Конструктивные решения утепления наружных стен. Конструктивные решения зданий с каменными стенами. Наиболее холодного месяца

Доля стеновых материалов в цене объекта загородной недвижимости составляет 3- 10%. При этом влияние материала стен на комфортность проживания остается по- прежнему высоким. Даже просторечное название дома определяется конструкцией его стен.

Комфорт в доме зависит не только от того, из чего сделаны стены. Факторов, влияющих на комфорт, очень много. Но выбор материала стен определяет базовые характеристики дома, которые навсегда останутся с ним и никуда не денутся ни при замене системы отопления, ни при ремонте крыши. Даже устное определение дома основано на выборе стенового материала: каменный, деревянный, каркасный. Конструкция стены представляется основополагающей характеристикой строения даже на бытовом уровне.

В этой статье не будет сказано ни слова о достоинствах и недостатках различных материалов с точки зрения экологичности, долговечности или влияния на микроклимат помещений. Эти вопросы заслуживают отдельного рассмотрения.
Наша статья посвящена другому аспекту выбора: вероятности появления скрытых дефектов. Речь пойдёт о том, насколько реально достичь тех характеристик, которые заявляются производителями и используются в расчетах конструкторами, теплотехниками и другими специалистами.

В общем случае стена – это:

  1. Конструктивное решение стены (несущие, теплоизолирующие, паро- ветрозащитные, отделочные и т.д. слои);
  2. Конструктивное решение отдельных ее узлов (схема установки окон и дверей, примыкание перекрытий, крыши, перегородок, прокладка коммуникаций и другие неоднородности);
  3. Фактическое исполнение принятых конструктивных решений.

Реализуемость проектных решений

Формальных критериев надежности и реализуемости нет. Оценить устойчивость к браку на основе нормативов мы не можем. Поэтому определим реализуемость проектных решений исходя из соображений здравого смысла.

Устойчивость к браку складывается из двух составляющих:

  1. Принципиальная возможность допустить случайный брак при добросовестном производстве работ;
  2. Возможность проверить качество готовой стены без разборки, без применения сложного оборудования и в любое время года.

Обе эти составляющих одинаково важны при выборе конструктивного решения стены. А в зависимости от того, своими руками или с привлечением подрядчиков ведется строительство, акцент при выборе конструктива стены может смещаться от вероятности случайного брака к возможности визуальной оценки качества уже выполненных работ.

Краткая классификация наружных стен

1. Несущий каркас с заполнением. Пример: силовой каркас – доски или металлический профиль, обшивка и заполнение (по слоям изнутри наружу) – ГВЛ (ГКЛ, OSB), п/э пленка, утеплитель, ветрозащита, облицовка.

2. Несущая стена с наружным утеплением с разделением несущей и теплоизолирующей функций между слоями. Пример: стена из кирпича, камней или блоков с наружным утеплителем (пенополистирол или минераловатная плита) и облицовкой (лицевой кирпич, штукатурка, навесной фасад с воздушным зазором).

3. Однослойная стена из материала, выполняющего и несущую и теплоизолирующую функции. Пример: бревенчатая стена без отделки или оштукатуренная кирпичная стена.

4. Экзотические системы с несъёмной опалубкой уберем из рассмотрения из-за малой распространенности.


Попробуем понять, на каких этапах строительных работ возможно отклонение от проектных решений и возникновение брака.

Каркасные конструкции

При упоминании каркасных построек нет необходимости отдавать пальму первенства в их изобретении Канаде. Щитовые домики появились у нас задолго до падения «железного занавеса». А потому оценить их надежность нам вполне посильно. Конструктив: вертикальные и горизонтальные силовые элементы каркаса, раскосы или листовая обшивка, придающие конструкции жесткость.

Никаких вопросов к реализуемости собственно каркаса не возникает – собранный каркас позволяет простейшими средствами оценить свое качество. Визуальная ровность и проверяемая жесткость при приложении горизонтальных нагрузок являются достаточными для приемки каркаса в эксплуатацию. Другое дело – слои, призванные обеспечить тепловую защиту.

Утеплитель . Должен плотно заполнять все полости, образованные силовыми элементами. Задача, труднореализуемая при шаге между элементами каркаса, отличающемся от габаритов плитного утеплителя. И почти не реализуемая при наличии диагональных раскосов в структуре каркаса (конечно, существуют и заливочный, и засыпной утеплители, лишенные этих недостатков – здесь речь идет о наиболее ходовых вариантах заполнения).

Пароизоляция . Слой пленки с высоким сопротивлением паропроницанию. Должен быть установлен с герметизацией стыков, без ослабления перфорацией от механических элементов крепления, с особо тщательным исполнением вокруг оконных и дверных проемов, а также в местах выхода из стены коммуникаций, запрятанных в толщу утеплителя электро- и других разводок и пр. В теории, пароизоляцию можно сделать добротно и тщательно. Но в случае, если вы – заказчик, получающий готовую конструкцию, качество пароизоляции уже обшитой изнутри стены не проверяемо.

Стены с наружным утеплением

Конструктивное решение, распространившееся в последние двадцать лет, одновременно с ужесточением нормативных требований к теплозащите и ростом цен на энергию. Наиболее распространены два варианта:

  • несущая каменная стена (200–300 мм) + утеплитель + облицовка в 1⁄2 кирпича (120 мм);
  • несущая каменная стена (200–300 мм) + приклеенный и закрепленный дюбелями утеплитель + армированная штукатурка по утеплителю или воздушный зазор, ветровая защита и листовая облицовка.

Вопросов к несущему слою стены практически нет. Если стена сложена достаточно ровно (без явных отклонений от вертикали), ее несущей способности практически всегда будет достаточно для выполнения своей основной – несущей – функции. (В малоэтажном строительстве прочностные характеристики стеновых материалов редко когда используются полностью.)

Утеплитель . Приклеенный на несущую стену, закрепленный к ней механически, укрытый слоем армированной штукатурки, он не вызывает вопросов. Можно ошибиться в выборе клея, дюбелей, штукатурного состава – тогда спустя какое-то время слой теплоизоляции или отделки начнет отставать от стены. В целом же – качество проверяемо средствами визуального контроля, а всплывающий брак очевиден.

Качество работ при навесном фасаде с воздушным зазором уже не столь очевидно. Для проверки плотности установки утеплителя необходим демонтаж облицовки, монтаж ветровой защиты также требует промежуточной приемки.

При облицовке утеплителя кирпичом качество его установки невозможно проверить даже тепловизором. А устранить брак можно только после демонтажа облицовки (читай – сноса кирпичной стены).

Однослойные стены

Стена из бревна или бруса, сложенная с применением качественного межвенцового уплотнителя и ничем не обшитая, поверяется на соответствие проекту простым осмотром. Растрескивание древесины, уменьшающее приведенную толщину бревна на 40-60%, и усадку в 6-8% здесь мы рассматривать не будем.

Пустотелые камни . К ним относятся пустотные бетонные блоки и многопустотная крупноформатная керамика. Пустотелые блоки из тяжелого бетона не обеспечат требуемого термического сопротивления, а потому могут выступать лишь как часть стены из предыдущего раздела. Однослойная стена из крупноформатной керамики, оштукатуренная с двух сторон, гарантировано защищена от продувания. Ее тонкие места: углы, отличные от 90 ̊ и кладочные швы.

Обработка хрупких многощелевых блоков для создания не прямого угла, ведет к образованию ажурной стыкуемой поверхности и толстому вертикальному растворному шву. Но значительно большее влияние на отклонение стены от расчетных характеристик оказывают горизонтальные кладочные швы. Во-первых, сами по себе они уже являются мостиками холода. Во-вторых, по правилам, во избежание заполнения пустот раствором, поверх камня до укладки раствора положено раскатывать стекловолоконную сетку с ячейкой 5х5 мм. При этом следует тщательно контролировать подвижность раствора, чтобы не допустить его протекания сквозь ячейки сетки.

Таким образом, возникновение случайного брака возможно даже при добросовестном производстве работ. При производстве работ силами подрядчика, возможность оценить качество кладки без применения тепловизора отсутствует.

Полнотелые камни. К ним относятся стеновые блоки из ячеистого или лёгкого бетона и полнотелый кирпич. Качество стены из полнотелого кирпича можно оценить издалека невооруженным глазом, поэтому говорить о скрытом браке применительно к такой кладке не приходится. Недостаток полнотелого кирпича, как и камней из бетона с большой плотностью – относительно высокая теплопроводность. Такие стены требуют дополнительной теплоизоляции, что возвращает нас в предыдущий раздел, к стенам с наружным утеплением.

Остаются ячеистобетонные блоки. При плотности более 500 кг/м3, а также при использовании обычного цементно-песчаного раствора с толщиной шва более 10 мм, возникает целесообразность дополнительного утепления стены, что лишает ее конструкцию изящной простоты. И только ячеистый бетон с плотностью до 500 кг/м3, с высокой геометрической точностью блоков, позволяющей вести кладку на тонкослойном растворе, дает нам конструкцию столь простую, что возникновение в ней скрытого брака попросту невозможно.

Однослойная стена из ячеистого бетона низкой плотности с клеевыми швами толщиной 1-3мм.

Испортить ее не просто. Например, блоки можно сложить насухо, без какого бы то ни было скрепления друг с другом, просто как детские кубики. Если потом такую стену оштукатурить с двух сторон по сетке – она будет выполнять все возложенные на нее задачи на 100%. Тепловая защита сложенной насухо (и оштукатуренной с двух сторон) конструкции не снизится, а даже несколько вырастет за счет отсутствия теплопроводных растворных прослоек. При этом способность к восприятию вертикальных нагрузок, общая жесткость и устойчивость такой стены при наличии обвязочного пояса в уровне перекрытия не будут отличаться от расчетных.

Точность геометрических размеров, крупный формат блоков и тонкослойный̆ клей обеспечивают принципиальную невозможность сложить кладку с заметными отклонениями от вертикали или какими-либо неровностями. Кладка автоматически получается ровной даже у неопытного каменщика. Углы, отличные от 90 ̊, выполняются при помощи обычной ручной ножовки. Подготовка под чистовую отделку производится простой шпаклевкой швов, т.е. столь же легко, как перед отделкой гипсокартонной поверхности.

По защищенности от скрытых дефектов однослойной̆ стене нет равных. По защищенности от дефектов вообще, как скрытых, так и явных, равных нет однослойной стене из ячеистобетонных блоков плотностью до 500 кг/м3. Только такая стена, выполненная в материале, гарантированно будет соответствовать принятому проектному решению.

Известно, что однослойные ограждающие конструкции из известных на сегодняшний день строительных материалов не могут обеспечить требуемую по современным энергосберегающим нормам тепловую защиту здания, в связи с этим, необходимо изначально предусматривать многослойное ограждение, имеющее в своем составе эффективный утеплитель, а в ряде случаев - воздушную вентилируемую прослойку.

При разработке конструктивного решения стен и покрытия исходили из требований к расчетным сопротивлениям ограждающих конструкций по III уровню теплозащиты [ КМК ].

В соответствие с этим нормативным документом предписано расчетные сопротивления теплопередаче принимать в зависимости от величины градусо-суток отопительного периода (ГСОП), определяемого по формуле (2.6).

Для города Ташкента необходимые для расчета параметры, определенные по КМК 2.01.01-94 , составили:

  • - температура наиболее холодных суток с обеспеченностью 0,92 и пятидневки с обеспеченностью 0,98 равна tн= - 160С;
  • - средняя температура отопительного периода tот.пер=+2,70С;
  • - продолжительность отопительного периода Zот.пер=129 суток.

Температура воздуха внутри помещений для обеспечения достаточного уровня комфортности принималась равной tв= +200С.

Тогда ГСОП= (20 - 2,7)х129= 2232 град х сут.

При таком значении ГСОП по изменению 1 к КМК 2.01.04-07 принимаем:

  • - для стен зданий расчетное сопротивление теплопередаче по зимним условиям эксплуатации Rтр0=2, 1 м2·0С/Вт;
  • - для покрытий Rтр0=2,8 м2·0С/Вт.

Теплотехнические расчеты выполнялись с использованием программного комплекса «BASE» (версия 7.3).

Наружные стены для расчета были приняты следующего конструктивного решения (рис.3.12):

  • - цементно-песчаный раствор М50, толщиной 20 мм;
  • - кирпич глиняный обыкновенный М75 на цементно-песчаном растворе марки М-50 толщиной 380 мм;
  • - утеплитель из пенополистирола;
  • - цементно-песчаный раствор М50, толщиной 20 мм.

Рис. 3.12.

В результате расчета была принята толщина утеплителя 80 мм. Затем принятая конструкция была проверена на теплоустойчивость по летним условиям эксплуатации.

Результаты расчета

1. - Исходные данные:

Тип здания - Административные.

Тип конструкции - СТЕНА

Таблица 3.1

Характеристика ограждения:

Требуется произвести:

максимальное 744 Вт/м2

среднее 275 Вт/м2

Отделка наружней поверхности: Штукатурка цементная кремовая

Коэффициент поглощения солнечной радиации 0.4

2. - Выводы:

Требуемое сопротивление ограждения теплопередаче 2,1 м2*град/Вт

Фактическое (приведенное) сопротивление ограждения теплопередаче 2,21 м2*град/Вт


Таблица 3.2

Фактическое сопротивление воздухопроницанию 656,45 м2*ч*Па/кг

Амплитуда колебаний температуры внутренней поверхности 0,04 град.С

Заполнение оконных проемов и остекление оранжерей приняты без расчета, исходя из имеющейся в Узбекистане номенклатуры изделий такого назначения, - однокамерные стеклопакеты в пластмассовых переплетах из обычного стекла с приведенным сопротивлением теплопередаче равном 0,36 м2·0С/Вт.

Конструктивное решение покрытия мансардного этажа для расчета было принято следующее (рис.3.13):

  • - гипсокартон толщиной 10 мм;
  • - деревянный сплошной настил толщиной 20 мм;
  • - утеплитель из экструдированного пенополистирола 40000С;
  • - пароизоляционный слой из пергамина кровельного толщиной 0,4 мм;
  • - воздушное пространство толщиной 40 мм;
  • - металлочерепица.

Рис. 3.13.

Вставить распечатку расчета на теплопередачу

В результате расчета была принята толщина утеплителя 140 мм. Затем принятая конструкция была проверена на теплоустойчивость по летним условиям эксплуатации.

Результаты расчета

Теплотехнический расчет ограждающих конструкций

1. - Исходные данные:

Тип здания - Общественные, административные, бытовые

Тип конструкции - ПОКРЫТИЕ

Условия эксплуатации ограждения:

Температура наружнего воздуха -16 град.

Температура внутреннего воздуха 20 град.

Средняя температура отопительного периода -2,7 град.

Продолжительность отопительного периода 129 дней

Таблица 3.3

Характеристика ограждения:

Номер слоя

Толщина, м

Наименование

Величина

Ед. измерения

Материал слоя

Теплопроводность

Вт/(м*град)

Гипсокартон

Теплопроводность

Вт/(м*град)

Пергамин

Теплопроводность

Вт/(м*град)

Пенополистирол G=100кг/м3

Теплопроводность

Вт/(м*град)

Пергамин

Теплопроводность

Вт/(м*град)

Коэффициент теплоотдачи внутренней поверхности 8,7 Вт/(м2*град)

Коэффициент теплоотдачи наружней поверхности 23 Вт/(м2*град)

Режим работы ограждающей конструкции:

Эксплуатация; режим помещений - Нормальный (55%); зона влажности - Нормальный

Требуется произвести:

Проверку ограждения на сопротивление теплопередаче

Расчет ограждающей конструкции на теплоустойчивость

Расчет ограждающей конструкции на воздухопроницаемость

Среднемесячная температура за июль 27,1 град.

Амплитуда суточных колебаний воздуха в июле месяце 23,7 град.

Минимальная скорость ветра за июль 1,4 м/с

Значение суммарной солнечной радиации, для стен - как для вертикальных поверхностей, для покрытий - как для горизонтальных:

максимальное 1022 Вт/м2

среднее 497 Вт/м2

Отделка наружней поверхности: Сталь кровельная оцинкованная

Коэффициент поглощения солнечной радиации 0.65

Высота здания до верха вытяжной шахты 11,7 м

Максимальная скорость ветра за январь месяц 2,1 м/с

2. - Выводы:

Сопротивление ограждения теплопередаче ДОСТАТОЧНО

Требуемое сопротивление ограждения теплопередаче 2,8 м2*град/Вт

Фактическое (приведенное) сопротивление ограждения теплопередаче 2,95 м2*град/Вт


Таблица 3.4

Температура на контакте слоев ограждения:

Фактическое сопротивление воздухопроницанию 13000160 м2*ч*Па/кг

Нормируемое сопротивление воздухопроницанию 24,87 м2*ч*Па/кг

Сопротивления паропроницаемости ДОСТАТОЧНО.

Амплитуда колебаний температуры внутренней поверхности 0,96 град.С

Нормируемая амплитуда колебаний температуры поверхности 1,89 град.С

Теплоустойчивости ограждающей конструкции ДОСТАТОЧНО.

Вставить распечатку расчета на теплоустойчивость

Не меньшее значение придается в практике проектирования и утеплению полов первого этажа здания, так как через полы, устроенные без теплоизоляции, проходят большие потери тепла. Помимо уменьшения потерь тепла, теплоизоляция пола позволяет более эффективно использовать их теплоемкость. Температура же поверхности пола является основным фактором, определяющим степень комфортности помещений. В нашем случае для утепления пола всех помещений первого этажа, за исключением холла, принято конструктивное решение, представленное на рис. 3.14.


Рис. 3.14.

Был произведен расчет по определению термического сопротивления утепленного пола и неутепленного пола холла.

Вставить расчеты

Таким образом, расчетное сопротивление утепленного пола составило Rо ут.п.= 0,57 м2·0С/Вт; а «холодного» пола холла Rо холл..п.= 0,39 м2·0С/Вт;

В завершении была выполнена проверка запроектированной оболочки здания на повышенную теплозащиту по формуле (2.8).

В запроектированном здании были определены площади ограждающих конструкций, которые составили:

  • - площадь стен - 652 м2;
  • - площадь кровли - 357 м2;
  • - площадь утепленного пола - 139 м2;
  • - площадь холодного пола - 104 м2;
  • - площадь остекления - 166 м2;

Тогда расчетное сопротивление наружной оболочки здания составит: Rоб=(Rст Sст+RокSок+0,8 RкрSкр+ 0,5RоснSосн+ 0,5Rаб Sаб)/Sоб = 2,21*485+ +0,36*166+0,8*357*2,95+0,5(0,57*139+104*0,39)=1,62 м2. 0С /Вт.

Так как полученное значение на 45% превышает требуемую величину, то можно уменьшить толщину теплоизоляционного слоя на стеновых панелях и покрытии мансардного этажа, а также нет необходимости утеплять пола 1го этажа.

Уменьшаем толщину утеплителя на стенах с 80 мм до 60 мм, при этом Rст = 1,82 м2. 0С /Вт; уменьшаем толщину утеплителя в покрытии с 140 мм до 100 мм при этом Rкр = 2,15 м2. 0С /Вт. Расчетное сопротивление всей поверхности пола 1го этажа принимаем Rосн = 0,39 м2. 0С /Вт. Для этого решения теплозащиты:

Rоб=(Rст Sст+RокSок+0,8 RкрSкр+ 0,5RоснSосн+ 0,5Rаб Sаб)/Sоб = 1,82*485+ +0,36*166+0,8*357*2,15+0,5(243*0,39)=1,23 м2. 0С /Вт.

Rоб =1,23 > 1,21 м2. 0С /Вт полученные решения является наиболее экономичным, соответствует европейским требованием к повышенной теплозащите зданий.

Современные строительные нормативы требуют дополнительно утеплять каменные стены, поскольку в противном случае их толщина получалась бы слишком большой. Но, если при кладке толстой стены не возникает технических вопросов, то многослойная конструкция, в составе которой находится утеплитель, эти вопросы ставит, причем довольно остро. Ошибки, допущенные при утеплении, могут стоить очень дорого, и чтобы их избежать, необходимо досконально изучить теоретическую часть.

Прямо скажем, вопрос утепления относится к одним из самых сложных в строительстве. Главная проблема, которая давно не дает покоя теплотехникам, - это увлажнение утеплителя. Как известно, чем больше утеплитель увлажняется, тем хуже он справляется со своей функцией.

Технология утепления ограждающих конструкций дома зависит от материалов, из которых они построены. В этой статье мы рассмотрим основные варианты утепления каменных стен, т.е. сложенных из различных строительных камней, в частности, керамического и силикатного кирпича, ячеистобетонных блоков, поризованной керамики; а также из монолитного бетона.

Существуют три основных способа утепления каменных стен:

  • снаружи ограждающей конструкции;
  • в толще ограждающей конструкции;
  • изнутри ограждающей конструкции.

Из них наихудшим вариантом считается внутреннее утепление, поскольку кладка в таком случае не защищается от внешних факторов воздействия. Кроме того, при внутреннем утеплении необходима высокопроизводительная вентиляция помещений, иначе на стенах будет образовываться конденсат. Экономия внутреннего утепления только кажущаяся, а на деле ее совсем нет, если учитывать эксплуатационные факторы.

В коттеджном строительстве чаще всего применяется наружное и слоистое (в толще стены) утепление. Но и они имеют ряд недостатков, которые необходимо, если не устранить, то минимизировать. Многослойные стены, в которых утеплитель располагается между несущей конструкцией и наружным кирпичным слоем, - весьма распространенное решение. Такие стены придают дому основательный вид и, как предполагается, не нуждаются в периодическом обновлении фасада.

В качестве утеплителя используют минеральную вату или обычный пенополистирол, реже - экструдированный, по причине его дороговизны. В слоеных стенах минеральная вата, при соблюдении ряда технологических требований ее закладки, работает лучше других утеплителей. Ее главное преимущество - паропроницаемость, которого лишен пенополистирол, в особенности экструдированный. Однако это преимущество может сработать против самой ваты и стеновой конструкции в целом, если не учесть факт переувлажнения утеплителя.

Очень важно понимать, что наилучшим вариантом утепления жилых зданий является тот, при котором каждый последующий слой является более паропроницаемый, чем предыдущий по направлению диффузии водяных паров - изнутри наружу. Если минеральную вату зажать двумя слоями кирпичной кладки, то она быстро увлажнится и потеряет свойства утеплителя. Водяные пары, направляющиеся изнутри помещений наружу, проходя через утеплитель, упрутся в холодную наружную кладку и станут поглощаться ватой. Бороться с этим явлением можно и нужно. Для этого между ватой и наружным слоем оставляется вентилируемый зазор 2 см, а в нижнем и в верхнем ряде кладки выполняются вентиляционные отверстия в виде незаполненных вертикальных швов. Такая схема не является полноценным вентилируемым фасадом, но значительно снижает степень увлажнения волокнистого утеплителя. Конденсат выпадает на внутренней поверхности наружного слоя, но при этом не соприкасается с ватой, а стекает вниз и частично выводится через вентиляционные отверстия.

Для правильного выполнения слоистой кладки с минераловатным утеплителем необходимо использовать закладные детали, которые свяжут оба слоя стены. Это могут быть специальные гибкие связи из стали с антикоррозийным покрытием, стеклопластика или базальтопластика. Они устанавливаются с шагом 60 см по горизонтали и 50 см по вертикали. Связи также выполняют функцию крепежа утеплителя.

Пенополистирол в четыре раза дешевле минеральной ваты и не уступает ей по сопротивлению теплопередаче. Именно дешевизна пенополистирола делает его наиболее распространенным утеплителем в слоеных стенах. Однако проблема, связанная с его низкой паропроницаемостью, не позволяет назвать этот материал идеальным для использования в слоистой кладке. Очевидно, что вопрос диффузии паров не самый простой для понимания неспециалистами, и поэтому многие заказчики выбирают пенополистирол, тем более что строители не сильно их отговаривают от этого. Последствия низкой паропроницаемости утеплителя проявляются не сразу, но когда проблемы станут очевидными, то предъявить претензии уже будет довольно сложно. А последствия такие: несущий слой стены может переувлажняться; в помещении, где нет усиленной вентиляции, может появиться характерный запах плесени, нарушиться внутренняя отделка и т.д.

Пенополистирол является горючим материалом, а потому его нельзя оставлять открытым и, разумеется, никаких вентилируемых зазоров применять нельзя. Кроме того, согласно требованиям СП 23-101-2004 «Проектирование тепловой защиты зданий», при использовании пенопластов для утепления оконные и прочие проемы нужно обрамлять по периметру полосками минеральной ваты.

Как мы видим, и пенополистирол, и минеральная вата в структуре слоеных стен имеют недостатки. Вата намокает, а пенополистирол не пропускает пар. Если пароизолировать минераловатный утеплитель изнутри, то пары не будут проникать в его толщу, однако для их удаления понадобится принудительная вентиляция. Проблема увлажнения ваты снимается, если оставить вентиляционный зазор между ней и фасадным слоем. В случае с пенополистиролом помочь может только интенсивная вентиляция помещений.

Нужно отметить, что эффективность работы теплоизоляторов в слоистой кладке и долговечность слоистой ограждающей конструкции в целом во многом зависит от качества монтажа. Если были допущены ошибки, то их уже невозможно в дальнейшем исправить.

Наружное утепление со штукатурным слоем

Этот способ утепления более известен, как «мокрый фасад» или «фасадное утепление». Наружное утепление менее затратно, чем слоистое; к тому же косвенное удешевление возникает и за счет менее мощного фундамента, который не нагружается каменным фасадным слоем. Несущая часть стены при этом полностью защищается от всех внешних факторов, которые могли бы сократить срок ее службы. Кроме того, наружное утепление не позволяет водяному пару конденсироваться в толще стены, благодаря чему не она не отсыревает. Правда, так происходит только при качественном исполнении всех технологических слоев; при правильном их расчете и расположении.

В наружных системах утепления используется как минеральная вата, так и фасадный пенополистирол (марка 25Ф). Штукатурные слои, которые образуют внешнюю отделку, могут быть тонкослойными (7-9 мм) и толстослойными (30-40 мм). Тонкая штукатурка на теплом фасаде наиболее распространена. Не зависимо от типа утеплителя, его плиты монтируются к стене при помощи клея и тарельчатых дюбелей (5 шт/м²), причем основная несущая функция ложиться на клей, а дюбели помогают справиться с ветровой нагрузкой.

Стандартная система фасадного утепления, начиная от стены, состоит из:

  • проникающая грунтовка;
  • клеевой слой;
  • теплоизоляция (расчитывавется, исходя из недостающего сопротивления теплопередаче);
  • щелочестойкая стеклосетка, заключенная в слой клеевого раствора;
  • кварцевая грунтовка;
  • штукатурный слой.

На уровне первого этажа штукатурный слой делается вдвое толще, чтобы противостоять возможным ударным нагрузкам.

Утепление коттеджа снаружи, как правило, выполняет наемная бригада, поскольку самостоятально справиться с большим объемом работы довольно тяжело, и главное долго. А когда в качестве утеплителя используется минераловатные плиты, то необходимо как можно быстрее их отделать, чтобы дождь их не намочил. Пенополистирол тоже не рекомендуется оставлять без отделки надолго, т.к. он быстро разрушается от солнечного ультрафиолета.

Лучше всего использовать фирменные системы фасадного утепления, т.к. это исключает ошибки подбора материалов. При самостоятельном подборе есть риск, что некоторые технологические слои начнут конфликтовать между собой, что повлечет за собой их отслоение вплоть до обрушения фасада.

Теплые фасады с применением горючих утеплителей, в частности, пенополистирола, нуждаются в противопожарных рассечках - разделении 15-сантиметровыми полосами каменной ваты по этажам и обрамление такими же полосами оконных проемов, а также расположении по всей площади балконов и лоджий.

Долговечность наружных фасадных систем утепления исчисляется десятилетиями, но только при условии тщательного соблюдения технологии. Так, применяя для утепления минеральную вату, важно использовать паропроницаемую штукатурку, иначе волокнистый утеплитель будет накапливать влагу, диффундирующую из помещений, и упирающуюся в панонепроницаемый слой акриловой штукатурки.

[ наружные стены дома, технология, классификация, каменщик, дизайн и кладка несущих стен ]

Быстрый переход:

  • Температурно-усадочные и осадочные швы
  • Классификация наружных стен
  • Конструкции одно- и многослойных стен
  • Панельные бетонные стены и их элементы
  • Проектирование панелей несущих и самонесущих однослойных стен
  • Бетонные панели трехслойной конструкции
  • Методы решения основных задач проектирования стен в бетонных панельных конструкциях
  • Вертикальные стыки и Связи панелей наружных стен с внутренними
  • Тепло и изоляционная способность стыков, виды стыков
  • Композиционные и декоративные особенности панельных стен

Конструкции наружных стен крайне разнообразны; они определяются строительной системой здания, материалом стен и их статической функцией.

Общие требования и классификация конструкций

Рис.2.Деформационные швы

Рис.3.Детали устройстватемпературныхшвов вкирпичных и панельных зданиях

Температурно-усадочные швы устраивают во избежание образования в трещин и перекосов, вызываемых концентрацией усилий от воздействия переменных температур и усадки материала (каменной кладки, монолитных или сборных бетонных конструкций и др.). Температурно-усадочные швы рассекают конструкции только наземной части здания. Расстояния между температурно-усадочными швами назначают в соответствии с климатическими условиями и физико-механическими свойствами стеновых материалов. Для наружных стен из глиняного кирпича на растворе марки М50 и более расстояния между температурно-усадочными швами 40-100 м принимают по СНиП «Каменные и армокаменные конструкции», для наружных стен из бетонных панелей 75-150 м по ВСН32-77, Госгражданстрой «Инструкция по проектированию конструкций панельных жилых зданий». При этом наименьшие расстояния относятся к наиболее суровым климатическим условиям.

В зданиях с продольными несущими стенами швы устраивают в зоне примыкания к поперечным стенам или перегородкам, в зданиях с поперечными несущими стенами швы часто устраивают в виде двух спаренных стен. Наименьшая ширина шва составляет 20 мм. Швы необходимо защищать от продувания, промерзания и сквозных протечек с помощью металлических компенсаторов, герметизации, утепляющих вкладышей. Примеры конструктивных решений температурно-усадочных швов в кирпичных и панельных стенах даны на рис. 3.

Осадочные швы следует предусматривать в местах резких перепадов этажности здания (осадочные швы первого типа), а также при значительной неравномерности деформаций основания по протяженности здания, вызванной спецификой геологического строения основания (осадочные швы второго типа). Осадочные швы первого типа назначают для компенсации различий вертикальных деформаций наземных конструкций высокой и низкой частей здания, в связи с чем их устраивают аналогично температурно-усадочным только в наземных конструкциях. Конструкция шва в бескаркасных зданиях предусматривает устройство шва скольжения в зоне опирания перекрытия малоэтажной части здания на стены многоэтажной, в каркасных - шарнирное опи-рание ригелей малоэтажной части на колонны многоэтажной. Осадочные швы второго типа разрезают здание на всю высоту - от конька до подошвы фундамента. Такие швы в бескаркасных зданиях конструируют в виде парных поперечных стен, в каркасных - парных рам. Номинальная ширина осадочных швов первого и второго типа 20 мм.Особенности проектирования сейсмостойких здании, а также зданий, строящихся на просадочных, подрабатываемых и вечномерзлых грунтах, рассмотрены в отдельном разделе.

Рис.4.Наружныестены виды

Конструкции наружных стен классифицируют по признакам:

  • статической функции стены, определяемой ее ролью в конструктивной системе здания;
  • материала и технологии возведения, щ деляемых строительной системой здания;
  • конструктивного решения - в виде однослойной или слоистой ограждающей конструкции.

По статической функции различают несущие, самонесущие или ненесущие конструкции стен (рис. 4).Г

Несущие стены помимо вертикальной нагрузки от собственной массы воспринимая передают фундаментам нагрузки от смежных конструкций: перекрытий, перегородок, крыш и пр.

Самонесущие стены воспринимают вертикальную нагрузку только от собственной массы (включая нагрузку от балконов, эркеров, парапетов и других элементов стены) и передают ее на фундаменты непосредственно либо через цокольные панели, рандбалки, ростверк или другие конструкции.

Таблица 1.Конструкциинаружных стениих применение

1 - кирпич; 2 - мелкий блок; 3, 4 - утеплитель и воздушный прослоек; 5 - легкий бетон; 6 - автоклавный ячеистый бетон; 7 - конструктивный тяжелый или легкий бетон; 8 - бревно; 9 - конопатка; 10 - брус; 11 - деревянный каркас; 12 - пароизоляция; 13 - воздухонепроницаемый слой; 14 - обшивка из досок, водостойкой фанеры, ДСП или др.; 15 - обшивка из неорганических листовых материалов; 16 - металлический или асбестоцементный каркас; 17 - вентилируемый воздушный прослоек

Наружные стены могут быть однослойной или слоистой конструкции. Однослойные стены возводят из панелей, бетонных или каменных блоков, монолитного бетона, камня, кирпича, деревянных бревен или брусьев. В слоистых стенах выполнение разных функций возложено на различные материалы. Функции прочности обеспечивают бетон, камень, дерево; функции долговечности - бетон, камень, дерево или листовой материал (алюминиевые сплавы, эмалированная сталь, асбестоцемент или др.); функции теплоизоляции - эффективные утеплители (минераловатные плиты, фибролит, пенополистирол и др.); функции пароизоляции - рулонные материалы (прокладочный рубероид, фольга и др.), плотный бетон или мастики; декоративные функции-различные облицовочные материалы. В число слоев такой ограждающей конструкции может быть включен воздушный прослоек. Замкнутый-для повышения ее сопротивления теплопередаче, вентилируемый -для защиты помещения от радиационного перегрева либо для уменьшения деформаций наружного облицовочного стены.

Конструкции одно- и многослойных стен могут быть выполнены полносборными или в традиционной технике.

Основные типы конструкций наружных стен и области их применения приведены втабл. 1.

Назначение статической функции наружной стены, выбор материалов и конструкций осуществляют с учетом требований СНиП «Противопожарные нормы проектирования зданий и сооружений». Согласно этим нормам, несущие стены, как правило, должны быть несгораемыми. Применение трудносгораемых несущих стен (например, деревянных оштукатуренных) с пределом огнестойкости не менее 0,5 ч допускается только в одно-двухэтажных домах. Предел огнестойкости несгораемых конструкций стен должен составлять не менее 2 ч, в связи с чем их необходимо выполнять из каменных или бетонных материалов. Высокие требования к огнестойкости несущих стен, а также колонн и столбов обусловлены их ролью в сохранности здания или сооружения. Повреждение при пожаре вертикальных несущих конструкций может привести к обрушению всех опирающихся на них конструкций и здания в целом.

Ненесущие наружные стены проектируют несгораемыми или трудносгораемыми с существенно меньшими пределами огнестойкости (0,25-0,5 ч), так как разрушение этих конструкций от воздействия огня приводит только к локальным повреждениям здания.

Несгораемые ненесущие наружные стены следует применять в жилых домах выше 9 этажей, при меньшей этажности допускается применение трудносгораемых конструкций.

Толщину наружных стен выбирают по наибольшей из величин, полученных в результате статического и теплотехнического расчетов, и назначают в соответствии с конструктивными и теплотехническими особенностями ограждающей конструкции.

В полносборном бетонном домостроении расчетную толщину наружной стены увязывают с ближайшей большей величиной из унифицированного ряда толщин наружных стен, принятых при централизованном изготовлении формовочного оборудования 250, 300, 350, 400 мм для панельных и 300, 400, 500 мм для крупноблочных зданий.

Расчетную толщину каменных стен согласуют с размерами кирпича или камня и принимают равной ближайшей большей конструктивной толщине, получаемой при кладке. При размерах кирпича 250X120X65 или 250Х X 120x88 мм (модульный кирпич) толщина стен сплошной кладки в 1; 1 1/2; 2; 2 1/2 и 3 кирпича (с учетом вертикальных швов по 10 мм между отдельными камнями) составляет 250, 380, 510, 640 и 770 мм.

Конструктивная толщина стены из пиленого камня или легкобетонных мелких блоков, унифицированные размеры которых составляют 390X190X188 мм, при кладке в один камень равна 390 и в 1 /2 г - 490 мм.

Толщину стен из небетонных материалов с эффективными утеплителями в некоторых случаях принимают больше полученной по теплотехническому расчету из-за конструктивных требований: увеличение размеров сечения стены может оказаться необходимым для устройства надежной изоляции стыков и сопряжений с заполнением проемов.

Конструирование стен основано на всестороннем использовании свойств применяемых материалов и решает задачи создания необходимого уровня прочности, устойчивости, долговечности, изоляционных и архитектурно-декоративных качеств.

4

4.1. о твет : да (адрес файла Блок 3 )

Ваш ответ верен, т.к. стены являются несущими только тогда, когда они воспринимают нагрузку и от собственного веса и от других конструктивных элементов здания.

Переходите к вопросу 4.2

.1.ответ: да

4

4.1. о твет : НЕТ (адрес файла Блок 3 )

Ваш ответ НЕверен, т.к. ВЫ не учли, что стены, невопринимающие нагрузку от других элементов здания, относятся к категориям или самонесущих, или ненесущих.

Вернитесь к чтению текста

.1.ответ: НЕТ

Конструктивные решения стен

Толщину наружных стен выбирают по наибольшей из величин, полученных в результате статического и теплотехнического расчетов, и назначают в соответствии с конструктивными и теплотехническими особенностями ограждающей конструкции.

В полносборном бетонном домостроении расчетную толщину наружной стены увязывают с ближайшей большей величиной из унифицированного ряда толщин наружных стен, принятых при централизованном изготовлении формовочного оборудования 250, 300, 350, 400 мм для панельных и 300, 400, 500 мм для крупноблочных зданий.

Расчетную толщину каменных стен согласуют с размерами кирпича или камня и принимают равной ближайшей большей конструктивной толщине, получаемой при кладке. При размерах кирпича 250×120×65 или 250×120×88 мм (модульный кирпич) толщина стен сплошной кладки в 1; 1,5; 2; 2,5 и 3 кирпича (с учетом вертикальных швов по 10 мм между отдельными камнями) составляет 250, 380, 510, 640, и 770 мм.

Конструктивная толщина стены из пиленого камня или легко бетонных мелких блоков, унифицированные размеры которых составляют 390×190×188 мм, при кладке в один камень равна 390 и в 1,5 – 490 мм.

Конструирование стен основано на всестороннем использовании свойств применяемых материалов и решает задачи создания необходимого уровня прочности, устойчивости, долговечности, изоляционных и архитектурно-декоративных качеств.

В соответствии с современными требованиями экономного расходования материалов при проектировании малоэтажных жилых зданий с каменными стенами стараются использовать максимальное количество местных строительных материалов. Например, в районах, удаленных от транспортных магистралей, для возведения стен используют мелкие камни местного производства или монолитный бетон в сочетании с местными утеплителями и на местных заполнителях, для которых требуется только привозной цемент. В поселках же, располагаемых вблизи индустриальных центров, проектируют дома со стенами из крупных блоков или панелей, изготовляемых на предприятиях этого региона. В настоящее время все более широкое применение каменные материалы получают при строительстве домов на садово-огородных участках.

При проектировании малоэтажных домов обычно используют две схемы конструктивного решения наружных стен – сплошные стены из однородного материала и облегченные многослойные стены из материалов различной плотности. Для возведения внутренних стен используют только сплошную кладку. При проектировании наружных стен по схеме сплошной кладки предпочтение отдают менее плотным материалам. Такой прием позволяет достигнуть минимальной толщины стен по теплопроводности и более полно использовать несущую способность материала. Строительные материалы большой плотности выгодно использовать в сочетании с материалами малой плотности (облегченные стены). Принцип устройства облегченных стен основан на том, что несущие функции выполняет слой (слои) из материалов большой плотности (γ > 1600 кг/м 3), а теплоизолятором служит материал малой плотности. Например, вместо сплошной наружной стены из глиняного кирпича толщиной 64 см можно использовать облегченную конструкцию стены из слоя того же кирпича толщиной 24 см, с утеплителем из фибролита толщиной 10 см. Такая замена приводит к снижению массы стены в 2,3 раза.

Для изготовления стен малоэтажных домов используют искусственные и естественные мелкие камни. В настоящее время в строительстве используют искусственные обжиговые камни (кирпич глиняный полнотелый, пустотелый, пористый и керамические блоки); безобжиговые камни (силикатный кирпич, пустотелые блоки из тяжелого бетона и блоки сплошные из легкого бетона); естественные мелкие камни – рваный бут, пиленые камни (туф, пемза, известняк, песчаник, ракушечник и др.).

Размер и вес камней проектируют в соответствии с технологией ручной кладки и с учетом максимальной механизации работ. Стены выкладывают из камней с заполнением зазора между ними раствором. Чаще используют цементно-песчаные растворы. Для кладки внутренних стен используют обычный песок, а для наружных стен песок малой плотности (перлитовый и др.). Кладку стен ведут с обязательным соблюдением перевязки швов (4.6) по рядам.

Как уже было отмечено, ширина кладки стены всегда кратна числу половинок кирпича. Ряды, выходящие на фасадную поверхность кладки, называют лицевой верстой , а обращенные на внутреннюю сторону – внутренней верстой . Ряды кладки между внутренней и лицевой верстой называют забуткой . Кирпичи, уложенные длинной стороной вдоль стены, образуют ложковый ряд , а уложенные поперек стены – тычковый ряд . Система кладки (4.7) образуется определенным расположением камней в стене.

Рядность кладки определяется числом ложковых и тычковых рядов. При равномерном чередовании ложковых и тычковых рядов получается двухрядная (цепная) система кладки (рис.4.5б). Менее трудоемкая многорядная система кладки, при которой один тычковый ряд кирпичей перевязывает пять ложковых рядов (рис.4.5а). В стенах из мелких блоков, возводимых по многорядной системе, один тычковый ряд перевязывает два ложковых ряда кладки (рис.4.5в).

Рис.4.5. Виды ручной кладки стен: а) – многорядная кирпичная кладка; б) – цепная кирпичная кладка; в) – многорядная каменная кладка; г) – цепная каменная кладка

Сплошную кладку из камней большой плотности используют только для возведения внутренних стен и столбов и наружных стен неотапливаемых помещений (рис.4.6а-ж). В некоторых случаях эту кладку используют для возведения наружных стен по многорядной системе (рис.4.6а-в, д). Двухрядную систему кладки камней используют только в необходимых случаях. Например, в керамических камнях щели пустот рекомендуется располагать поперек теплового потока с целью снижения теплопроводности стены. Это достигается при цепной системе кладки.

Облегченные наружные стены проектируют двух типов – с утеплителем между двух стенок сплошной кладки или с воздушной прослойкой (рис.4.6и-м) и с облицовкой утеплителем стены сплошной кладки (рис.4.6н, о). В первом случае различают три основных конструктивных варианта стен – стены с горизонтальными выпусками анкерных камней, стены с вертикальными диафрагмами из камней (колодцевая кладка) и стены с горизонтальными диафрагмами. Первый вариант используется только в случаях применения в качестве утеплителя легкого бетона, который замоноличивает анкерные камни. Второй вариант приемлем для утеплителя в виде заливки легкого бетона и укладки термовкладышей (рис.4.6к). Третий вариант используют при утеплителях из сыпучих материалов (рис.4.6л) или из легко бетонных камней. Сплошная кладка стен с воздушной прослойкой (рис.4.6м) также относится к категории облегченных стен, так как замкнутая воздушная прослойка выполняет функции слоя утеплителя. Толщину прослоек целесообразно принимать равной 2 см. Увеличение прослойки практически не дает увеличения термического ее сопротивления, а уменьшение резко снижает эффективность такой теплоизоляции. Чаще воздушную прослойку используют в сочетании с плитами утеплителя (рис.4.6к, о).

Рис.4,6, Варианты ручной кладки стен малоэтажных жилых зданий: а), б) – сплошные наружные стены из кирпича; в) – сплошная внутренняя кирпичная стена; д), ж) – сплошные наружные стены из камней; г), е) – сплошные внутренние стены из камней; и)-м) – облегченные стены с внутренним утеплением; н), о) – облегченные стены с наружным утеплением; 1 – кирпич; 2 – штукатурка или облицовка листами; 3 – камень искусственный; 4 – утеплитель плитный; 5 – воздушная прослойка; 6 – пароизоляция; 7 – деревянная антисептированная рейка; 8 – засыпка; 9 – растворная диафрагма; 10 – легкий бетон; 11 – камень естественный морозостойкий

Для утепления каменных стен со стороны улицы применяют жесткий плитный утеплитель из легких бетонов, пеностекла, фибролита в сочетании с атмосферостойкой и прочной облицовкой (листы асбестоцемента, доски и др.). Вариант утепления стен снаружи эффективен только при отсутствии доступа холодного воздуха в зону контакта несущего слоя со слоем утепления. Для утепления наружных стен со стороны помещения используют полужесткий плитный утеплитель (камышит, соломит, минераловата и др.), располагающийся вплотную к поверхности первых или с образованием воздушной прослойки, толщиной 16 - 25 мм – «на относе». Плиты «на относе» крепят к стене металлическими зигзагообразными скобами или прибивают к деревянным антисептированным рейкам. Открытую поверхность слоя утепления закрывают листами сухой штукатурки. Между ними и слоем утепления обязательно располагают слой пароизоляции из пергамина, полиэтиленовой пленки, металлической фольги и др.

Изучите и проанализируйте вышеизложенный материал и ответьте на предложенный вопрос.