситуации. В денервированных тканях повышается чувствительность к биологически активным веществам (ацетилхолину, адреналину и т. д.), возрастает возбудимость рецептивных полей, снижается порог мембранного потенциала, уменьшается содержание АТФ, гликогена, креатинфосфата. В паретичных мышцах нарушаются липидный и углеводный обмен, что влияет на их механические свойства - растяжимость и сократимость, способствует ригидности.

Расстройство минерального обмена приводит к формированию параоссальных и периартикулярных осификатов, осифицирующего миозита, остеопороза.
Все это может стать причиной новых осложнений: пролежней, трофических язв, остеомиелита, суставно-мышечных контрактур, анкилозов, патологических переломов, костных деформаций - в опорно-двигательном аппарате; камнеобразования, рефлюкса, воспаления, почечной недостаточности - в мочевыводящей системе. Складываются связи, носящие разрушительный характер. Возникает угнетение и функциональное выпадение ряда систем, непосредственно в травме не пострадавших. Под действием непрерывного потока афферентной импульсации активные нервные структуры впадают в состояние парабиоза и становятся невосприимчивыми к специфическим импульсам.

Параллельно формируется и другая динамическая линия - восстановительно-приспособительных функциональных изменений. В условиях глубокой патологии происходит оптимально возможная перестройка механизмов обеспечения адаптации к среде. Организм переходит на новый уровень гомеостаза. В этих условиях гиперреактивности и напряжения формируется травматическая болезнь спинного мозга (ТБСМ) .
С целью проверки предположения о существовании способов предупреждения формирования рубцовой ткани в зоне травмы спинного мозга, до прорастания через нее аксонов нейронов (рабочая гипотеза), Вагиным Александром Анатольевичем была проведена экспериментальная работа на крысах породы «Вистар». Для постановки экспериментов отбирали хорошо развитых и здоровых животных с хорошим поведением, половозрелых, годовалого возраста.

Все экспериментальные процедуры и манипуляции проводились в операционной кафедры патологической физиологиии Военно-Медицинской академии в условиях, отвечающих требованиям СанПин 2.1.3.1375-03. Животные укладывались на операционный стол. Применяли эфирный наркоз. В контрольной группе (группа А) было 22 крысы, в основных группах (группы В и С) – по 21 и 22 соответственно. Всем животным была проведена частичная (под эфирным наркозом) денервация нижней части спинного мозга на уровне 3 грудного позвонка. Экспериментальную денервацию у подопытных животных выполняли в стерильных условиях с соблюдением правил асептики и антисептики. Для нанесения спинальной травмы крысам, использовали только прямую иглу 1,2x40 мм и шовный материал для наложения сдавливающей петли на СМ (супрамидная нить диаметром 0.1 мм стерильная). После нанесения экспериментальной травмы в послеоперационном периоде животные разных групп содержались по разному, но все погружались в медикаментозный сон (Sol. Relanii 0,3 внутрибрюшинно, 2 раза в сутки) на весь срок наблюдения.

Группа контроля (А) содержалась в стандартных условиях, а у крыс основных групп (В и С) применялась методика содержания в условиях фиксации в специальной кювете. Устройство с кюветой служили прообразом «оптимальной восстанавливающей среды» и состояло из фиксированного ложа выполненного из полиуретановой трубы диаметром 5см, длиной 10 см., рассеченной по длиннику с оставлением лепестков длиной 5 см., шириной 1 см. для фиксации лап животного. Лепестки кюветки соединены с движущимися рычагами электродвигателей (4шт.), штоки которых совершают линейные движения позволяющие совершать заданные движения лапами животного (пассивные движения) через релейное устройство получающее команды из промышленного компьютера по заданной программе. В описанное ложе животное укладывалось на спину. Его лапы фиксировались к лепесткам кюветки. Пассивные движения осуществлялись в виде отведения и приведения конечностей животного. Возможные активные движения у животных осуществлялись ими в периоды пробуждения.

Эксперимент выполняли по двум направлениям:

  1. Исследовались изменения на срезах спинного мозга животных после травмы во всех группах под световым и электронным микроскопами.
  2. В ходе наблюдения за животными контрольной и основных групп фиксировались сроки восстановления болевой, температурной чувствительности, а также двигательной активности.

В результате проведенных гистологических, патофизиологических исследований получены следующие результаты. При гистологическом изучении срезов спинного мозга крыс в контрольной группе А гибель клеток в результате полученной травмы после непосредственного повреждения спинного мозга происходит в результате некроза и продолжается до 14 дней. В дальнейшем гибель клеток происходит в результате апоптоза, который наблюдается до 21-30 дней с формированием рубцовой ткани. Рубцовая ткань формируется из дегенерированных хаотично расположенных миелиновых волокон и осевых цилиндров не дающих возможности прорастания аксонов нейронов через зону рубцевания. Область формирования рубцовой ткани включает ядра клеток, переходящих в стадию апоптоидных телец.

В то же время, в основной группе В* - (В и С) выявляется отчетливая гистологическая картина восстановления клеток нейроглии и нейронов в условиях применения метода ПДИК.
При обработке статистических материалов экспериментальной патофизиологической части исследования данных в группе А восстановления болевой и температурной чувствительности, а также двигательной функции не отмечено.
В группе В* - (В и С) восстановление болевой чувствительности отмечено в 21,5% случаев, в 78,5% случаев восстановления не наступило. Восстановление температурной чувствительности отмечено в 15,4 % подопытных животных, в 84,6 % случаев восстановления не отмечено. В результате изучения изменения двигательной активности – восстановление наблюдалось только в основной группе В*. Отмечено, что движения в конечностях восстановились в 26,2% животных, в 73,8% случаев восстановления не наступило. Согласно данным непараметрического анализа на состояние болевой, температурной чувствительности, двигательной функции у исследуемых крыс оказывает достоверное (р<0,05) влияние на комплекс реабилитационных лечебных мероприятий с использованием метода постоянной длительной импульсной кинетикотерапии. Все данные используемые в анализе измерялись в номинальной шкале, для которой используются следующие критерии: Фи, V Крамера и коэффициент сопряженности, подтверждающие выявленные значимости различий встречаемых параметров в исследуемых группах (р<0,05).

Практическая апробация экспериментальной системы на подопытных животных привела к выводу, что реабилитационная методика, направленная на адекватное использование обнаруженного феномена создания оптимизирующих условий для восстановления функций поврежденного СМ должна обеспечивать следующие условия:

  • периодическое создание раздражения эфферентных и афферентных путей выше и ниже очага повреждения СМ;
  • замыкание рефлекторной дуги и тем самым включения в работу сегментарно-рефлекторного аппарата спинного мозга через один и тот же промежуток времени, с одной и той же силой, в одной и той же последовательности длительное время;
  • работать в круглосуточном режиме на протяжении всего времени реабилитации.

Анализ результатов экспериментальной части работы показал, что применение метода постоянной длительной импульсной кинетикотерапии в посттравматическом периоде в клинических условиях у пациентов с последствиями спинальных травм может стимулировать восстановление утраченных функций органов и систем.

При переводе экспериментально подтвержденной модели оптимальной физиологической среды на платформу клинической апробации исходили из того, что в основу разрабатываемой новой методики реабилитационного лечения таких больных должны будут решаться основные задачи реабилитации:

  • создание максимально благоприятных условий для течения регенеративных процессов в спинном мозге;
  • предупреждение и лечение пролежней, свищей, остеомиелитов, контрактур, деформаций костно-суставного аппарата;
  • устранение или уменьшение болевого синдрома;
  • установление самостоятельных контролируемых актов мочеиспускания и дефекации;
  • предупреждение и лечение осложнений со стороны мочевыделительной, дыхательной и сердечно-сосудистой систем;
  • предупреждение и лечение атрофий и спастичности мышц;
  • выработка способности к самостоятельному передвижению и самообслуживанию.

При финансовой поддержке компании ООО “ОЛМЕ” была создана система реабилитационная кинетическая, способствующая проведению в автоматическом режиме периодически создаваемого раздражения эфферентных и афферентных путей, замыкания рефлекторной дуги и, тем самым, включения в работу сегментарно-рефлекторного аппарата спинного мозга через один и тот же промежуток времени, с одной и той же силой, в одной и той же последовательности в круглосуточном режиме на протяжении всего времени нахождения пациента на реабилитации (сутки, недели, месяцы и годы) и позволяющая сохранить суставно-мышечный аппарат, периферическую нервную систему и сегментарный аппарат, тем самым позволяя говорить о новых подходах реабилитации .

Несмотря на отсутствии финансирования со стороны государства, сегодня компанией ООО “ОЛМЕ” заложены основы робототехники с информационными технологиями для реабилитации обездвиженных больных в течении длительного времени в домашних условиях в нашей стране. Данное направление развития реабилитации дает возможность значительно снизить смертность и инвалидизацию у этой категории больных, увеличить продолжительность жизни и в большинстве случаев через 4-5 лет вернуться к полноценной трудовой деятельности.

Список литературы:

  1. Адо А.Д. Патологическая физиология./ А. Д. Адо, Л. М. Ишимова. - М., 1973. - 535 с.
  2. Вагин А.А. Патофизиологическое обоснование применения метода постоянной длительной импульсной кинетикотерапии в лечении и реабилитации больных с последствиями спинальной травмы: дис. канд. мед. наук. – СПб., 2010.– 188 с.
  3. Басакьян А.Г. Апоптоз при травматическом повреждении спинного мозга: перспективы фармакологической коррекции / А. Басакьян, А.В. Басков, Н.Н.. Соколов, И.А Борщенко.- Вопросы медицинской химии № 5, 2000. [Электронный ресурс]. - Режим доступа: http://www.jabat.narod.ru/005/0145.htm. или http://medi.ru/pbmc/8800501.htm
  4. Борщенко И. А. Некоторые аспекты патофизиологии травматического повреждения и регенерации спинного мозга. / И. А. Борщенко, А. В. Басков, А. Г. Коршунов, Ф. С. Сатанова // Журнал Вопросы нейрохирургии. - №2.- 2000. [Электронный ресурс]. - Режим доступа: http://sci-rus.com/pathology/index.htm.
  5. Викторов И. В. Современное состояние исследований регенерации центральной нервной системы in vitro и in vivo./ И. В. Викторов // Второй Всесоюзный симпозиум "Возбудимые клетки в культуре ткани". - Пущино, 1984. - С. 4-18.
  6. Георгиева С. В.Гомеостаз, травматическая болезнь головного и спинного мозга. / С. В. Георгиева, И. Е. Бабиченко, Д. М. Пучиньян - Саратов, 1993 – 115 c
  7. Гретен А. Г. Проблемные аспекты механизмов восстановительных процессов в мозге. / А. Г. Гретен. // Механизмы и коррекция восстановительных процессов мозга. - Горький, 1982. - С. 5 -11.
  8. Aranda J.M. The problem-oriented medical records: Experiences in a community hospital. JAMA 229:549-551, 1974
  9. Braunberg A.C. Smart Card"s Appeal Hastens Jump into Mainstream // Signal. 1995. - January. P.35-39.
  10. Buchanan J.M. Automated Hospital Information Systems. // Mil. Med. - 1996. -Vol. 131,№ 12.-P.1510-1512.
  11. ISO/IEC JTC1/SC 29 N1580, 1996-04-23. Expert from ISO Bulletin: Standards for Global Infrastracture Infrastructure, What is the GII? Medicine 2001: New Technologies, New Realities, New Communities //MedNet- 1996, August 4.-8 p.
  12. Van Hentenryck K. Health Level Seven. Shedding light on HL7"s Version 2.3 Standard. // Healthc Inform. - 1997. - Vol. 14, № 3. - P.74.
  13. Wilson I.H., Watters D. Use of personal computers in a teaching hospital in Zambia //Br. Med. F. - 1988. - vol. 296, N 6617. - P. 255-256.
  14. Пузин М.Н., Кипарисова Е.С., Гюнтер Н.А., Кипарисов В.Б. Кафедра нервных болезней и нейростоматологии «Медбиоэкстрем», Клиническая больница «Медбиоэкстрем» №6, поликлиника №107 г. Москва
  15. roboting.ru/tendency/727-obzor-pers
  16. Нейротравматология: Справочник./ Под ред. А.Н. Коновалова, Л.Б. Лихтермана, А.А. Потапова.- Москва, 1994.- 356 с. [Электронный ресурс]. - Режим доступа: http://sci-rus.com/reference_book/ref_00.htm
  17. Окс С. Основы нейрофизиологии: пер. с англ./ С. Окс - М., Мир, 1969. - 448 с.
  18. Ромоданов А.П., Некоторые проблемы травмы позвоночника и спинного мозга по данным зарубежной литературы./ А.П. Ромоданов, К.Э. Рудяк. // Вопр.нейрохирургии. - 1980. - № 1. - С.56 - 61
  19. Шевелев И. Н. Восстановление функции спинного мозга: современные возможности и перспективы исследования./ И. Н. Шевелев, А. В. Басков, Д. Е. Яриков, И. А. Борщенко // Журнал Вопросы нейрохирургии - 2000. - № 3. [Электронный ресурс]. - Режим доступа: http://www.sci-rus.com/pathology/regeneration.htm
  20. Lockshin R.A. Nucleic acids in cell death. Cell agening and cell death./ R.A Lockshin, Z. Zakeri-Milovanovic./ Eds. I. Devis, and D.C. Sigl.. – 1984, Cambridge. - P. 243 - 245
  21. Yong C., Arnold P.M., Zoubine M.N., Citron B.A., Watanabe I., Berman N.E., Festoff B.W. // J. Neurotrauma. – 1998 - № 15. – P. 459 - 472.
  • Просмотров: 7383
  • " onclick="window.open(this.href," win2 return false > Печать