Рождение микроскопа и его автор роберт гук. Роберт гук краткая биография. Гладкие мышечные клетки

Создание микроскопической техники стало необходимостью задолго до XVIII века, с которым связано появление гистологии - науки о строении, развитии и жизнедеятельности тканей. Основной целью гистологии (от греч. histos - «ткань») является наблюдение за эволюцией тканей, а также выяснение взаимодействия клеток одного и различных организмов. Первые представления о тканях формировались макроскопическим путем, то есть на основании изучения трупов. Бездоказательные теоретические обобщения не представляли особой ценности, хотя примитивная микроскопическая техника существовала уже в XVI веке. Действие прибора, собранного из увеличительных стекол, в 1590 году продемонстрировали голландские астрономы братья Ганс и Захарий Янсены. Оптическая труба Галилео Галилея имела 9-кратное увеличение и вначале предназначалась для изучения внутреннего строения предметов. После успешного показа в 1609 году ученый приспособил систему для наблюдения за небесными светилами.

Современный термин «микроскоп» и первое применение прибора связаны с именем английского естествоиспытателя Роберта Гука (1635–1703 годы). Разносторонний ученый, экспериментатор, опередивший Ньютона в догадках о существовании всемирного тяготения, Гук усовершенствовал оптическую систему Галилея, создав микроскоп, увеличивавший в 30 раз. Имея степень магистра искусств Оксфордского университета, ученый изобрел воздушный насос, придумал пружинный привод механизма карманных часов и множество других полезных вещей.

Микроскоп Гука


Активная изобретательская деятельность Гука определялась не только его энергичной натурой, но и являлась частью служебных обязанностей. Пожизненная должность куратора экспериментов Королевского общества, помимо престижа, требовала регулярной демонстрации новых экспериментов, а соответственно - значительных денежных затрат, причем при отсутствии жалованья. Несмотря на нехватку средств, сэр Роберт охотно выполнял свою работу, помогавшую исследованиям, а также создававшую репутацию полезного клиента у мастеров, изготавливавших инструменты.

В 1664 году в Англии свирепствовала чума, но магистр не покинул Лондон, будучи увлечен научными экспериментами. В «Истории Королевского общества» сохранилась запись от 1665 года: «Гук… между прочими вещами показал первый действительный микроскоп и множество открытий, сделанных с его помощью, первую ирисовую диафрагму и целый ряд новых метеорологических приборов». Тогда же вышел в свет классический труд магистра Гука - книга под названием «Микрография, или Физиологическое описание мельчайших тел, исследованных с помощью увеличительных стекол». Сочинение представляло собой рассказ о результатах применения микроскопа в качестве исследовательского инструмента: в ней описано 57 «микроскопических» и 3 «телескопических» опыта. Кроме того, автор открыл клеточное строение тканей, ввел термин «клетка», исследовав ткани растений, насекомых и животных. Превосходные гравюры, сопровождавшие текст, представляли как научную, так и художественную ценность.

Ян Сваммердам


Одним из основоположников микроскопической анатомии считается нидерландский натуралист Ян Сваммердам (1637–1680 годы), написавший сочинения по анатомии насекомых с изображением их строения на различных стадиях развития. Итальянский медик и биолог Марчелло Мальпиги (1628–1694 годы) также внес посильный вклад в становление гистологии. Его заслуга состоит в открытии капиллярного кровообращения, в описании микроскопического строения некоторых видов тканей и органов растений, животных и человека. Именем Мальпиги названы почечные тельца и слой эпидермиса.

Самый мощный микроскоп своего времени в 1673 году создал нидерландский натуралист Антони ван Левенгук (1632–1723 годы). Прибор с 270-кратным увеличением позволял наблюдать и зарисовывать простейших, сперматозоиды, бактерии, эритроциты, а также их движение в капиллярах. Столь малые живые организмы, обнаруженные при значительном увеличении, были описаны в книге «Тайны природы, открытые Антонием Левенгуком» (1695). Голландский изобретатель достиг совершенства в шлифовке оптических стекол, что позволило ему изготовить короткофокусные линзы с увеличением, невиданным до того времени. Устройство дополнялось удобными металлическими держателями, конструкции самого Левенгука. Ученый не пожелал остаться искателем-одиночкой, регулярно сообщая результаты своих экспериментов в Лондонское королевское общество. Известно, что в 1673–1723 годах он отправил 375 отчетов, но ни один из них не послужил основой теоретического обобщения и не привел к созданию отдельной дисциплины.

Микроскоп Левенгука


«Никто не сделал так много и настолько хорошо за такое короткое время», - отозвался современник молодого доктора Биша после его похорон. Автор высказывания напрасно обидел французских ученых, но Мари Франсуа Ксавье Биша (1771–1802 годы) за 32 года своей жизни действительно сделал очень многое.

Являясь основоположником патологической анатомии и гистологии, он изучал морфологию и физиологию человеческой ткани без применения микроскопа. Биша назвал более 20 видов тканей, подробно описав их в трудах «Трактат о мембранах и оболочках» (1800) и «Общая анатомия в приложении к физиологии и медицине» (1801). Создание клеточной теории строения организмов, выявившей равенство процессов, происходящих во всех многоклеточных организмах, стало одним из самых великих открытий в естествознании. С трудами Шлейдена и Шванна принято связывать начало микроскопического периода в развитии медико-биологических наук.

Мари Франсуа Ксавье Биша


Чешский естествоиспытатель Ян Эвангелист Пуркине (1787–1869 годы) одним из первых применил клеточную теорию непосредственно к медицине, разглядев нервные клетки в сером веществе головного мозга. В 1837 году ученый сделал еще более ошеломляющее открытие: описав клетки в головном и спинном мозге, он выделил в сером веществе коры мозжечка крупные клетки, а также смог объяснить ритмичную работу сердца наличием волокон проводящей системы этого органа. Клетки мозжечка и сердца в специализированных атласах называются именем Пуркине.

Ян Пуркине


Натуралист из Чехии является создателем классических работ по анатомии, физиологии зрительного восприятия, гистологии и эмбриологии. В 1839 году во Вроцлаве по его инициативе чешские медики объединились в Научное общество, и тогда же был учрежден первый в мире Физиологический институт. Пуркине принадлежит авторство некогда популярного термина «протоплазма» (от греч. plasma - «оформленное»), но в прошлом столетии это понятие утратило актуальность. Сотрудники вроцлавского физиологического института уже в середине XIX века пользовались микротомом - инструментом, предназначенным для получения тонких срезов с кусочков органов или тканей с целью последующей микроскопии. В настоящее время с помощью ультрамикротома биологи получают срезы толщиной до 1000 нм (1 нм = 10 - 9 м) для электронной микроскопии.

ТАЙНА ЖИЗНИ

Жизнь началась на Земле много миллионов лет назад, когда в бушующих волнах Мирового океана возникла первая капля живого веще­ства.

Оглядываясь вокруг, мы восхищаемся ве­ликим многообразием природы и населяющих ее существ, происшедших из этой капли жи­вого вещества. Они отличаются друг от друга цветом, формой, величиной, сложностью строения. Но всех их объединяет одно - жизнь.

Проникнуть в тайны жизни человек пытался очень давно, чуть ли не на заре своей истории. Но этому препятствовали низкий уровень зна­ний и религиозный фанатизм. Религия в тече­ние многих веков стояла на пути человека к ис­тинному познанию происхождения жизни. Так возникли понятия «бог», «душа», «мировой дух». Жизнь стала рассматриваться как нечто сверхъ­естественное, созданное всемогущим богом и недоступное человеческому познанию.

Только развитие естественных наук дало людям ключ к изучению природы и раскрытию

Микроскоп Роберта Гука (60-е годы XVIII в.).

Срезы пробки под микроскопом Гука. Первое изображение клетки.

Рисунки растительных клеток, сделанные А. Левенгуком.

Особых процессов, свойственных живым суще­ствам. Было доказано, что различие между живой и неживой природой заключается в осо­бом строении живого существа и в специфиче­ских химических процессах, постоянно происхо­дящих между живым организмом и окружаю­щей его средой. Совокупность этих процессов и представляет собой основу жизни - обмен веществ.

На всех ступенях развития, начиная с по­явления первой капельки живого вещества и до самого совершенного организма - человека, об­мен веществ происходит непрерывно. С прекра­щением его наступает смерть.

КЛЕТКИ - ОСНОВА ОРГАНИЗМОВ

Живые существа отличаются от неживой природы не только обменом веществ (хотя это са­мое существенное, самое главное их отличие), но и своим строением.

Все живые организмы состоят из клеток. Только вирусы - возбудители некоторых инфек­ционных болезней (например, гриппа, кори, оспы) - не являются сами клетками и не состоят из клеток. Но размножаться они могут лишь в живой клетке.

Клетка впервые была открыта английским физиком Робертом Гуком в 1665 г. Гук конструи­ровал микроскопы, которые давали увеличение в 140 раз. Однажды при исследовании тонких срезов пробки он увидел, что вся пробка состоит из ячеек, или пор. Это и были клетки. Опубли­ковав свое наблюдение, Гук положил начало изучению клеточного строения живого мира. Но в его описаниях не было даже намека на представление о клетке как об основной струк­турной единице любого живого организма. Это был просто рассказ о клеточном строении пробки.

Только почти через 200 лет, в 1834г., русским ученым П. Ф. Горяниновым была выдвинута идея о всеобщей закономерности строения и развития растений и животных. Он считал, что все живые организмы состоят из соединенных между собой клеток. Скопления клеток состав­ляют ткани, которые в ходе роста и развития могут изменяться. Эта идея нашла свое подтвер­ждение в трудах немецких ученых - ботаника Маттиаса Шлейдена и зоолога Теодора Шванна, которые, собрав уже накопившийся к тому времени большой фактический материал, сформулировали клеточную теорию строения растений и животных.

Клеточная теория - одно из важнейших открытий человечества. Энгельс считал, что закон сохранения энергии, клеточная теория и теория эволюции Дарвина - три величайших открытия XIX в.

Клеточная теория доказала общность строе­ния растений и животных. Изучая различные живые ткани, ученые убеждались, что все живое состоит из клеток. По мере совершенствования микроскопа клетка подвергалась все более глубокому исследованию. В последние годы с помощью электронных микроскопов, дающих увеличение в сотни тысяч раз, стало возможным изучение внутреннего строения клетки. Хотя клетка и считается простейшей структурной единицей живого существа, сама по себе она представляет очень сложную систему. В клетке происходят обмен веществ, превращение энергии, биосинтез, она обладает способностью к размножению, раздражимостью, т. е. может реагировать на изменение условий среды. Чтобы нагляднее представить себе клетку, посмотрите на схему ее строения, наблюдаемую в электрон­ный микроскоп (стр. 36).

В организме человека есть самые различные клетки, отличающиеся друг от друга структурой и функцией. Например, клетки, из которых состоят мышцы, удлиненные, в них есть осо­бые нити (фибриллы), способные сокращаться. А клетки кожи (эпителиальная ткань) напоми­нают удлиненные кубики, стоящие плотными рядами. Жировые клетки - круглые, они напол­нены каплями жира.

Не будем перечислять всего разнообразия клеток, скажем только, что все клетки и расти­тельного и животного мира, несмотря на их раз­личия, имеют сходное строение. У них всегда есть более плотный наружный слой -оболочка, цитоплазма и ядро.

НЕПРЕРЫВНОЕ ОБНОВЛЕНИЕ

Кроме общности строения, клетки живого организма имеют и общие функциональные особенности. Прежде всего они обладают спо­собностью к использованию и превращению энергии. Кроме того, в живой клетке из более простых веществ происходит синтез (образова­ние) сложных молекул. Эти молекулы крупны и настолько своеобразны, что, встретив их где-нибудь в природе, мы всегда можем быть уверены в их «живом» происхождении. К та­ким крупным молекулам относятся белки. Образование белка из более простых соединений происходит только в клетке и регулирует­ся находящимися в ней двумя очень слож­ными, изученными лишь в последнее время ве­ществами. Это дезоксирибонуклеиновая (ДНК) и рибонуклеиновая (РНК) кислоты. ДНК в основном находится в ядре клетки, а РНК содержится и в ядре, и в особых включениях цитоплазмы, называемых рибосомами. В них и происходит синтез белка, т. е. они являются фабриками белка в клетке.

Белки очень разнообразны. В зависимости от клетки, где они образовались, белки отли-

Электронный микроскоп.

Клетка под электронным микроскопом.

Чаются друг от друга размерами и формой молекул, химическими и физическими свой­ствами. Но вместе с тем все они построены по одному и тому же объединяющему их прин­ципу. Их сложные молекулы состоят из простых молекул аминокислот, соединенных в определен­ном порядке в длинные цепочки. Вот этот-то порядок присоединения и распределения амино­кислот в молекуле белка зависит от ДНК и РНК. ДНК служит как бы программой, по которой определяется порядок и количество присоединяемых аминокислот, а РНК - осно­вой для построения белковой молекулы. Кроме того, РНК отвечает еще за доставку аминокис­лот к непрерывно растущей цепочке белковой молекулы. Растет эта цепочка очень быстро. Молекула белка, состоящая из 150-200 амино­кислот, строится за 1,5-2 минуты. Весь про­цесс синтеза белка можно сравните с работой архитектора и инженера-строителя при по­стройке дома. Архитектор (ДНК) создает план, инженер (РНК) претворяет его в жизнь.

Открытие значения этих веществ в синтезе белка создает реальные возможности искус­ственного получения белковой молекулы. В ла­бораториях учеными уже получены наиболее простые белковые молекулы. Можно безошибоч­но предсказать, что уже в нашем веке челове­чество сможет искусственно получать белок.

В состав клетки, кроме ДНК, РНК и амино­кислот, входят жировые вещества, углеводы, вода и растворенные в ней минеральные соли. Соотношения всех этих веществ в клетке по сравнению с общим ее весом в среднем пример­но такие: вода составляет 80-85%, белки- 7 -10%, жировые вещества - 1-2%, угле­воды - 1-2%, минеральные соли -1 -1,5%. Все эти вещества активно участвуют в жизнен­ных процессах, происходящих в клетке.

В нашем организме непрерывно происходят два процесса: образование и обновление клеток и их разрушение. Эти внешне противополож­ные состояния - две стороны обмена веществ в организме. Процесс усвоения веществ, по­ступающих в организм извне, и образование из них живого вещества клеток называется ассимиляцией; а процесс распада, раз­рушения веществ и связанного с ним освобож­дения энергии - диссимиляцией. Они едины и неразрывны, но в течение жизни меня­ется их соотношение и интенсивность. В детстве и юности, когда идет усиленный рост организ­ма, преобладает ассимиляция, а в старости, наоборот, распад - диссимиляция. Интенсив­ность этих процессов зависит от состояния организма. Так, во время работы или тяже­лой физической нагрузки обмен веществ усили­вается, а в покое он ослабевает. Ослабевает обмен веществ и при понижении температуры тела. Ученые заметили это, когда стали изу­чать зимнюю спячку у сурков, хомяков, сус­ликов, ежей и других зимнеспящих животных. Зимой, когда трудно раздобыть пищу, эти жи­вотные впадают в состояние оцепенения, пере­стают есть, температура их тела значительно снижается. При этом резко замедляются дыха­ние и сердцебиение, падает уровень всех дру­гих жизненно важных физиологических про­цессов, направленных на поддержание обмена веществ.

Обмен веществ значительно замедляется и у человека, если искусственно понизить темпера­туру его тела. Это свойство в последние годы широко используется при операциях на сердце и крупных сосудах (см. стр. 194).

Мы пока рассматривали только одну сто­рону обмена веществ - обновление и построе-

ние клеток. Но человек живет, двигается, занимается умственным и физическим трудом, и вся его деятельность неразрывно связана с расходом энергии. Даже если он находится в полном покое, происходит затрата энергии на работу сердца, дыхательных мышц, внутрен­них органов и т. п. Следовательно, другая сторона обмена веществ - это освобождение энергии и ее использование.

ОБЩИЙ ЗАКОН ПРИРОДЫ

Закон сохранения вещества и движения впервые сформулировал М. В. Ломоносов. Суть этого закона заключается в том, что материя и энергия не зарождаются и не пропадают, а только видоизменяются.

Спустя сто лет немецкий врач Роберт Майер обнаружил, что цвет венозной крови в тропиках имеет более алый оттенок, чем в северных райо­нах земного шара. Это наблюдение навело его на мысль, что между потреблением и обра­зованием тепла в человеческом организме есть прямая связь. Развивая эту мысль, Майер после изучения баланса между потреблением и выделением тепла организмом, в 1841 г., сформулировал закон превращения и сохранения энергии.

Гладкие мышечные клетки.

Почти в то же время, но независимо от его работ к аналогичному выводу пришли английский физик Джемс Джоуль и немецкий ученый физик и физиолог Герман Гельмгольц.

Костная ткань.

После их работ стало очевидным, что этот закон имеет всеобщий характер, т. е. ему подчинены и все процессы, происходящие в жи­вом организме.

Пищевые вещества, попадая в организм, проходят ряд сложных превращений, распадают­ся на простые по строению вещества и посту­пают в клетки. Здесь продолжается их дальней­ший распад. При этом освобождается энергия, которая в свое время была поглощена при их образовании. Эта освободившаяся энергия и используется организмом.

Организм в целом и каждая его клетка в от­дельности могут сохранить свою структуру и нормальную жизнедеятельность только благо­даря непрерывному потреблению энергии. Как только прекращается поступление и превраще­ние энергии, прекрасная, стройная структура клетки распадается и ее жизнедеятельность заканчивается. Энергию клетка получает в ос­новном при расщеплении глюкозы 1 и жиров. Процесс этот происходит в особых включениях цитоплазмы, которые называются митохондрия­ми. Митохондрии - это силовые, или энергетические, станции клетки. Каждая клет­ка содержит от 50 до 5000 митохондрий. В них-то и происходит в результате расщепления глю­козы образование довольно сложного вещества - аденозинтрифосфорной кислоты (АТФ). АТФ- основной источник энергии для большинства

1 Глюкоза - виноградный сахар.

жизненных процессов клетки и организма. Она очень легко расщепляется, выделяет при этом энергию и является, таким образом, аккумуля­тором, отдающим энергию по мере ее надобно­сти. В виде синтеза АТФ клетка получает бо­лее 55% энергии, образующейся при окислении глюкозы. Даже самые блестящие успехи со­временной техники бледнеют перед таким высо­ким коэффициентом полезного действия (к.п.д.) этого уникального клеточного механизма.

БИОЛОГИЧЕСКИЕ УСКОРИТЕЛИ

Обмен веществ - это непрерывная цепь слож­ных химических процессов, протекающих в клетке; им предшествует переваривание пи­щи в желудке и кишечнике, в ходе которого пищевые вещества расщепляются на более про­стые составные части. Только они усваиваются клетками, в которых из принесенных кровью веществ образуются новые сложные и разно­образные вещества, освобождается и исполь­зуется энергия. Если бы мы попробовали хи­мические реакции, происходящие в организ­ме, провести в лаборатории, то потребовались бы высокая температура, повышенное дав­ление и другие несвойственные организму условия.

В чем же дело? Ведь мы знаем, что в орга­низме нет ни очень высокой температуры, ни повышенного давления. Происходит это по­тому, что в организме есть такие вещества, которые ускоряют ход химической реакции, а сами при этом не изменяются. Их действие по­добно химическим катализаторам.

Приведем простой пример. Известно, что вода состоит из водорода и кислорода. При смешении чистого водорода и кислорода вода не образуется, если держать эту смесь даже многие годы. Но если прибавить к этой смеси немного платины, реакция пойдет очень быстро и образуется вода. Платина, не являясь состав­ной частью воды, резко ускоряет эту реакцию, а сама выходит из нее без изменений. Нечто подобное происходит и в организме. Все хи­мические превращения в нашем организме протекают с участием специальных биоло­гических ускорителей, или катализаторов, - ферментов.

Ферменты - сложные органические ве­щества, во много миллионов раз увеличивающие скорость химических реакций. Это основная и единственная их функция в организме. Клетки нашего тела имеют огромный набор ферментов,

Способных произвести все необходимые превра­щения. Каждый фермент действует только на определенные вещества, определенный процесс или его этап и только при определенной темпе­ратуре, реакции среды и т. д., т. е. обладает специфичностью и избирательностью действия. По меткому определению одного ученого, фер­мент подходит к веществу так же, как ключ к замку. Бывают ферменты пищеварительные, дыхательные, окислительные, восстановительные и другие с самым разнообразным характером дей­ствия. Одни участвуют в расщеплении поступаю­щих веществ, другие обладают синтезирующей способностью - помогают организму в образова­нии новых молекул. Словом, ферменты являются необходимыми участниками обмена веществ, без них он невозможен.

КРУГОВОРОТ ВЕЩЕСТВ В ПРИРОДЕ

Обмен веществ, происходящий в организме человека и животных, - это часть общего круго­ворота веществ в природе. Сложные вещества, которые человек и животные получают с пищей, расщепляются на более простые, усваиваются, а затем в виде углекислоты, воды и некоторых других веществ выделяются наружу и исполь­зуются растениями. Растения под влиянием солнечной энергии вновь синтезируют из них сложные вещества. И так непрерывно, пока существует жизнь на Земле, будет происходить круговорот веществ в природе.

В состав живых организмов входят практи­чески все существующие в природе химические элементы и соединения. Основную их массу составляют углерод, кислород и азот, поэтому круговорот этих веществ представляет для нас наибольший интерес. Углерод входит в состав очень многих химических соединений. Наш организм получает его с пищевыми веществами и выделяет при дыхании в виде углекислого газа. Из углекислого газа и воды в клетках зеленых растений, содержащих зеленый пигмент - хлоро­филл, под влиянием солнечного света образуются сложные органические соединения - углеводы. Этот процесс называется фотосинтезом, в ре­зультате его образуются крахмал или другие углеводы, например глюкоза, и выделяется кислород.

Громадная поверхность всех зеленых расте­ний очищает воздух от углекислого газа и выделяет миллиарды тонн кислорода. Так, наши зеленые друзья ежегодно поглощают около 170 млрд. т углекислого газа, выделяют

123 млрд. т кислорода, и запасы кислорода воз­духа непрерывно пополняются.

Животные организмы, в конечном итоге, находятся в зависимости от растений, которые обладают способностью перерабатывать неорга­нические вещества в органические. Благодаря этому запасы органических веществ в природе не истощаются, и нам не угрожает голодная смерть.

Круговорот азота не менее важен для под­держания жизни на Земле, так как азот входит в состав белка. Люди и животные получают нуж­ный им азот с белковой пищей и выделяют его с потом и мочой в виде аммиачных соедине­ний. Растения получают азот из почвы, куда он попадает после разложения белковых веществ, или с азотистыми удобрениями.

Круговорот других элементов тесно связан с круговоротом углерода и азота и подчиняется общему закону природы - закону сохранения материи и энергии. Взаимоотношения живой и неживой природы полностью вытекают из этого закона. Жизненные процессы, происхо­дящие в одних организмах, необходимы для существования других.

ПИЩА И ПИТАТЕЛЬНЫЕ ВЕЩЕСТВА

Как разнообразна человеческая пища! Ка­ких только блюд не существует на свете! Но все эти лакомства и яства, в конечном счете, состоят из белков, жиров, углеводов, витами­нов, минеральных солей и воды. Все, что мы едим или пьем, в нашем организме распадается на эти или еще более простые составные части.

Белки

В начале прошлого столетия стало известно, что из всех тканей животного и растительного мира можно выделить вещества, по своим свойст­вам очень похожие на белок куриного яйца. Выяснилось, что они близки друг к другу и по составу. Поэтому им и было дано общее назва­ние - белки. Затем появился термин «про­теины», от греческого слова «протос» - первый, важнейший, что указывает на первостепенную роль белка.

Белки - это очень сложные высокомоле­кулярные соединения. Молекула воды (Н 2 О) состоит всего из трех атомов: одного атома кис­лорода и двух атомов водорода, молекула же белка состоит из многих десятков и сотен тысяч атомов. В ее состав входят азот, углерод, водо­род, кислород и некоторые другие элементы. Если нагреть в присутствии кислоты какой-либо белок, то он расщепляется на наиболее простые составные части, названные химиками амино­кислотами. В их состав всегда входит азот.

В природе есть очень много разнообразных белков и трудно найти два похожих друг на друга. Между тем состоят они из небольшого количества различных аминокислот - всего около 20.

Чем же объяснить такое исключительное разнообразие белков, если они состоят только из 20 аминокислот? Математики подсчитали, что если из нескольких равных частей составить комбинации, в которых меняется только распо­ложение частей, то число таких возможных комбинаций очень быстро возрастет при увели­чении составных частей. Так, из 3 частей можно составить только 6 комбинаций; из 5 частей - 120; из 8 -до 40 тыс., а при 12 составных частях - 500 млн. Из 20 амино­кислот можно составить колоссальное количе­ство комбинаций, а так как в белковой моле­куле одна и та же аминокислота может повто­ряться несколько раз и может меняться способ их соединения, то великое многообразие белка станет совершенно понятным.

Белковый обмен в организме происходит постоянно и очень быстро. О его скорости можно судить по обмену азота. Определяя количество азота, введенного с пищей и выве­денного из организма, можно установить суточ­ный азотистый баланс. Если количество вво­димого и выделяемого азота одинаково, то гово-


Продукты, богатые белками: мясо, рыба, творог, сыр, хлеб, крупа, зерна бобовых растений, орехи, яйца.

рят об азотистом равновесии. Когда азота вводится больше, чем выделяется, то налицо положительный азотистый баланс. Чаще это бывает у детей, когда идет рост организма, или у людей, выздоравливающих после тяже­лой болезни. Но бывает, что азота выводится больше, чем вводится, - это отрицательный азотистый баланс. Такое состояние наблюдает­ся при голодании или при инфекционных забо­леваниях.

Белки в организме могут строиться только из поступающего с пищей белка, точнее, ами­нокислот. А так как в живом организме обра­зование белка идет непрерывно, то и поступ­ление белка должно быть постоянным. Более или менее продолжительная недостаточность белка в пище может вызвать очень серьезные расстройства здоровья; ведь организм человека и животных не может синтезировать свой соб­ственный белок из других питательных веществ - жиров и углеводов.

Белки, как мы уже упоминали, в пищевари­тельном тракте расщепляются на аминокислоты, которые всасываются в кровь. Из этих амино­кислот организм синтезирует свой собственный белок. Если же, минуя пищеварительный тракт, ввести чужой белок непосредственно в кровь, то он не только не будет использован нашим организмом, но и вызовет серьезные осложне­ния: повышение температуры, судороги, нару­шение дыхания и сердечной деятельности. Это объясняется строгой специфичностью белков каждого организма. В ответ на проникновение в кровь чужого белка организм вырабатывает специальные вещества - антитела, которые его разрушают.

Вот почему попытки пересадить чужие орга­ны и ткани животному или человеку заканчи­ваются пока неудачей. Технически хирурги с этой задачей вполне справляются, но возни­кает белковая несовместимость, и пересажен­ный орган не приживается.

Примером может служить попытка эква­дорских хирургов пересадить чужую руку матросу, лишившемуся руки. Сложная опера­ция прошла блестяще, были сшиты все мышцы, сосуды, нервы, соединена кость. В руке вос­становилась циркуляция крови, передавалось раздражение по нервам. Казалось, что все уже в порядке и рука прижилась, но через две неде­ли из-за белковой несовместимости ее пришлось ампутировать, так как чужеродная ткань начала отравлять весь организм.

Только у близнецов, развившихся из одной яйцеклетки матери, нет белковой несовместимости. У них, как правило, бывает полное ана­томическое сходство и однородный белковый состав. Поэтому органы и ткани их взаимо­заменяемы. В медицине уже известны случаи удачных пересадок органов, в частности почек, от одного близнеца другому.

Мы уже говорили, что белки состоят из 20 аминокислот. Однако не всякий белок имеет полный набор всех аминокислот и не все ами­нокислоты одинаково важны для организма. Примерно половина из них незаменима, и их поступление в организм обязательно. В зависи­мости от набора аминокислот, входящих в моле­кулу белка, белки делятся на полноценные, содержащие необходимые аминокислоты, и не­полноценные, не содержащие некоторых из них. Полноценные белки преимущественно животного происхождения (мясо, рыба), неполноценные - растительного, хотя белки бобовых растений содержат полноценный белок.

Пища человека должна содержать столько белка, сколько его нужно для удовлетворения всех потребностей организма (а это "зависит от возраста, пола, профессии и т. д.). В среднем считается достаточным ежедневное потребление белка в пределах 100-120 г. А при тяжелом физическом труде эта норма повышается до 130-150 г. Белки - это преимущественно стро­ительный материал, хотя они могут быть ис­пользованы организмом и как источник энергии.

Углеводы

Углеводы состоят из углерода, водорода и кислорода. Они широко распространены в расти­тельном мире. Это основной источник энергии в нашем организме (они дают 75% всей необходи­мой нам энергии). Углеводы делятся на простые и сложные. С пищей мы получаем и те и дру­гие, причем простые сразу всасываются в кровь, а сложные вначале должны расщепиться. Сложные углеводы - это крахмал, тростни­ковый и свекловичный сахар, простые - вино­градный сахар, или глюкоза, фруктоза и др. У здорового человека концентрация глюкозы в крови всегда строго постоянна - 80-120 мг в 100 г крови. Излишек ее вновь может синте­зироваться в сложный углевод, так называе­мый гликоген, или животный крахмал, основ­ные запасы которого откладываются в печени, достигая 300 г. Этот резерв организм исполь­зует в случае непредвиденного расхода энергии. Гликоген откладывается также и в мышцах.


Продукты, богатые углеводами: овощи, картофель, крупа, хлеб, сахар, варенье.

Если человек сразу потребляет большое количество сахара, то его излишек выделяется с мочой. Это быстро проходит и не опасно для организма. Однако надо помнить, что здоровому человеку не рекомендуется съедать в один прием больше 100 г сахару. Но если сахар обнаруживается в моче в течение длительного времени, то это может быть признаком серьез­ного заболевания - сахарного диабета.

Углеводы не только источник энергии; они играют очень большую роль и в жизнедея­тельности организма как полисахариды, или сложные сахара. Это высокомолекулярные со­единения, которые не уступают по своей слож­ности белкам. Они входят в состав соединитель­ной ткани, костей и хрящей. Кроме того, поли­сахариды играют очень большую роль в борьбе организма с инфекционными заболеваниями. Антитела, которые вырабатывает организм в ответ на проникновение различных микробов и вирусов,- полисахариды. К полисахаридам относится и очень широко распространенное в животных тканях вещество - гепарин, кото­рый предохраняет кровь от свертывания.

В нашей обычной смешанной пище количе­ство углеводов вполне достаточно для удовле­творения потребностей организма, и практически организм никогда не испытывает в них нужды. А если углеводов не хватает, то организм может синтезировать их из белков и жиров.

Жиры

Жиры - это в первую очередь энергети­ческий материал: в 1 г жиров содержится в два раза больше энергии, чем в 1 г углеводов. В пи­щеварительном тракте жир расщепляется на

Жирные кислоты и глицерин. Проходя через слизистую оболочку кишечника и всасываясь в кровь, они вновь соединяются друг с другом и образуют новый, свойственный данному орга­низму жир, во многом отличающийся от по­требляемого. Свой собственный жир организм синтезирует при употреблении разнообразных животных и растительных жиров. Но если человек будет употреблять какой-нибудь один вид жира, например свиное сало, то и его соб­ственный жир по своим свойствам будет близок к свиному салу.

Всосавшийся жир откладывается в так назы­ваемых «жировых депо»: в подкожной клетчат­ке, сальнике, околопочечной клетчатке, в обла­сти таза.

Жировая клетчатка в организме - это запас­ной энергетический материал, который способ­ствует теплоизоляции нашего организма и слу­жит амортизатором. Последнее видно из такого примера: мы не замечаем тяжести своего тела, когда стоим. Большую роль в этом играют естественные жировые подушки, которые нахо­дятся в области сводов стопы и принимают на себя, амортизируют, весь наш вес. В этом вы легко убедитесь, если станете на колени: очень быстро тяжесть тела даст о себе знать сильной болью.

Жировая клетчатка есть только у тепло­кровных животных. Особенно она развита у зве­рей Заполярья - тюленей, моржей, белых медведей. У холоднокровных - лягушек, рыб - ее нет.

Количество жира в человеческом теле инди­видуально, но у женщин на долю жира в общем весе тела приходится почти 30 %, а у мужчин- только 10%.

Значительное отложение жира в теле-при­знак нарушения обмена веществ. У тучного

Продукты, богатые жирами: сливочное масло, подсолнечное масло, шоколад, орехи, желток яйца.

человека обмен веществ протекает медленнее, чем у худощавого. Ожиревший человек теряет бодрость и жизнерадостность, становится вя­лым, неинициативным. Даже в сказках, этом кладезе вековой народной мудрости, отважные рыцари, умные, энергичные люди, стремящиеся к достижению своих целей, всегда худощавые, а неповоротливые и ленивые - толстые.

Жир - это необходимая составная часть клеток. В организме он находится также в виде жироподобных веществ - липоидов. Липоиды входят в состав нервной ткани, оболочки клетки и являются основой для образования гормонов.

Состав пищевого жира неоднороден, и раз­ные жиры имеют разную биологическую цен­ность. Для человека наиболее целесообразно содержание жира в пище от 1 до 1,25 г на кило­грамм веса. Это значит, что если человек весит 70 кг, то он должен в день употреблять от 70 до 100 г жира, а так как жир входит в состав почти каждого пищевого продукта, то в эту норму включается общее количество жиров, поступивших в организм во всех видах. Поло­вина потребляемых жиров должна быть живот­ного, а половина растительного происхождения.

Это важно потому, что, как мы уже гово­рили, все жиры при расщеплении в пищева­рительном тракте распадаются на жирные кис­лоты и глицерин. Жирных кислот два вида - на­сыщенные и ненасыщенные. Все жиры содержат и те и другие, но в животных жирах больше насыщенных, а в растительных, наоборот, боль­ше ненасыщенных жирных кислот. Исследова­ния последних лет показали, что ненасыщенные жирные кислоты имеют важное значение для организма. Они повышают его сопротивляе­мость к различным инфекциям, снижают чув­ствительность к радиоактивному излучению, входят в соединение с холестерином 1 и препят­ствуют его отложению в стенках сосудов, пре­дупреждают болезнь сосудов - атеросклероз.

Из ненасыщенных жирных кислот особенно большое значение имеют три - линолевая, линоленовая и арахидоновая. Первые две содер­жатся в большом количестве в конопляном, льняном и подсолнечном масле, а третья (ее называют витамином F) - главным образом в животном жире - свином сале и яичном желт­ке. Из всех трех ненасыщенных жирных кислот только арахидоновую организм может синте­зировать при наличии линолевой кислоты и витаминов группы В.

Если жир полностью исключить из пищи, организм будет синтезировать его из белков и углеводов.

Таким образом, питательные вещества - белки, углеводы и жиры - необходимые участ­ники обмена веществ, без них он невозможен.

Открытие клетки, несомненно, является одним из важнейших открытий человечества.

Это великое открытие принадлежит английскому физику Р. Гуку, он в 1665 г. первым рассмотрел через свой усовершенствованный микроскоп обычную пробку в разрезе. Гук увидел ячеистый состав пробки, под микроскопом это выглядело как пчелиные соты. Видимые ячейки позже ученый назвал клетками.

Р. Гук. Краткая биография

Роберт Гук родился 18 июля 1635 года (умер 3 марта 1703 года). Его отец хотел вырастить его духовным наставником, но так как у мальчика было слабое здоровье, его отдали в ученики к часовщику. Впоследствии, увидев рвение мальчика к науке, Роберт был отправлен сначала в Вестминстерскую школу, затем в Оксфордский университет, где он стал помощником известного тогда ученого Роберта Бойля. За всю свою жизнь Гук сделал множество громких открытий и изобретений, одним из которых является открытие клетки.

Коллегия невидимых

Открытие клеточного строения произошло в то время развития человечества, когда экспериментальная физика стала претендовать называться госпожой всех наук. В Лондоне было создано общество величайших ученых, которые делали упор в совершенствовании мира на конкретные физические законы. На встречах членов сообщества не происходило никаких политических дебатов, подвергали обсуждению только различные эксперименты и делились исследованиями по физике, механике. Времена тогда были беспокойными, и ученые соблюдали очень строгую конспирацию. Новое сообщество стали называть «коллегия невидимых». Первым, кто стоял у истоков создания общества, был Роберт Бойль - великий наставник Гука. Коллегия выпускала необходимую научную литературу. Автором одной из книг стал Роберт Гук, который тоже входил в это секретное научное сообщество. Гук уже в те годы слыл изобретателем интересных приборов, позволяющих делать великие открытия. Одним из таких приборов был микроскоп.

Микроскоп

Одним из первых создателей микроскопа был Захариус Йансен, который создал его в 1595 году. Задумка изобретения была в том, что монтировались две линзы (выпуклые) внутри специальной трубки с выдвижным тубусом для фокусировки изображения. Этот прибор мог увеличивать исследуемые предметы в 3-10 раз. Роберт Гук усовершенствовал это изделие, что и сыграло главную роль в предстоящем открытии.

Открытие

Роберт Гук в течение длительного времени наблюдал через созданный микроскоп разные мелкие экземпляры, и однажды для просмотра он взял обычную пробку из сосуда. Рассмотрев тонкий срез этой пробки, ученый удивился сложности структуры вещества. Его взору предстал интересный узор из множества ячеек, удивительно похожий на пчелиные соты. Так как пробка - это продукт растительный, Гук начал изучать с помощью микроскопа срезы стеблей растений. Везде повторялась аналогичная картинка - набор пчелиных сот. В микроскоп было видно множество рядов ячеек, которые разделялись тонкими стенками. Роберт Гук назвал эти ячейки клетками.

Заключение

Впоследствии образовалась целая наука о клетках, которая называется цитология. В цитологию входят изучение строения клеток и их жизнедеятельность. Используется эта наука во многих областях, в том числе медицине, промышленности.

Мы уже говорили о научных объединениях, создавшихся в XV-XVII вв. в ряде стран Европы, где передовые ученые того времени, не удовлетворяясь официальной университетской наукой, находившейся под сильным влиянием церкви, вели свободные естественно-научные исследования.

В XVII в. по инициативе Френсиса Бэкона такое объединение возникает в Лондоне. В 1645 г. группа ученых во главе с Робертом Бойлем организует собрания, где ставятся эксперименты и сообщаются результаты новых исследований. Эти собрания принимают регулярный характер. Члены общества, носившего вначале название «Коллегии невидимых», не ограничиваются собственными работами. Они собирают сведения об исследованиях, производимых в других странах, организуют переписку с иностранными учеными. Неясные вначале цели коллегии понемногу начинают оформляться: члены коллегии ставят перед собой задачу распространения естественных наук, борьбу с верой в тайные силы природы путем вскрытия ее истинных законов. Общество избирает своим девизом: Nullius in verba - никому не верить на слово! Деятельность Лондонского научного общества к шестидесятым годам становится настолько обширной, что правительство не может обойти ее молчанием. В 1660 г. король Карл II становится членом объединения, а в 1662 г. законодательным актом оно превращается в Лондонское королевское общество для усовершенствования естественных наук. (The Royal Society of London of Improving Natural Knowledge). Это Королевское общество, как его сокращенно называют с того времени, привлекает корреспондентов, собирает коллекции и во второй половине XVII в. завоевывает признание в качестве мирового научного центра. Каждый ученый конца XVII и начала XVIII вв. считал для себя обязательным сообщить о сделанном открытии в Лондонское королевское общество, чем как бы закреплялся приоритет исследователя.

В 1662 г. «экспериментатором» общества становится Роберт Гук. Являясь одним из активнейших его членов, он в. 1672 г. избирается секретарем Лондонского королевского общества. В 1665 г. Гук издает сочинение - большой том, объемом более 200 страниц, содержащий 38 таблиц с рисунками. Книга Гука называлась «Микрография, или некоторые физиологические описания мельчайших тел, осуществленные посредством увеличительных стекол». В этом своеобразном сочинении впервые отмечается клеточное строение некоторых частей растений; временем выхода этого сочинения Гука приходится датировать первый период в истории учения о клетке.

Роберт Гук - характерная для науки XVII в. фигура. Несомненно гениальный человек, он сделал ряд крупнейших физических открытий (закон деформации упругого тела, теория упругости, волновая теория света и т. д.). Однако Гук не удовлетворяется какой-либо одной областью исследования; его пытливый ум изобретателя стремится расширить рамки познавательных возможностей человека. Гук изобретает ряд физических приборов. Он интересуется телескопом и оптическими приборами и, когда знакомится с привезенным Дреббелем в Англию микроскопом, сразу оценивает возможности, которые открывает для исследователя новый инструмент. Однако первые микроскопы представляли собой слишком несовершенные инструменты, чтобы с их помощью можно было производить научные исследования. Гук берется за реконструкцию микроскопа. В его изобретательных руках микроскоп становится инструментом, позволяющим увидеть много недоступного невооруженному глазу.

Гук не имеет никакого плана исследований при помощи реконструированного им микроскопа, но понимает, что возможности нового инструмента необычайно широки. Он рассматривает в микроскоп самые различные объекты из мертвой и живой природы; описанию этих наблюдений и посвящена «Микрография». Никакой системы в изложении своих наблюдений Гук не соблюдает; при чтении его книги чувствуется, что автор клал под микроскоп все, что попадалось ему на глаза; всякие, не имеющие значения мелочи он описывает с таким же вниманием и серьезностью, как и значительные естественно-научные наблюдения.

Книга Гука, как это было принято тогда, начинается с посвящения королю, далее следует посвящение Лондонскому королевскому обществу и длинное предисловие с рассуждением о значении и методах исследования природы. В нем слышатся отзвуки требований, которые предъявлял к научному исследованию Френсис Бэкон. Гук отдает преимущество «механической, экспериментальной философии» перед «философией рассуждения и спора». В заключительной части предисловия Гук дает описание и изображение своего микроскопа и излагает методику наблюдения с этим новым прибором. Далее Гук описывает свои собственные «Наблюдения», нумеруя их по порядку и не прибегая к какой бы то ни было классификации. Вот для примера некоторые наблюдения Гука:

Наблюдение 1. О кончике острия маленькой иглы.

Наблюдение 3. О тонком батисте или льняной ткани.

Наблюдение 7. О некоторых явлениях в стеклянных каплях.

Наблюдение 8. Об огненных искрах от удара кремнем о сталь.

Наблюдение 12. О песке в моче.

Наблюдение 14. О различных фигурах, образуемых морозом.

Наблюдение 23. О замечательном строении водорослей.

Наблюдение 30. О семенах мака.

Наблюдение 43. О водяных насекомых или комарах.

Наблюдение 49. О муравье.

Наблюдение 53. О блохе.

Все свои «Наблюдения» Гук сопровождает превосходными таблицами. Рисунки выполнены с такой тщательностью и обнаруживают такую точность наблюдений, что некоторые его таблицы (муха, личинка и куколка комара, блоха и т. д.) можно и теперь поместить в соответствующие руководства.

Конечно, сам автор книги никак не предполагал, что среди 54 «наблюдений», изложенных в ней, особую славу принесет ему наблюдение, описанное под № 18 и озаглавленное: «О схематизме или строении пробки и о клетках и порах в некоторых других таких порозных телах».

Стоит отметить, что о «Скрытом Схематизме в тех телах, которые считают однородными, особенно в вещах, отличающихся специфическими чертами, и в их частях таких, как железо, камень, и в однородных частях растения, животного таких, как корень, лист, цветок, мясо, кровь, кость, и т. д.»,- писал Френсис Бэкон (1620) в «Новом органоне» (цит. по изд. Соцэкгиза. 1935, стр. 204). Так как «Новый органон» вышел значительно раньше «Микрографии», надо думать, что именно отсюда заимствует Гук понятие о «схематизме».

Рассматривая под микроскопом тонкие пластинки, вырезанные из пробки, Гук заметил правильно расположенные пустоты или поры, соотношение стенок, которых он сравнивал с сотами. В дальнейшем описании Гук называет открытые им в пробке пустоты «порами», или «клетками». Они, заявляет Гук, напоминают ему маленькие ящички, почему он и счел целесообразным применить термин «клетки». Свое описание Гук сопровождает таблицей. На таблице изображены продольный и поперечный разрезы пробки, послужившей первым объектом, на котором было открыто клеточное строение растительных организмов.

Такое же пористое строение было известно Гуку не только в пробке, т. е. в отмершей растительной ткани. Гук отмечает аналогичную структуру в сердцевине бузины и многих других деревьев, во внутренней мякоти камыша, укропа, моркови, репейника и некоторых травянистых растений.

Мёбиус (М. Moebius, 1937) в своей истории ботаники отмечает, что, приступая к микроскопическому исследованию пробки, Гук, по-видимому, не знал, что пробка - часть растения. Но найдя такое же строение в мякоти бузины, он пришел к выводу о растительной природе пробки.

Он даже смутно подозревает, что дело идет о каком-то общем явлении, но это общее он хочет усмотреть в пористости тел, отличным доказательством которой является, по мнению Гука, сделанное им наблюдение. Растения, на которых Гук увидел клеточное строение, были для него случайными объектами микроскопического исследования. Выпустив «Микрографию», Гук не возвращался более к микроскопическим исследованиям, его интересы обратились в другую сторону. Открытие, сделанное им на пробке и подтвержденное на некоторых живых частях растений, было для Гука лишь случайным эпизодом в период его увлечения новым инструментом. Но это открытие не осталось случайным эпизодом для развития науки и дало толчок для последующих, более систематических наблюдений над строением растений.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

«Игорь Васильевич Курчатов» - 7 Февраля 1960 года Игорь Васильевич скоропостижно скончался. Поступив в местную гимназию, он оканчивает ее в 1920 году с золотой медалью. Кто же такой КурчатовИ.В? Семья. Именем Курчатова, в 1960 году, назван основанный им Институт атомной энергии. Детство. И.В.Курчатов - депутат Верховного Совета СССР третьего и пятого созывов.

«Гук» - Герб Оксфордского университета. Гук, Роберт Материал из Википедии - свободной энциклопедии. К числу открытий Гука принадлежат: Павла. Купол Собора св. С 1664 - профессор Лондонского университета. Роберт Бойль. С 1667 Гук читает «Кутлеровские лекции» по механике. Барометр Гука. Изобретения. В 1684 изобрёл первую в мире систему оптического телеграфа.

«Биография Эйнштейна» - Атомная бомба. Альберт Эйнштейн умер в возрасте 76 лет, в США, в Принстоне. В 26 лет имя Эйнштейна было уже широко известно. В 30 лет он – уже Профессор университета в Цюрихе. Карта Германии. В 16 лет Эйнштейн отправился пешком из Милана в Цюрих. Эйнштейн увлекался парусным спортом и игрой на скрипке.

«Биография Ньютона» - 5 июня 1661г. Ньютон был принят в Тринити-колледж (коллегия Троицы) в Кембридже. Орбита кометы по рисунку Исаака Ньютона. Надгробие на могиле Ньютона. Внутренность школы в Грэнтэме. На статуе высечены слова Лукреция: «Разумом он превосходил род человеческий». Родился недоноском, поразительно маленьким и хилым.

«Л.И.Мандельштам» - Биография. Степень доктора натуральной философии (физики) Страсбургского университета (1902). В Страсбурге Николай Дмитриевич познакомился с Л. И. Мандельштамом, своим научным соратником и другом. Труды Папалекси посвящены вопросам радиофизики и радиотехники. Исследования по оптике посвящены преимущественно явлению рассеяния света.

«И.П.Кулибин» - Фонарь с зеркальным отражением. Особое внимание в юношеские годы уделял изучению часовых механизмов. В 1801 Кулибин вернулся в Нижний Новгород. В том же году изобретатель разработал конструкцию " механических ног " - протезов. Механические часы Кулибина. Русский механик-самоучка. В 1787г. Модель моста через Неву.

Всего в теме 25 презентаций