Какие аминокислоты не входят в состав белков. §3. Органические вещества. Аминокислоты. Белки

Аминокислоты и белки

Строительными блоками белков служат аминокислоты. Классификация аминокислот.

1. Моноаминомонокарбоновые: Глицин, аланин, валин, лейцин, изолейцин.

2. Моноаминодикарбоновые: глутаминовая и аспаргиновая кислоты.

3. Диаминомонокарбоновые: аргинин, лизин, оксилизин.

4. Гидроксилсодержащие: треонин, серин.

6. Ароматические: фенилаланин, тирозин.

7. Гетероциклические: триптофан, пролин, оксипролин, гистидин.

Аминокислота представляет собой производное органиче­ской кислоты, в котором водород в α-положении замещен на аминогруппу (-NH 2). Например, из уксусной кислоты образуется глицин, а из пропионовой - аланин. В аминокислотах одновременно присутствуют и кислотная и основная группы (карбоксил -СООН и аминогруппа -NH 2), они относятся к амфотерным соединениям .

Присутствующие в клетке свободные аминокислоты образуются в ре­зультате расщепления белков или поступают из межклеточной жидкости. Свободные аминокислоты составляют так называемый аминокислотный фонд, из которого клетка черпает строительные блоки для синтеза новых белков.

Связь R-NH-СО-R называется пептидной связью. Образующаяся молекула также является амфотерной, поскольку на одном ее конце всегда находится кислая группа, а на другом - основная; боковые цепи (остатки аминокислот) могут быть основными или кислыми. Комбинация из двух аминокислот носит название дипептида, из трех - трипептида. Пептид, состоящий из небольшого числа аминокислот, назы­вается олигопептидо.и. Если же число аминокислот в молекуле достаточно велико, вещество называют полипептидом.

Расстояние между двумя пептидными связями равно примерно 0,35 нм. Молекула белка с мол. массой 30 000, состоящая из 300 аминокислотных остатков, в полностью вытянутом состоянии должна иметь длину 100 нм, ширину 1 нм и толщину 0,46 нм.

Белки называют протеинами (греч. протео - занимаю пер­вое место). Это слово [в русском языке оно сохранилось лишь в названиях сложных белков] указывает, что все основные функции организма связаны со специфическими белками. Они входят в состав ферментов и со­кратительного аппарата клеток, присутствуют в крови и других межклеточ­ных жидкостях. Некоторые длииноцепочечные белки, такие, как коллаген и эластин, играют важную роль в построении тканевых структур.

Кератин и кол­ лаген нерастворимы и обладают фибриллярной структурой; глобулярные белки, например яичный альбумин и белки сыворотки, растворимы в воде и солевых растворах и их молекулы имеют сферическую, а не нитевидную форму.

Сложные белки, в молекулу которых входит небелковая часть, так называемая простетическая группа. К ним принадлежат нуклеопротеиды ,липо протеиды и хромопротеиды (гемоглобин, гемоцианин и цитохромы), в которых простетической группой служит пигмент. Простетической группой гемоглобина и миоглобина (белка мышц) является гем - металлсодержащее органическое соединение, связывающее кислород.

Первичная структура белков . Полипептидная цепь, построенная из аминокислот, представляет собой первичную структуру белковой молекулы. Это наиболее важная специфическая структура, до некоторой степени опре­деляющая так называемые вторичную и третичную структуры белка. Агре­гаты белковых субъединиц, обладающих вторичной и третичной структурой, составляют четвертичную структуру.

Изучение порядка расположения аминокислот в молекуле белка стало возможным после того, как были разработаны методы расщепления белков. Первый успех принадлежит Сэнджеру, которому в 1954 г. удалось, наконец, полностью расшифровать последовательность аминокислот в инсулине. Молекула инсулина состоит из двух цепей: А-цепь содержит 21 аминокислоту, а В-цепь - 30. Обе цепи соединены двумя дисульфидными (-S-S-) связями.

В молекуле белка аминокислоты уложены как бусины на нити, и последовательность их расположения имеет важное биологическое значение. Например, ферментативные свойства некоторых белков определяются по­следовательностью аминокислот на небольшом участке цепи, называемом активным центром . В молекуле гемоглобина замена одной-единствен­ной аминокислоты уже приводит к глубоким биологическим изменениям.

Вторичная структура белков . Молекула белка состоит из нескольких сотен аминокислот, и поэтому полипептидная цепь лишь в редких случаях бывает вытянута полностью; обычно она определенным образом изогнута, образуя вторичную структуру. Фибриллярные белки (склеропротеины) часто характеризуются упорядоченным расположением цепей, благодаря чему их можно исследовать методом рентгеноструктур­ного анализа. В результате этих исследований было найдено, что фибриллярные белки можно разбить на три структурных типа или группы.

В белках типа β-кератина смежные цепи расположены таким образом, что образуют струк­туру складчатого слоя . В этой структуре боковые группы (амино­кислотные остатки) перпендикулярны плоскости, в которой лежат сами цепи; отдельные цепи соединены друг с другом водородными связями, образуя «пептидную решетку».

В белках типа α-кератина полипептидная цепь закручена в виде спи­рали, образуя так называемую а-спиральную структуру . Водо­родные связи в этом случае являются внутримолекулярными, а не межмо­лекулярными. Для группы коллагена предложена модель, состоящая из трех спиралей.

Третичная структура белков . В глобулярных белках полипептидные цепи определенным образом свернуты, образуя компактную структуру. Расположение таких цепей в пространстве очень сложно, но может быть выяснено мето­дом рентгеноструктурпого анализа.

Пространственное расположение це­пей до некоторой степени предопределено последовательностью чередования амино­кислот в первичной структуре и связями, образующимися между некоторыми амино­кислотными остатками. Многие биологи­ческие свойства белков, например фермен­тативная активность и антигенноетъ, свя­заны именно с третичной структурой.

Четвертичная структура белка; прин­ цип самосборки. В отличие от первич­ной, вторичной и третичной структур, которые содержат одну полипептидную цепь, четвертичная структура состоит из двух или более цепей. Эти цепи могут быть одинаковыми или раз­ными, но в обоих случаях они связаны слабыми связями (нековалентнымн). Нап­ример, молекула гемоглобина состоит из четырех полипептидных субъединиц - двух α и двух β-цепей. Разделение и ас­социация этих субъединиц может проис­ходить спонтанно.Под действием мочевины молекула ге­моглобина распадается на две половники, одна из которых состоит из двух α-субъединиц, в другая из двух β -субъединиц. При удалении мочевины они объединяются вновь, образуя четырехкомпонентную молекулу. Этот процесс высокоспецифичен: объединяться могут только две разные половинки молекул (так называемый принцип самосборки). Многие ферменты и другие белки с мол. массой свыше 50 000, вероятно, обладают четвертичной структурой. Например, альдолаза (мол. масса 150 000) распадается при низком рН на субъединицы с мол. массой 50 000 каждая, но вновь ассоциирует при ней­тральном рН.

Связи в белковой молекуле . В структуре белков встречаются самые различные типы связей. Первичная структура (пептидная связь) полностью определяется химическими, или ковалентными , связями. Между остаткам цистина (например, в инсулине и рибонуклеазе) образуются S-S-связи той же природы. Вторичная и третичная структуры стабилизируются рядом более слабых связей. Эти связи можно класси­фицировать следующим образом:

1. Ионные, или электростатические, связи между положительными и отрицательными ионами, находящимися на расстоянии 0,2...0,3 нм.

2. Водородные связи (длина связи 0,25...0,32 нм); эти по существу также электростатические связи, но более слабые, чем ионные, образуются между двумя сильно отрицательными атомами - С, N или О.

3. Слабые связи между неполярными боковыми цепями, возникающие в результате взаимного отталкивания молекул растворителя.

4. Связи, образующиеся за счет вандерваальсовых сил при взаимодействии полярных боковых цепей.

Электрические заряды белков . Все аминокислоты являются амфолитами (цвиттерионами), обладающими положительно и отрицательно заряженными группами (-NH 2 и -СООН). Так как эти группы участвуют в образовании пептидной связи, в полипептидной цепи свободными остаются только кон­цевые СООН- и - NH 2- группы, а также СООН-группы из дикарбоновых амино­кислот и NH 2 -группы из диаминокислот. Все эти группы ионизируются сле­дующим образом:

1. Кислые группы теряют протоны и становятся отрицательно заряженными. Этот тип диссоциации встречается в дикарбоновых аминокислотах (аспарагиновая и глутаминовая), у которых свободная карбоксильная группа диссоциирует на СОО - и Н + .

2. Основные группы, приобретая протон, становятся положительно заряженными. Этот тип встречается в аминокислотах с двумя основными группами (лизин и аргинин), у которых свободные аминогруппы ионизи­руются с образованием положительного заряда.

Все эти так называемые ионогенные группы вместе с концевыми свобод­ными карбоксильными и аминогруппами участвуют в кислотно-щелочных реакциях белков и определяют электрические свойства белковых молекул.

Движение белков в электирическом поле - электрофорез.
Аминокислоты - соединения, содержащие амино- и карбок­сильную группы. В зависимости от расположения амино- и кар­боксильной групп различают α-, β-, γ-, δ- и т. д. аминокислоты:

α-Аминокислоты являются составными частями белков и уча­ствуют в важнейших биологических процессах. Первая аминокис­лота была выделена в 1820 г. французским исследователем X. Браконно кислотным гидролизом желатины, однако лишь через 13 лет в ней было обнаружено присутствие азота. Позднее была показана роль α-аминокислот как структурных элементов белка (Н. Н. Любавин, 1871 г.). К началу XX в. методом гидролиза бел­ка было выделено более 20 аминокислот.

Строение аминокислот

Аминокислоты - гетерофункциональные соеди­нения, которые обязательно содержат две функцио­нальные группы : аминогруппу -NH 2 и карбоксиль­ную группу -СООН, связанные с углеводородным радикалом.

Общую формулу простей­ших аминокислот можно за­писать так:

Так как аминокислоты со­держат две различные функ­циональные группы, которые оказывают влияние друг на друга, характерные реакции отличают­ся от характерных реакций карбоновых кислот и аминов.

Свойства аминокислот

Аминогруппа -NH 2 определяет основные свой­ства аминокислот , т. к. способна присоединять к себе катион водорода по донорно-акцепторному механизму за счет наличия свободной электронной пары у атома азота.

Группа -СООН (карбоксильная группа) опреде­ляет кислотные свойства этих соединений . Следо вательно, аминокислоты - это амфотерные орга­нические соединения .

Со щелочами они реагируют как кислоты:

С сильными кислотами как основания-амины:

Кроме того, аминогруппа в аминокислоте всту­пает во взаимодействие с входящей в ее состав кар­боксильной группой, образуя внутреннюю соль:

Ионизация молекул аминокислот зависит от кислотного или щелочного характера среды:

Так как аминокислоты в водных растворах ве­дут себя как типичные амфотерные соединения, то в живых организмах они играют роль буферных веществ, поддерживающих определенную концен­трацию ионов водорода.

Аминокислоты представляют собой бесцветные кристаллические вещества, плавящиеся с разло­жением при температуре выше 200 °С. Они рас­творимы в воде и нерастворимы в эфире. В зависи­мости от радикала R- они могут быть сладкими, горькими или безвкусными.

Аминокислоты подразделяют на природные (обнаруженные в живых организмах) и синтети­ческие . Среди природных аминокислот (около 150) выделяют протеиногенные аминокислоты (около 20), которые входят в состав белков. Они представляют собой L-формы. Примерно полови­на из этих аминокислот относятся к незамени­мым , т. к. они не синтезируются в организме че­ловека. Незаменимыми являются такие кислоты, как валин, лейцин, изолейцин, фенилаланин, ли­зин, треонин, цистеин, мети­онин, гистидин, триптофан. В организм человека данные вещества поступают с пи­щей. Если их количество в пище будет недостаточ­ным, нормальное развитие и функционирование орга­низма человека нарушаются. При отдельных заболеваниях организм не в состоянии син­тезировать и некоторые другие аминокислоты. Так, при фенилкетонурии не синтезируется тирозин.

Важнейшим свойством аминокислот является способность вступать в молекулярную конденса­цию с выделением воды и образованием амидной группировки -NH-CO- , например:

Получаемые в результате такой реакции высо­комолекулярные соединения содержат большое число амидных фрагментов и поэтому получили название полиамидов .

К ним, кроме названного выше синтетического волок­на капрона, относят, напри­мер, и энант, образующийся при поликонденсации аминоэнантовой кислоты. Для получения синтетических во­локон пригодны аминокис­лоты с расположением амино- и карбоксильной групп на концах молекул.

Полиамиды α-аминокислот называются пепти­дами . В зависимости от числа остатков аминокислот различают дипептиды, трипептиды, полипепти­ды. В таких соединениях группы -NH-CO- на­зывают пептидными .

Изомерия и номенклатура аминокислот

Изомерия аминокислот определяется различ­ным строением углеродной цепи и положением аминогруппы, например:

Широко распространены также названия ами­нокислот, в которых положение аминогруппы обо­значается буквами греческого алфавита : α, β, γ и т. д. Так, 2-аминобутановую кислоту можно на звать также α-аминокислотой:

В биосинтезе белка в живых организмах уча­ствуют 20 аминокислот.

Белки

Белки - это высокомолекулярные (молеку­лярная масса варьируется от 5-10 тыс. до 1 млн и более) природные полимеры, молекулы которых построены из остатков аминокислот, соединенных амидной (пептидной) связью.

Белки также называют протеинами (греч. «протос» - первый, важный). Число остатков амино­кислот в молекуле белка очень сильно колеблется и иногда достигает несколь­ких тысяч. Каждый белок об­ладает своей присущей ему последовательностью распо­ложения аминокислотных остатков.

Белки выполняют разнообразные биологичес­кие функции : каталитические (ферменты), регуля­торные (гормоны), структурные (коллаген, фибро­ин), двигательные (миозин), транспортные (гемо­глобин, миоглобин), защитные (иммуноглобули­ны, интерферон), запасные (казеин, альбумин, глиадин) и другие.

Выполнение белками определенных специфических функций зависит от пространственной конфигурации их молекул, кроме того, клетке энергетически невыгодно держать белки в развернутой форме, в виде цепочки, поэтому полипептидные цепи подвергаются укладке, приобретая определенную трехмерную структуру, или конформацию. Выделяют 4 уровня пространственной организации белков.

Белки - основа биомембран, важнейшей состав­ной части клетки и клеточных компонентов. Они играют ключевую роль в жиз­ни клетки, составляя как бы материальную основу ее химической деятельности.

Исключительное свойство белка - самоорганизация структуры , т. е. его способность самопроизвольно создавать определенную, свойственную только данному белку пространственную структуру. По существу, вся деятельность организма (развитие, движение, выполнение им различных функций и многое дру­гое) связана с белковыми веществами. Без белков невозможно представить себе жизнь.

Белки - важнейшая составная часть пищи че­ловека и животных, поставщик необходимых ами­нокислот .

Строение белков

В пространственном строении белков большое значение имеет характер радикалов (остатков) R- в молекулах аминокислот. Неполярные радикалы аминокислот обычно располагаются внутри макро­молекулы белка и обусловливают гидрофобные взаимодействия ; полярные радикалы , содержащие ионогенные (образующие ионы) группы, обычно находятся на поверхности макромолекулы белка и характеризуют электростатические (ионные) вза­имодействия . Полярные неионогенные радикалы (например, содержащие спиртовые ОН-группы, амидные группы) могут располагаться как на по­верхности, так и внутри белковой молекулы. Они участвуют в образовании водородных связей .

В молекулах белка а-аминокислоты связаны между собой пептидными (-СО-NH-) связями:

Построенные таким образом полипептидные це­пи или отдельные участки внутри полипептидной цепи могут быть в некото­рых случаях дополнительно связаны между собой дисуль­фидными (-S-S-) связями или, как их часто называют, дисульфидными мостиками .

Большую роль в создании структуры белков играют ион­ные (солевые) и водородные связи , а также гидрофобное взаимодействие - особый вид контактов между гидрофоб­ными компонентами молекул белков в водной среде. Все эти связи имеют различную прочность и обеспечивают образование сложной, большой молекулы белка.

Несмотря на различие в строении и функциях белковых веществ, их элементный состав колеб­лется незначительно (в % на сухую массу): угле­рода - 51-53; кислорода - 21,5-23,5; азота - 16,8-18,4; водорода - 6,5-7,3; серы - 0,3-2,5.

Некоторые белки содержат в небольших количе­ствах фосфор, селен и другие элементы. Последовательность соединения аминокислот­ных остатков в полипептидной цепи получила на­звание первичной структуры белка. Белковая молекула может состоять из одной или из нескольких полипептидных цепей, каждая из которых содержит различное число аминокис­лотных остатков. Учитывая число их возможных комби­наций, можно сказать, что разнообразие белков почти безгранично, но не все из них существуют в природе. Общее число различных ти­пов белков у всех видов жи­вых организмов составляет 10 11 -10 12 . Для белков, строение которых отлича­ется исключительной сложностью, кроме первич­ной, различают и более высокие уровни структур­ной организации: вторичную, третичную, а иногда и четвертичную структуры.

Вторичной структурой обладает большая часть белков, правда, не всегда на всем протяжении полипептидной цепи. Полипептидные цепочки с определенной вторичной структурой могут быть по-разному расположены в пространстве.

В формировании третичной структуры , кроме водородных связей, большую роль играют ион­ное и гидрофобное взаимодействия. По характеру «упаковки» белковой молекулы различают глобу­лярные, или шаровидные, и фибриллярные, или нитевидные, белки.

Для глобулярных белков более характерна α-спиральная структура, спирали изогнуты, «свер­нуты». Макромолекула имеет сферическую форму. Они растворяются в воде и солевых растворах с об­разованием коллоидных систем. Большинство бел­ков животных, растений и микроорганизмов отно­сится к глобулярным белкам.


- последовательность расположения аминокислотных остатков в полипептидной цепи, составляющей молекулу белка. Связь между аминокислотами - пептидная.

Если молекула белка состоит всего из 10 аминокислотных остатков, то число теоретически возможных вариантов белковых молекул, отличающихся порядком чередования аминокислот, - 1020. Имея 20 аминокислот, можно составить из них еще большее количество разнообразных комбинаций. В организме человека обнаружено порядка десяти тысяч различных белков, которые отличаются как друг от друга, так и от белков других организмов.

Именно первичная структура белковой молекулы определяет свойства молекул белка и ее пространственную конфигурацию. Замена всего лишь одной аминокислоты на другую в полипептидной цепочке приводит к изменению свойств и функций белка. Например, замена в β-субъединице гемоглобина шестой глутаминовой аминокислоты на валин приводит к тому, что молекула гемоглобина в целом не может выполнять свою основную функцию - транспорт кислорода; в таких случаях у человека развивается заболевание - серповидноклеточная анемия.

Вторичная структура - упорядоченное свертывание полипептидной цепи в спираль (имеет вид растянутой пружины). Витки спирали укрепляются водородными связями, возникающими между карбоксильными группами и аминогруппами. Практически все СО- и NН-группы принимают участие в образовании водородных связей. Они слабее пептидных, но, повторяясь многократно, придают данной конфигурации устойчивость и жесткость. На уровне вторичной структуры существуют белки: фиброин (шелк, паутина), кератин (волосы, ногти), коллаген (сухожилия).

Третичная структура - укладка полипептидных цепей в глобулы, возникающая в результате возникновения химических связей (водородных, ионных, дисульфидных) и установления гидрофобных взаимодействий между радикалами аминокислотных остатков. Основную роль в образовании третичной структуры играют гидрофильно-гидрофобные взаимодействия.

В водных растворах гидрофобные радикалы стремятся спрятаться от воды, группируясь внутри глобулы, в то время как гидрофильные радикалы в результате гидратации (взаимодействия с диполями воды) стремятся оказаться на поверхности молекулы. У некоторых белков третичная структура стабилизируется дисульфидными ковалентными связями, возникающими между атомами серы двух остатков цистеина. На уровне третичной структуры существуют ферменты, антитела, некоторые гормоны.

Четвертичная структура характерна для сложных белков, молекулы которых образованы двумя и более глобулами. Субъединицы удерживаются в молекуле благодаря ионным, гидрофобным и электростатическим взаимодействиям. Иногда при образовании четвертичной структуры между субъединицами возникают дисульфидные связи. Наиболее изученным белком, имеющим четвертичную структуру, является гемоглобин. Он образован двумя α-субъединицами (141 аминокислотный остаток) и двумя β-субъединицами (146 аминокислотных остатков). С каждой субъединицей связана молекула гема, содержащая железо.

Если по каким-либо причинам пространственная конформация белков отклоняется от нормальной, белок не может выполнять свои функции. Например, причиной «коровьего бешенства» (губкообразной энцефалопатии) является аномальная конформация прионов - поверхностных белков нервных клеток.

Для фибриллярных белков более характерна нитевидная структура. Они, как правило, не рас­творяются в воде. Фибриллярные белки обычно выполняют структурообразующие функции. Их свойства (прочность, способность растягиваться) за­висят от способа упаковки полипептидных цепо­чек. Примером фибриллярных белков служат мио­зин, кератин. В ряде случаев отдельные субъ­единицы белка с помощью во­дородных связей, электроста­тического и других взаимо­действий образуют сложные ансамбли. В этом случае об­разуется четвертичная струк­тура белков .

Примером белка с четвер­тичной структурой служит гемоглобин крови. Только с такой структурой он выполняет свои функции - связывание кислорода и транспортировка его в ткани и органы. Однако следует отметить, что в организации бо­лее высоких структур белка исключительная роль принадлежит первичной структуре.

Классификация белков

Существует несколько классификаций белков:

По степени сложности (простые и сложные).

По форме молекул (глобулярные и фибрилляр­ные белки).

По растворимости в отдельных растворителях (водорастворимые, растворимые в разбавлен­ных солевых растворах - альбумины, спирто­растворимые - проламины, растворимые в раз­бавленных щелочах и кислотах - глутелины).

По выполняемым функциям (например, запас­ные белки, скелетные и т. п.).

Свойства белков

Белки - амфотерные электролиты . При опреде­ленном значении pH среды (оно называется изо­электрической точкой) число положительных и от­рицательных зарядов в молекуле белка одинаково. Это одно из основных свойств белка. Белки в этой точке электронейтральны, а их растворимость в во­де наименьшая. Способность белков снижать рас­творимость при достижении электронейтральности их молекул используется для выделения из раство­ров, например, в технологии получения белковых продуктов.

Гидратация . Процесс гидратации означает свя­зывание белками воды, при этом они проявля­ют гидрофильные свойства: набухают, их масса и объ­ем увеличиваются. Набуха­ние отдельных белков за­висит исключительно от их строения. Имеющиеся в со­ставе и расположенные на поверхности белковой ма­кромолекулы гидрофильные амидные (-СО-NH-, пеп­тидная связь), аминные (-NH 2) и карбоксильные (-СООН) группы притягивают к себе молекулы воды, строго ориентируя их на поверхности моле­кулы. Окружающая белковые глобулы гидратная (водная) оболочка препятствует агрегации и осаж­дению, а следовательно, способствует устойчиво­сти растворов белка. В изоэлектрической точке белки обладают наименьшей способностью свя­зывать воду, происходит разрушение гидратной оболочки вокруг белковых молекул, поэтому они соединяются, образуя крупные агрегаты. Агрега­ция белковых молекул происходит и при их обе­звоживании с помощью некоторых органических растворителей, например, этилового спирта. Это приводит к выпадению белков в осадок. При из­менении рН среды макромолекула белка стано­вится заряженной, и его гидратационная способ­ность меняется.

При ограниченном набухании концентрирован­ные белковые растворы образуют сложные систе­мы, называемые студнями . Студни не текучи, упруги, обладают пластичностью, определенной механической прочностью, способны сохра­нять свою форму. Глобуляр­ные белки могут полностью гидратироваться, растворяться в воде (например, белки молока), образуя растворы с невысокой кон­центрацией. Гидрофильные свойства белков, т. е. их способность набухать, образовывать студни, стабилизировать суспензии, эмульсии и пены, имеют большое значение в биологии и пищевой промышленности. Очень подвижным студнем, по­строенным в основном из молекул белка, является цитоплазма - сырая клейковина, выделенная из пшеничного теста; она содержит до 65 % воды.

Различная гидрофильность клейковинных бел­ков - один из признаков, характеризующих ка­чество зерна пшеницы и получаемой из него муки (так называемые сильные и слабые пшеницы). Ги­дрофильность белков зерна и муки играет боль­шую роль при хранении и переработке зерна, в хлебопечении. Тесто, которое получают в хлебо­пекарном производстве, представляет собой набух­ший в воде белок, концентрированный студень, содержащий зерна крахмала.

Денатурация белков . При денатурации под вли­янием внешних факторов (температуры, механиче­ского воздействия, действия химических агентов и ряда других факторов) происходит изменение вторичной, третич­ной и четвертичной структур белковой макромолекулы, т. е. ее нативной простран­ственной структуры. Первич­ная структура, а следователь­но, и химический состав белка не меняются. Изменяются физические свой­ства: снижается растворимость, способность к ги­дратации, теряется биологическая активность. Меняется форма белковой макромолекулы, проис­ходит агрегирование. В то же время увеличивает­ся активность некоторых химических групп, об­легчается воздействие на белки протеолитических ферментов, а следовательно, он легче гидролизу­ется.

В пищевой технологии особое практическое значение имеет тепловая денатурация белков , степень которой зависит от температуры, продол­жительности нагрева и влажности. Это необходи­мо помнить при разработке режимов термообра­ботки пищевого сырья, полуфабрикатов, а иногда и готовых продуктов. Особую роль процессы те­пловой денатурации играют при бланшировании растительного сырья, сушке зерна, выпечке хле­ба, получении макаронных изделий. Денатура­ция белков может вызываться и механическим воздействием (давлением, растиранием, встряхи­ванием, ультразвуком). Наконец, к денатурации белков приводит действие химических реагентов (кислот, щелочей, спирта, ацетона). Все эти при­емы широко используются в пищевой и биотех­нологии.

Пенообразование . Под процессом пенообразова­ния понимают способность белков образовывать высококонцентрированные системы «жидкость - газ», называемые пенами. Устой­чивость пены, в которой бе­лок является пенообразовате­лем, зависит не только от его природы и от концентрации, но и от температуры. Белки в качестве пенообразо­вателей широко используются в кондитерской про­мышленности (пастила, зефир, суфле). Структуру пены имеет хлеб, а это влияет на его вкусовые ка­чества.

Молекулы белков под влиянием ряда факторов могут разрушаться или вступать во взаимодействие с другими веществами с образованием новых про­дуктов. Для пищевой промышленности можно вы­делить два важных процесса:

1) гидролиз белков под действием ферментов;

2) взаимодействие аминогрупп белков или амино­кислот с карбонильными группами восстанавли­вающих сахаров.

Под влиянием ферментов протеаз, катализиру­ющих гидролитическое расщепление белков, по­следние распадаются на более простые продукты (поли- и дипептиды) и в конечном итоге на ами­нокислоты. Скорость гидролиза белка зависит от его состава, молекулярной структуры, активности фермента и условий.

Гидролиз белков . Реакцию гидролиза с образо­ванием аминокислот в общем виде можно записать так:

Горение. Белки горят с образованием азота, углекислого газа и воды, а также некоторых дру­гих веществ. Горение сопровождается характер­ным запахом жженых перьев.

Цветные реакции . Для качественного определе­ния белка используют следующие реакции:

1. Денатурация – процесс нарушения естественной структуры белка (разрушение вторичной, третичной, четвертичной структуры).

2. Гидролиз — разрушение первичной структуры в кислом или щелочном растворе с образованием аминокислот.

3. Качественные реакции белков:

· биуретовая;

Биуретовая реакция – фиолетовое окрашивание при действии солей меди (II) в щелочном растворе. Такую реакцию дают все соединения, содержащие пептидную связь, при которой происходит взаимо­действие слабощелочных растворов белков с раствором сульфата меди (II) с образованием комплексных соединений между ионами Cu 2+ и полипептидами. Реакция сопровождается по­явлением фиолетово-синей окраски.

· ксантопротеиновая;

Ксантопротеиновая реакция – появление желтого окрашивания при действии концентрированной азотной кислоты на белки, содержащие остатки ароматических аминокислот (фенилаланина, тирозина), при которой происходит взаимодействие ароматических и гетероатом­ных циклов в молекуле белка с концентриро­ванной азотной кислотой, сопровождающееся появлением желтой окраски.

· реакция определения серы в белках.

Цистеиновая реакция (для белков, содержащих серу) — кипячение раствора белка с ацетатом свинца(II) с появлением черного окрашивания.

Справочный материал для прохождения тестирования:

Таблица Менделеева

Таблица растворимости

Основных аминокислот всего 20. Их названия связаны со случайными моментами. Все аминокислоты, которые входят в состав природных белков – это α -аминокислоты. Это значит, что амино- и карбоксильная группа находятся у одного углеродного атома.

1. аминоуксусная кислота (глицин);

2. α-аминопропанова кислота (аланин);

3. α- аминопентановая кислота (валин);

4. α-аминоизокапроновая кислота (лейцин);

5. α-амино-β-метилвалериановая кислота (изолейцин);

6. α-амино-β-гидроксипропановая кислота (серин);

7. α-амино-β-гидроксимасляная кислота (треонин);

Сера-содержащие :

8. α-амино-β-меркаптопропановая кислота (цистеин);

9. α-амино-γ-метилтиомасляная кислота (метионин);

10. α-аминоянтарная кислота (аспарагиновая кислота);

11. амид аспарагиновой кислоты (аспарагин);

12. α-аминоглутаровая кислота (глутаминовая кислота);

13. амид α-аминоглутаровой кислоты (гутамин);

14. α, ε-диаминокапроновая кислота (лейзин);

15. α-амино-δ-гуанидиловалериановая кислота

(аргинин);

Циклические :

16. α-амино-β-фенилпропановая кислота (фенилаланин);

17. α-амино-β-пара-гидроксифенилпроавновая кислота (тирозин);

18. α-амино-β-имидозолилпропановая ксилота (гистедин);

19. α-амино-β-индолилпропановая ксилота (триптофан);

20. α-тетрагидропироллкарбоновая кислота (пролин).

Все природные аминокислоты относятся к L-стереохимическому ряду, D-рядя только как исключение у бактерий, в составе капсул, чтобы защитить бактерии от действия ферментов.

Лекция 3 .

Для каждой аминокислоты характерны свои единственные физико-химические свойства – изоэлектрическая точка, т.е. та pH среды, при которой раствор этой аминокислоты электронейтрален. (q = 0).

Если же рассматривать такую кислоту в водной среде, то диссоциация происходит и по кислотному и по основному типу – биполярный ион.

В организме млекопитающих в печени имеется фермент оксидаза-D-аминокислот, который избирательно разрушает D-аминокислоты, которые попадают с продуктами питания. D-аминокислоты обнаружены в составе некоторых пептидов микроорганизмов. Кроме того, D-аминокислоты входят в состав большого числа антибиотиков. Например, D-валин, D-лейцин входят в состав антибиотика границидина, D-фенилаланин входит в состав границидина-С, пенициллин содержит необычный фрагмент D-диметилцистеин.



Процесс рацимизиации (переход D в L) происходит не ферментативно, поэтому очень медленно. На этом основано определение возраста млекопитающих.

Все аминокислоты имеют в своем составе амино- и карбоксильную группу обладают свойствами аминов и карбоновых кислот. Кроме того, для α-аминокислот характерна нингидриновая реакция (общая с белками). Со спиртовым раствором нингидрина очень быстро появляется сине-фиолетовая окраска, с пропином желтая.

В конце XIX века была полемика, каким образом аминокислоты образуют связь если взять две аминокислоты, слить их вместе, то не получится никогда линейной структуры (в силу термодинамики, происходит циклизация). Получить полипептид в XIX веке никак не получалось.

Линейные молекулы никак не получатся. С т.з.термодинамики более выгодно отщепить 2Н 2 О, чем образовать линейную молекулу.

В 1888 году химик Данилевский предположил, что белки – это полипептиды, линейные молекулы, которые образуются в результате действия карбоксильной группы одной аминокислоты с карбоксильной группой другой аминокислоты с отщеплением воды и образуется дипептид:

Образуется амидная связь (для белков пептидная), эти пептидные связи разделены только одним углеродным атомом. На основании биуретовой реакции Данилевский сделал такой вывод. Это реакция раствора белка с сульфатом меди в щелочной среде, образуется сине-фиолетовое окрашивание, образуется хилатный комплекс с ионами меди, в результате того, что пептидная связь в белковых молекулах имеет специфическое строение. Вследствие кето-енольной таутомерии она на половину двойная, на половину одинарная. Характерная реакция с Cu(OH) 2:

Биуретовая реакция характерна для биурета (рис.1), для малонамида (рис.2) , белков.

Для того, чтобы окончательно доказать, что бели – это полипептиды в 1901 году Фишер синтезировал полипептид, независимо от него Гофман тоже синтезировал полипептид:

Синтез полипептида по Фишеру:

Продукт давал биуретовую реакцию, плохо растворялся, не обладал биологической активностью, расщеплялся протолитическими ферментами, а ферменты – это специфические биокатализаторы, которые расщеплют природные белки, значит у этого продукта такая же структура, как у природных белков.

В настоящее время синтезировано более 2 тысяч разных белков. Главное в синтезе белка – это защита аминогруппы и активация карбоксильной группы для того, чтобы синтез был направленным. Защита аминогрупп осуществляется ацилированием, для этого обрабатывают ангидридами трихлоруксусной кислоты и вводят трифторацильную группы, либо обрабатывают по Зенерсу (бензиловым эфиром хлоругольной кислоты).

Для синтеза каждого конкретного полипептида, для сшивания конкретного участка могут быть проведены свои собственные методы.

Защита по Зервесу , активация по Курциусу , снятие защиты по Бекману :

Твердофазный синтез полипептидов и белков, специфической особенностью полипептидного синтеза является огромное число однотипных операций. Был разработан метод Робертом Мерифилодм . Мономеры – это аминокислоты, которые используются для синтеза, содержащие защищенную аминогруппу и активированные карбоксильные группы – синтоны. Мерифилд предложил: первый мономер закрепить на полимерной смоле (нерастворимый носитель) и все последующие операции проводятся с полипептидом, растущем на полимерной основе, к смоле добавляют попеременно очередной синтон и реагент для удаления концевой защитной группы. Химические стадии перемежаются соответствующими промывками. В течение всего процесса полипептид остается связанным со смолой. Этот процесс легко можно автоматизировать, запрограммировав смену потоков через колонку. В настоящее время разработаны приборы синтезаторы. На завершающей стадии синтеза полипептид ковалентной связан со смолой, снимается с этой смолы и защитная группа удаляется. Одной из самых главных проблем в твердофазном синтезе является рацимизация аминокислот во время синтеза. Это особенно опасно в этом синтезе, т.к. промежуточных стадии выделения рациматов не существует. Способов отделения в данный момент не существует, но есть условия, чтобы как можно меньше была рацимизация. Сам Мерифилд получил этим методом сразу несколько полипептидов, был получен брадикидин – гормон с сосудорасширяющим действием, ангиотензин – гормон, повышающий кровяное давление, фермент рибонуклеаза, которая катализирует гидролиз РНК.

Выход продуктов этим методом значительно не сравним с методами, которые применялись до этого. С помощью автоматизации можно использовать этот метод в промышленных масштабах.

У каждого полипептида имеется N-конец, а другой С-конец. Аминокислота, которая принимает участие изменяет окончание на ил

Глицил-валил-тирозил-гистедин-аспарагил-пролин. Для определения аминокислот в полипептиде, необходимо провести гидролиз, его проводят при 100 С в течение 24 часов 6Н соляной кислотой. Далее продукты гидролиза анализируют – разделяют методом ионообменной хроматографии на колонке сульфалированным полистиролом. Потом вымывают цитратным буфером из колонки. По количеству элюента судят о том, какие кислоты, т.е. в начале будут вымываться кислые кислоты, а самыми последними – основные. Таким образом можно определять в какой момент, какая аминокислота прошла, а количество определяется фотометрически с помощью нингдрина, этим методом можно определить 1 мкг. Если необходимо оперделить 1 нг, применяют флуоросканин, он реагирует с α-аминокислотами, образуя сильно флуоросцилирующее соединение. Определяют какие и сколько аминокислот находятся, а последовательность аминокислот определить не удается.

Флюоросланин:

Многие из нас знают, что белки необходимы организму, так как в них содержатся аминокислоты. Но далеко не все понимают, что собой представляют эти элементы и почему их наличие в рационе так важно. Сегодня мы выясним, сколько аминокислот входит в как они классифицируются и какую функцию выполняют.

Что такое аминокислоты?

Итак, аминокислоты (аминокарбоновые к-ты) - это органические соединения, которые являются основным элементом, образующим структуру белка. Белки, в свою очередь, принимают участие во всех физиологических процессах человеческого организма. Они формируют кости, сухожилия, связки, внутренние органы, мышцы, ногти и волосы. Белки становятся частью организма в процессе синтеза аминокислот, пришедших с пищей. Следовательно, не белок является важным питательным веществом, а именно аминокислоты. И не все белки одинаково полезны, ведь у каждого из них свой уникальный состав этих самых кислот.

Довольно сложна, рассмотрим ее на базовом уровне. Мы знаем, что аминокарбоновые кислоты являются своеобразными строительными блоками в здании под названием белок и в мегаполисе под названием человек. Однако не во всех белках есть именно те элементы, которые нам нужны. Если взглянуть на белок под микроскопом, можно увидеть цепочку из аминокислот, которые соединяются пептидными связями. Грубо говоря, звенья этой цепочки служат в нашем организме ремонтным и строительным материалом.

Удивительно, но было время, когда ученые не знали о том, сколько различных аминокислот входит в состав белков. Большинство из них были открыты в 19, а остальные в 20-м веке. Ученым понадобилось 119 лет, чтобы окончательно ответить на вопрос: «Сколько аминокислот входит в состав белка?» Строение каждой из них изучалось еще дольше.

На сегодняшний день известно, что для нормальной жизнедеятельности человеческого организма необходимо 20 протеиногенных аминокарбоновых кислот. Эту двадцатку часто называют мажорными кислотами. С точки зрения химии, их классифицируют по множеству признаков. Но простым обывателям наиболее близка классификация по способности кислот синтезироваться в нашем организме. По этому признаку аминокислоты бывают заменимыми и незаменимыми.

В этой классификации есть некоторые недостатки. К примеру, аргинин в некоторых физиологических состояниях считается незаменимым, но он может синтезироваться организмом. А гистидин восполняется в столь малых количествах, что его все-таки необходимо принимать с пищей.

Теперь, когда мы знаем, сколько видов аминокислот входит в состав белков, рассмотрим подробнее оба вида.

Незаменимые (эссенциальные)

Как вы уже поняли, эти вещества не могут самостоятельно синтезироваться организмом, поэтому их необходимо употреблять с едой. Основное количество незаменимых органических кислот содержится в животных белках. Когда в организме недостает того или иного элемента, он начинает забирать его с мышечной ткани. Этот класс состоит из 8 кислот. Познакомимся с каждой из них.

Лейцин

Эта кислота отвечает за восстановление и защиту мышечных тканей, кожных покровов и костей. Именно благодаря лейцину выделяется гормон роста. Кроме того, эта органическая кислота регулирует уровень сахара в крови и способствует сжиганию жиров. Она содержится в мясе, орехах, бобовых, нешлифованном рисе и зернах пшеницы. Лецитин стимулирует а значит, способствует наращиванию мышечной массы.

Изолейцин

Эта кислота ускоряет выработку энергии, поэтому ее так любят спортсмены. После изнурительных занятий она помогает быстрому восстановлению мышечных волокон. Изолейцин снимает так называемую крепатуру, принимает участие в образовании гемоглобина и регулирует количество сахара. Больше всего изолейцина содержится в мясе, рыбе, яйцах, орехах, горохе и сое.

Лизин

Данная аминокислота играет важную роль в работе иммунной системы. Ее главная задача - синтез антител, которые защищают наш организм от воздействия вирусов и аллергенов. Кроме того, лизин регулирует процесс обновления костной ткани и коллагена, а также гормоны роста. Эту органическую кислоту можно найти в таких продуктах питания, как: яйца, картофель, красное мясо, рыба и кисломолочные продукты.

Фенилаланин

Эта альфа-аминокислота отвечает за нормальную работу центральной нервной системы. Ее недостаток в организме приводит к приступам депрессии и хроническим болезням. Фенилаланин помогает нам концентрироваться и запоминать нужную информацию. Входит в состав препаратов, используемых при лечении психических расстройств, в том числе болезни Паркинсона. Положительно сказывается на работе печени и поджелудочной железы. Аминокислота содержится в: орехах, грибах, курице, молочных продуктах, бананах, абрикосах и топинамбуре.

Метионин

Мало кто знает, сколько аминокислот входит в состав белка, зато многим известно, что метионин активно сжигает жировые ткани. Но это далеко не все полезные свойства данной кислоты. Она влияет на выносливость и работоспособность человека. Если ее в организме недостаточно, это сразу можно понять по коже и ногтям. Метионин встречается в таких продуктах питания, как: мясо, рыба, семена подсолнечника, бобовые, лук, чеснок и кисломолочные продукты.

Треонин

Стремясь узнать, сколько аминокислот входит в состав белка, ученные открыли такое вещество, как треонин, одним из последних. А ведь оно очень даже полезно для человека. Треонин отвечает за все важнейшие системы человеческого организма, а именно за нервную, иммунную и сердечно-сосудистую. Первый признак его недостатка - проблемы с зубами и костями. Больше всего треонина человек получает из молочных продуктов, мяса, грибов, овощей и злаков.

Триптофан

Еще одно важнейшее вещество. Оно отвечает за синтез серотонина, который часто называют гормоном хорошего настроения. Недостаток триптофана можно обнаружить по нарушениям сна, аппетита. Данная кислота также регулирует функцию дыхания и артериальное давление. Она содержится преимущественно в: морепродуктах, красном мясе, птице, кисломолочных продуктах и пшенице.

Валин

Выполняет функцию восстановления поврежденных волокон и следит за обменными процессами в мышцах. При сильных нагрузках может оказывать стимулирующее действие. Также играет роль в умственной деятельности человека. Помогает при лечении печени и головного мозга от негативных воздействий алкоголя и наркотиков. Человек может получить валин из: мяса, грибов, сои, молочных продуктов и арахиса.

Примечательно, что 70% всех органических кислот в нашем организме занимают всего три аминокислоты: лейцин, изолейцин и валин. Поэтому они считаются самыми важными в обеспечении нормальной жизнедеятельности организма. В спортивном питании даже выделили специальный комплекс ВСАА, которые содержит именно эти три кислоты.

Продолжаем отвечать на вопрос о том, сколько мажорных аминокислот входит в состав белка, и переходим к заменимым представителям класса.

Заменимые

Главное отличие этой группы состоит в том, что все ее представители могут образовываться в организме путем эндогенного синтеза. Слово «заменимые» вводит многих в заблуждение. Поэтому часто неосведомленные люди говорят, что эти аминокислоты необязательно употреблять с пищей. Конечно же, это не так! Заменимые кислоты, так же как и эссенциальные, обязательно должны быть в составе каждодневного рациона. Они действительно могут образовываться из других веществ. Но происходит это только в случае, когда рацион составлен неправильно. Тогда часть полезных веществ и эссенциальных кислот затрачивается на воссоздание заменимых кислот. Следовательно, это не совсем благоприятно для организма. Разберем незаменимые кислоты, входящие в «мажорную двадцатку».

Аланин

Способствует ускорению метаболизма углеводов и выведению из печени токсинов. Встречается в таких продуктах питания, как: мясо, птица, яйца, рыба и молочные продукты.

Аспарагиновая кислота

Считается универсальным топливом для нашего организма, так как значительно улучшает обмен веществ. Встречается в молоке, тростниковом сахаре, птице и говядине.

Аспарагин

Пытаясь ответить на вопрос: «Сколько аминокислот входит в состав белка?», ученые в первую очередь открыли именно аспарагин. Было это в далеком 1806 году. Данная кислота принимает участие в улучшении работы нервной системы. Она содержится во всех животных белках, а также орехах, картофеле и злаках.

Гистидин

Является важным строительным элементом всех внутренних органов. Играет едва ли не ключевую роль в образовании красных и белых кровяных телец. Положительно влияет на иммунную систему и половую функцию. Из-за широкого спектра применения, запасы гистидина в организме быстро истощаются. Поэтому важно принимать его с пищей. Содержится в мясных, молочных и злаковых продуктах.

Серин

Стимулирует работу головного мозга и центральной нервной системы. Встречается в таких продуктах, как: мясо, соя, злаки, арахис.

Цистеин

Эта аминокислота в организме отвечает за синтез кератина. Без нее не было бы здоровых ногтей, волос и кожи. Находится в таких продуктах, как: мясо, яйца, красный перец, чеснок, лук и брокколи.

Аргинин

Говоря о том, сколько протеиногенных аминокислот входит в состав белков и какие функции они выполняют, мы убедились в том, что каждая из них важна для организма. Однако есть кислоты, которые, по мнению экспертов, считаются наиболее значимыми. К таковым относится аргинин. Он отвечает за здоровую работу мышц, суставов, кожного покрова и печени, а также укрепляет иммунитет и сжигает жиры. Аргинин часто используют бодибилдеры и те, кто желает похудеть, в составе добавок. В природном виде он встречается в мясе, орехах, молоке, злаках и желатине.

Глютаминовая кислота

Является важным элементом для здоровой работы головного и спинного мозга. Часто продается в виде добавки «Глутамат натрия». Встречается в яйцах, мясе, молочных продуктах, рыбе, моркови, кукурузе, помидорах и шпинате.

Глутамин

Нужен в белках для роста и поддержки мышц. Также является «топливом» головного мозга. Кроме того, глутамин выводит из печени все то, что поступает туда с нездоровой пищей. При термической обработке кислота денатурирует, поэтому, чтобы ее восполнить, нужно употреблять петрушку и шпинат в сыром виде.

Глицин

Помогает крови сворачиваться, а глюкозе - перерабатываться в энергию. Встречается в мясе, рыбе, бобовых и молоке.

Пролин

Отвечает за синтез коллагена. При недостатке в организме пролина начинаются проблемы с суставами. Встречается в основном в животных белках, поэтому является едва ли не единственным веществом, с нехваткой которого сталкиваются люди, не употребляющие мясо.

Тирозин

Отвечает за регулировку артериального давления и аппетит. При недостатке этой кислоты человек страдает быстрой утомляемостью. Чтобы таких проблем не было, нужно есть бананы, семечки, орехи и авокадо.

Продукты, богатые аминокислотами

Теперь вы знаете, сколько аминокислот входит в состав белка. Функции и место нахождения каждой из них вам тоже известны. Отметим главные продукты, употребляя которые, можно не переживать о сбалансированности питания в плане аминокислот.

Яйца . Отлично усваиваются организмом, дают ему большое количество аминокислот и обеспечивают белковую подкормку.

Молочные продукты . Способны обеспечить человека множеством полезных веществ, спектр которых, кстати говоря, не ограничивается органическими кислотами.

Мясо . Пожалуй, первый источник белка и входящих в него веществ.

Рыба . Богата на белок и отлично усвояема организмом.

Многие абсолютно уверены, что без продуктов животного происхождения нельзя обеспечить организм должным количеством белка. Это совершенно неверно. И доказательством тому является огромное количество вегетарианцев с прекрасной физической формой. Среди растительных продуктов главными источниками аминокислот являются: бобовые, орехи, крупы, семена.

Заключение

Сегодня мы узнали, сколько аминокислот входит в состав белка. Группы веществ и подробное описание их представителей помогут вам сориентироваться в составлении рациона здорового питания.

Белки — высокомолекулярные органические соединения, состоящие из остатков α-аминокислот.

В состав белков входят углерод, водород, азот, кислород, сера. Часть белков образует комплексы с другими молекулами, содержащими фосфор, железо, цинк и медь.

Белки обладают большой молекулярной массой: яичный альбумин — 36 000, гемоглобин — 152 000, миозин — 500 000. Для сравнения: молекулярная масса спирта — 46, уксусной кислоты — 60, бензола — 78.

Аминокислотный состав белков

Белки — непериодические полимеры, мономерами которых являются α-аминокислоты . Обычно в качестве мономеров белков называют 20 видов α-аминокислот, хотя в клетках и тканях их обнаружено свыше 170.

В зависимости от того, могут ли аминокислоты синтезироваться в организме человека и других животных, различают: заменимые аминокислоты — могут синтезироваться; незаменимые аминокислоты — не могут синтезироваться. Незаменимые аминокислоты должны поступать в организм вместе с пищей. Растения синтезируют все виды аминокислот.

В зависимости от аминокислотного состава, белки бывают: полноценными — содержат весь набор аминокислот; неполноценными — какие-то аминокислоты в их составе отсутствуют. Если белки состоят только из аминокислот, их называют простыми . Если белки содержат помимо аминокислот еще и неаминокислотный компонент (простетическую группу), их называют сложными . Простетическая группа может быть представлена металлами (металлопротеины), углеводами (гликопротеины), липидами (липопротеины), нуклеиновыми кислотами (нуклеопротеины).

Все аминокислоты содержат : 1) карбоксильную группу (-СООН), 2) аминогруппу (-NH 2), 3) радикал или R-группу (остальная часть молекулы). Строение радикала у разных видов аминокислот — различное. В зависимости от количества аминогрупп и карбоксильных групп, входящих в состав аминокислот, различают: нейтральные аминокислоты , имеющие одну карбоксильную группу и одну аминогруппу; основные аминокислоты , имеющие более одной аминогруппы; кислые аминокислоты , имеющие более одной карбоксильной группы.

Аминокислоты являются амфотерными соединениями , так как в растворе они могут выступать как в роли кислот, так и оснований. В водных растворах аминокислоты существуют в разных ионных формах.

Пептидная связь

Пептиды — органические вещества, состоящие из остатков аминокислот, соединенных пептидной связью.

Образование пептидов происходит в результате реакции конденсации аминокислот. При взаимодействии аминогруппы одной аминокислоты с карбоксильной группой другой между ними возникает ковалентная азот-углеродная связь, которую и называют пептидной . В зависимости от количества аминокислотных остатков, входящих в состав пептида, различают дипептиды, трипептиды, тетрапептиды и т.д. Образование пептидной связи может повторяться многократно. Это приводит к образованию полипептидов . На одном конце пептида находится свободная аминогруппа (его называют N-концом), а на другом — свободная карбоксильная группа (его называют С-концом).

Пространственная организация белковых молекул

Выполнение белками определенных специфических функций зависит от пространственной конфигурации их молекул, кроме того, клетке энергетически невыгодно держать белки в развернутой форме, в виде цепочки, поэтому полипептидные цепи подвергаются укладке, приобретая определенную трехмерную структуру, или конформацию. Выделяют 4 уровня пространственной организации белков .

Первичная структура белка — последовательность расположения аминокислотных остатков в полипептидной цепи, составляющей молекулу белка. Связь между аминокислотами — пептидная.

Если молекула белка состоит всего из 10 аминокислотных остатков, то число теоретически возможных вариантов белковых молекул, отличающихся порядком чередования аминокислот, — 10 20 . Имея 20 аминокислот, можно составить из них еще большее количество разнообразных комбинаций. В организме человека обнаружено порядка десяти тысяч различных белков, которые отличаются как друг от друга, так и от белков других организмов.

Именно первичная структура белковой молекулы определяет свойства молекул белка и ее пространственную конфигурацию. Замена всего лишь одной аминокислоты на другую в полипептидной цепочке приводит к изменению свойств и функций белка. Например, замена в β-субъединице гемоглобина шестой глутаминовой аминокислоты на валин приводит к тому, что молекула гемоглобина в целом не может выполнять свою основную функцию — транспорт кислорода; в таких случаях у человека развивается заболевание — серповидноклеточная анемия.

Вторичная структура — упорядоченное свертывание полипептидной цепи в спираль (имеет вид растянутой пружины). Витки спирали укрепляются водородными связями, возникающими между карбоксильными группами и аминогруппами. Практически все СО- и NН-группы принимают участие в образовании водородных связей. Они слабее пептидных, но, повторяясь многократно, придают данной конфигурации устойчивость и жесткость. На уровне вторичной структуры существуют белки: фиброин (шелк, паутина), кератин (волосы, ногти), коллаген (сухожилия).

Третичная структура — укладка полипептидных цепей в глобулы, возникающая в результате возникновения химических связей (водородных, ионных, дисульфидных) и установления гидрофобных взаимодействий между радикалами аминокислотных остатков. Основную роль в образовании третичной структуры играют гидрофильно-гидрофобные взаимодействия. В водных растворах гидрофобные радикалы стремятся спрятаться от воды, группируясь внутри глобулы, в то время как гидрофильные радикалы в результате гидратации (взаимодействия с диполями воды) стремятся оказаться на поверхности молекулы. У некоторых белков третичная структура стабилизируется дисульфидными ковалентными связями, возникающими между атомами серы двух остатков цистеина. На уровне третичной структуры существуют ферменты, антитела, некоторые гормоны.

Четвертичная структура характерна для сложных белков, молекулы которых образованы двумя и более глобулами. Субъединицы удерживаются в молекуле благодаря ионным, гидрофобным и электростатическим взаимодействиям. Иногда при образовании четвертичной структуры между субъединицами возникают дисульфидные связи. Наиболее изученным белком, имеющим четвертичную структуру, является гемоглобин . Он образован двумя α-субъединицами (141 аминокислотный остаток) и двумя β-субъединицами (146 аминокислотных остатков). С каждой субъединицей связана молекула гема, содержащая железо.

Если по каким-либо причинам пространственная конформация белков отклоняется от нормальной, белок не может выполнять свои функции. Например, причиной «коровьего бешенства» (губкообразной энцефалопатии) является аномальная конформация прионов — поверхностных белков нервных клеток.

Свойства белков

Аминокислотный состав, структура белковой молекулы определяют его свойства . Белки сочетают в себе основные и кислотные свойства, определяемые радикалами аминокислот: чем больше кислых аминокислот в белке, тем ярче выражены его кислотные свойства. Способность отдавать и присоединять Н + определяют буферные свойства белков ; один из самых мощных буферов — гемоглобин в эритроцитах, поддерживающий рН крови на постоянном уровне. Есть белки растворимые (фибриноген), есть нерастворимые, выполняющие механические функции (фиброин, кератин, коллаген). Есть белки активные в химическом отношении (ферменты), есть химически неактивные, устойчивые к воздействию различных условий внешней среды и крайне неустойчивые.

Внешние факторы (нагревание, ультрафиолетовое излучение, тяжелые металлы и их соли, изменения рН, радиация, обезвоживание)

могут вызывать нарушение структурной организации молекулы белка. Процесс утраты трехмерной конформации, присущей данной молекуле белка, называют денатурацией . Причиной денатурации является разрыв связей, стабилизирующих определенную структуру белка. Первоначально рвутся наиболее слабые связи, а при ужесточении условий и более сильные. Поэтому сначала утрачивается четвертичная, затем третичная и вторичная структуры. Изменение пространственной конфигурации приводит к изменению свойств белка и, как следствие, делает невозможным выполнение белком свойственных ему биологических функций. Если денатурация не сопровождается разрушением первичной структуры, то она может быть обратимой , в этом случае происходит самовосстановление свойственной белку конформации. Такой денатурации подвергаются, например, рецепторные белки мембраны. Процесс восстановления структуры белка после денатурации называется ренатурацией . Если восстановление пространственной конфигурации белка невозможно, то денатурация называется необратимой .

Функции белков

Функция Примеры и пояснения
Строительная Белки участвуют в образовании клеточных и внеклеточных структур: входят в состав клеточных мембран (липопротеины, гликопротеины), волос (кератин), сухожилий (коллаген) и т.д.
Транспортная Белок крови гемоглобин присоединяет кислород и транспортирует его от легких ко всем тканям и органам, а от них в легкие переносит углекислый газ; в состав клеточных мембран входят особые белки, которые обеспечивают активный и строго избирательный перенос некоторых веществ и ионов из клетки во внешнюю среду и обратно.
Регуляторная Гормоны белковой природы принимают участие в регуляции процессов обмена веществ. Например, гормон инсулин регулирует уровень глюкозы в крови, способствует синтезу гликогена, увеличивает образование жиров из углеводов.
Защитная В ответ на проникновение в организм чужеродных белков или микроорганизмов (антигенов) образуются особые белки — антитела, способные связывать и обезвреживать их. Фибрин, образующийся из фибриногена, способствует остановке кровотечений.
Двигательная Сократительные белки актин и миозин обеспечивают сокращение мышц у многоклеточных животных.
Сигнальная В поверхностную мембрану клетки встроены молекулы белков, способных изменять свою третичную структуру в ответ на действие факторов внешней среды, таким образом осуществляя прием сигналов из внешней среды и передачу команд в клетку.
Запасающая В организме животных белки, как правило, не запасаются, исключение: альбумин яиц, казеин молока. Но благодаря белкам в организме могут откладываться про запас некоторые вещества, например, при распаде гемоглобина железо не выводится из организма, а сохраняется, образуя комплекс с белком ферритином.
Энергетическая При распаде 1 г белка до конечных продуктов выделяется 17,6 кДж. Сначала белки распадаются до аминокислот, а затем до конечных продуктов — воды, углекислого газа и аммиака. Однако в качестве источника энергии белки используются только тогда, когда другие источники (углеводы и жиры) израсходованы.
Каталитическая Одна из важнейших функций белков. Обеспечивается белками — ферментами, которые ускоряют биохимические реакции, происходящие в клетках. Например, рибулезобифосфаткарбоксилаза катализирует фиксацию СО 2 при фотосинтезе.

Ферменты

Ферменты , или энзимы , — особый класс белков, являющихся биологическими катализаторами. Благодаря ферментам биохимические реакции протекают с огромной скоростью. Скорость ферментативных реакций в десятки тысяч раз (а иногда и в миллионы) выше скорости реакций, идущих с участием неорганических катализаторов. Вещество, на которое оказывает свое действие фермент, называют субстратом .

Ферменты — глобулярные белки, по особенностям строения ферменты можно разделить на две группы: простые и сложные. Простые ферменты являются простыми белками, т.е. состоят только из аминокислот. Сложные ферменты являются сложными белками, т.е. в их состав помимо белковой части входит группа небелковой природы — кофактор . У некоторых ферментов в качестве кофакторов выступают витамины. В молекуле фермента выделяют особую часть, называемую активным центром. Активный центр — небольшой участок фермента (от трех до двенадцати аминокислотных остатков), где и происходит связывание субстрата или субстратов с образованием фермент-субстратного комплекса. По завершении реакции фермент-субстратный комплекс распадается на фермент и продукт (продукты) реакции. Некоторые ферменты имеют (кроме активного) аллостерические центры — участки, к которым присоединяются регуляторы скорости работы фермента (аллостерические ферменты ).

Для реакций ферментативного катализа характерны: 1) высокая эффективность, 2) строгая избирательность и направленность действия, 3) субстратная специфичность, 4) тонкая и точная регуляция. Субстратную и реакционную специфичность реакций ферментативного катализа объясняют гипотезы Э. Фишера (1890 г.) и Д. Кошланда (1959 г.).

Э. Фишер (гипотеза «ключ-замок») предположил, что пространственные конфигурации активного центра фермента и субстрата должны точно соответствовать друг другу. Субстрат сравнивается с «ключом», фермент — с «замком».

Д. Кошланд (гипотеза «рука-перчатка») предположил, что пространственное соответствие структуры субстрата и активного центра фермента создается лишь в момент их взаимодействия друг с другом. Эту гипотезу еще называют гипотезой индуцированного соответствия .

Скорость ферментативных реакций зависит от: 1) температуры, 2) концентрации фермента, 3) концентрации субстрата, 4) рН. Следует подчеркнуть, что поскольку ферменты являются белками, то их активность наиболее высока при физиологически нормальных условиях.

Большинство ферментов может работать только при температуре от 0 до 40 °С. В этих пределах скорость реакции повышается примерно в 2 раза при повышении температуры на каждые 10 °С. При температуре выше 40 °С белок подвергается денатурации и активность фермента падает. При температуре, близкой к точке замерзания, ферменты инактивируются.

При увеличении количества субстрата скорость ферментативной реакции растет до тех пор, пока количество молекул субстрата не станет равным количеству молекул фермента. При дальнейшем увеличении количества субстрата скорость увеличиваться не будет, так как происходит насыщение активных центров фермента. Увеличение концентрации фермента приводит к усилению каталитической активности, так как в единицу времени преобразованиям подвергается большее количество молекул субстрата.

Для каждого фермента существует оптимальное значение рН, при котором он проявляет максимальную активность (пепсин — 2,0, амилаза слюны — 6,8, липаза поджелудочной железы — 9,0). При более высоких или низких значениях рН активность фермента снижается. При резких сдвигах рН фермент денатурирует.

Скорость работы аллостерических ферментов регулируется веществами, присоединяющимися к аллостерическим центрам. Если эти вещества ускоряют реакцию, они называются активаторами , если тормозят — ингибиторами .

Классификация ферментов

По типу катализируемых химических превращений ферменты разделены на 6 классов:

  1. оксиредуктазы (перенос атомов водорода, кислорода или электронов от одного вещества к другому — дегидрогеназа),
  2. трансферазы (перенос метильной, ацильной, фосфатной или аминогруппы от одного вещества к другому — трансаминаза),
  3. гидролазы (реакции гидролиза, при которых из субстрата образуются два продукта — амилаза, липаза),
  4. лиазы (негидролитическое присоединение к субстрату или отщепление от него группы атомов, при этом могут разрываться связи С-С, С-N, С-О, С-S — декарбоксилаза),
  5. изомеразы (внутримолекулярная перестройка — изомераза),
  6. лигазы (соединение двух молекул в результате образования связей С-С, С-N, С-О, С-S — синтетаза).

Классы в свою очередь подразделены на подклассы и подподклассы. В действующей международной классификации каждый фермент имеет определенный шифр, состоящий из четырех чисел, разделенных точками. Первое число — класс, второе — подкласс, третье — подподкласс, четвертое — порядковый номер фермента в данном подподклассе, например, шифр аргиназы — 3.5.3.1.

    Перейти к лекции №2 «Строение и функции углеводов и липидов»

    Перейти к лекции №4 «Строение и функции нуклеиновых кислот АТФ»