Предмет изучения систематики. Происхождение высших растений

Если бы вас попросили описать вашу спальню, то вы, вероятно, не стали бы называть каждую отдельную вещь, так как это перечисление будет длиться довольно долго. Вместо этого вы, вероятно, упростили бы все это, группируя вещи по таким категориям, как книги, игрушки, Э, картины, мебель и так далее. Это наука, изучающая животного и растительного мира путем его классификации.

Для чего нужна систематика?

Представьте себе, можно ли описать город без использования различных категорий, таких, как автомобили, люди, здания, мосты и дороги? Вот для чего нужна систематика. Теперь попытайтесь представить себе ученого, у которого нет никакой возможности объединить все живые существа на планете. В биологии, систематика - изучающая и классифицирующая все живое на планете.

Два вида систематики

Существуют два близкородственных и перекрывающихся уровней классификации: таксономический (известный как система Линнея) и филогенетический.

  • Таксономические классификации групп живых существ на основе общих черт. Например, животных, которые откладывают яйца и имеют чешуйки, мы называем рептилиями, а животных, которые имеют живорожденных и мех или волосы, мы называем млекопитающими.
  • Филогенетические классификации используют таксономические названия и показавают, как группы организмов эволюционно связаны друг с другом. Например, гориллы более тесно связаны с людьми, чем с тараканами.

Систематика животных - изучающая и классифицирующая все биологическое Если провести аналогию с человеческими отношениями, то любое живое существо имеет имя (таксономическая классификация), а также определенную степень родства с другими организмами. Например, шимпанзе и макака будут, образно говоря, братьями, их дядей будет горилла, человек будет их дальним родственником, а вот с тараканом они и вовсе не будут знакомы (филогенез). Систематика растений - это наука, изучающая огромное разнообразие растительного мира.

Карл Линней - отец современной систематики

Что бы делали биологи без универсального способа группировки организмов? Это был бы настоящий хаос. За инструмент стоит благодарить Карла Линнея, также известного, как Карл фон Линней (1707-1778). Шведский ботаник, зоолог и врач рассматривается в современной науке как «отец систематики». Он был первым, кто последовательно использовал систему для классификации организмов на основе общих признаков. Его одновременно строгая и простая методология давала вполне научную обоснованность в области классификации.

Биологическое разнообразие

Систематика - это наука в биологии, изучающая ее огромное разнообразие живых существ, что является одной из определяющих черт мира природы. Эта научная дисциплина тесно связана с экологией и эволюционной биологией. Систематика - это наука, изучающая и рассматривающая, как формируются новые виды, как протекают те или иные экологические процессы, почему некоторые группы поддерживают невероятно широкий видовой диапазон, а некоторые организмы попросту вымирают.

Это связано с характеристиками различных организмов, которые позволяет дать детальное изучение конкретных групп. Систематика стремится понять историю жизни посредством филогенетических и генетических взаимоотношений живых существ. Оценка разнообразия и знание принципов и процедур этой дисциплины имеют важное значение в экологии, эволюционной и природоохранной биологии.

Систематика и филогенетическое дерево

Систематика - это наука, изучающая разнообразие живых организмов прошлого и настоящего, а также их отношения с течением времени, которые изображаются в виде филогенетических деревьев. Эволюционное древо делится на две части: первая известна как ветвление порядка, который показывает взаимоотношения организмов в пределах группы, вторая называется длиной ветви, определяющей период эволюции, через которые прошли организмы.

Значение

Систематика играет центральную роль в биологии, предоставляя средства для характеристики изучаемых организмов. Благодаря классификации, отражающей эволюционные отношения, появляется возможность предсказывать и проверять различные гипотезы. Филогенез может быть полезен для прогнозирования данных об истории жизни недостаточно хорошо изученных биологических групп.

Биологическая систематика изучает диверсификации всех живых форм прошлого и настоящего, а также отношения между ними. Дендрограммы видов и высших таксонов используются для изучения эволюционных признаков (например, анатомических или молекулярных характеристик) и показывают распределение организмов (биогеография). Систематика просто необходима для понимания эволюционной истории жизни на планете Земля.

Материал из Юнциклопедии


Мир живых существ насчитывает, по различным оценкам, от 1,5 до 8 млн. видов. Для описания и обозначения множества ныне обитающих на Земле, а также ископаемых растений, животных, микроорганизмов, грибов необходима определенная система.

Эти задачи выполняет раздел биологии, называемый систематикой, в него входит как составная часть и классификация организмов. Систематика опирается на данные, полученные всеми разделами биологии, и в то же время служит основой для многих биологических наук. Таким образом, важнейшее значение систематики в том, что она дает возможность ориентироваться во всем многообразии существующих и ископаемых организмов.

Попытки систематизирования (классификации) организмов были предприняты еще в античном мире Аристотелем и другими учеными древности, однако основы научной систематики были заложены лишь в конце XVII в. английским ученым Дж. Реем и развиты выдающимся шведским естествоиспытателем К. Линнеем в XVIII в. Все ранние системы, в том числе наиболее удачная из них система самого Линнея были искусственными, т. е. за их основу часто брали отдельные признаки, характеризующие лишь внешнее сходство (см. Конвергенция).

Учение Ч. Дарвина (см. Эволюционное учение) придало систематике новое, эволюционное содержание, и в дальнейшем главным направлением ее развития стало эволюционное, которое стремится наиболее полно отразить в естественной, или филогенетической, системе отношения между организмами, существующие в природе (см. Родословное древо, Филогенез).

Современная систематика использует для классификации и описания организмов не только частные признаки, например форму зубчиков листа растения или число лучей в спинном и других плавниках у рыб, но и различные особенности строения, экологии, поведения и т. п., характеризующие организмы. Чем полнее исследователи учитывают эти особенности, тем в большей мере сходство, выявляемое систематикой, отражает родство (общность происхождения) организмов, объединяемых в ту или иную группу (тот или иной таксон). Например, сходство летучей мыши и птицы (летающих теплокровных позвоночных) поверхностное: летучая мышь - млекопитающее, т. е. относится к другому классу. При сравнении птиц и млекопитающих с другими, более отдаленными в систематическом отношении организмами, из других типов, важны уже не различия, а общность плана их строения как позвоночных животных. Многие тропические лианы сходны между собой по ряду признаков (лазящие стебли, совпадение сроков цветения), хотя относятся к разным семействам, но и те и другие входят в класс двудольных растений.

Наиболее распространенным методом исследования в систематике остается сравнительно-морфологический, хотя современные систематики широко используют электронную микроскопию, биохимические, биофизические и другие методы. Изучение тонкой структуры хромосом привело к возникновению ка-риосистематики, а использование биохимических данных - к развитию хемосистемати-ки. Сравнительное изучение белков, ДНК и РНК у разных групп организмов позволяет дополнять и уточнять их систематические характеристики и взаимоотношения. Этими проблемами занимается еще одна современная отрасль систематики - геносистематика.

Изучение строения и развития любого живого объекта требует знания его положения относительно других организмов, а также их филогенетических отношений. Все большее значение приобретает изучение популяционной структуры вида. Знание ее незаменимо при проведении экологических, биогеографических и генетических исследований, поскольку во время таких работ в поле зрения исследователя находится много видов, принадлежащих к самым различным популяциям. Систематика ископаемых животных и растений тесно связана с палеонтологией. Знание систематики позволяет выявлять редкие и исчезающие виды животных и растений, поэтому она имеет большое значение для решения чрезвычайно важной проблемы - охраны живой природы. Главнейшая задача систематики - создание такой системы органического мира, которая бы наиболее полно отражала взаимоотношения между организмами.

Оказалось, что различия между прокариотами и эукариотами глубже, чем, например, между высшими животными и высшими растениями (те и другие - эукариоты). Прокариоты образуют в системе органического мира резко обособленную группу, которой придают ранг надцарства. В нее входят бактерии, в том числе цианобактерии и архебактерии (некоторые систематики разделяют прокариот на два самостоятельных надцарства - эубактерий и архебактерий).

Грибы выделены в отдельное царство. Окончательно пока не решен вопрос о том, к какому из двух основных царств эукариот ближе стоят грибы, поскольку группа эта разнородная.

Царства делят на подцарства, последние - на типы (у растений, бактерий и грибов - отделы). Типы (отделы) состоят из классов, классы - из отрядов (порядков). Отряды в свою очередь делят на семейства, состоящие из родов. Роды состоят из видов. Иногда выделяют в видах подвиды, но основной таксономической категорией является вид.

Для удобства (с практической точки зрения) основные таксономические категории часто дробят. Так, типы делят на подтипы, классы - на подклассы и т. д. Иногда основные категории укрупняют (надтипы, надклассы и т. д.).

Филогенетические схемы, изображающие систему органического мира, различны и зависят от точки зрения ученых, работающих в области систематики.

Основные подходы в биологической систематике

Отношения живых существ с окружающим миром во многом основаны на классифицировании . Различение съедобного и несъедобного, «своего» и «чужого», детеныша и полового партнера – всё это примеры очевидной классификационной деятельности. И эту способность классифицировать люди унаследовали от своих животных предков.

Классифицирование является первичной формой познавательной деятельности. И действительно, всякое знание воплощено в общих понятиях и категориях. Если бы мы не могли с помощью классифицирования обобщать, для нас не было бы животных и растений, трав и деревьев, копытных и хищных – были бы некие отдельные предметы, никоим образом не соотнесенные друг с другом посредством тех или иных общих понятий.

Классифицирование – это процедура отнесения наблюдаемых объектов, явлений или процессов к какому-либо классу по заранее определенным критериям. В биологии классифицированию подвергаются организмы. Получаемый результат – классификация – представляет собой разбиение множества организмов на основании тех или иных свойств на отдельные группы. Исследуемое разнообразие считается познанным, если для него удалось разработать «удачную» (в том или ином смысле) классификацию – например естественную систему . Поэтому не удивительно, что в средневековой схоластике понятие Metodus (метод познания) чуть ли не отождествлялось с понятием Classificatio .

Во всех науках классификация играет важнейшую роль. В тех из них, где преобладает качественный способ познания (биология, история, география, социология), она составляет не только фундамент знания, но и в определенном смысле форму его существования. Но и в естественнонаучных дисциплинах, где наиболее полно развит количественный метод познания, без классификаций обойтись невозможно. Так, например, фундаментом теории элементарных частиц является их классификация по различным свойствам.

Классификационные подходы достаточно разнообразны. В биологии результатом их применения оказываются разные классификации живых организмов, примеров чему – великое множество. Для того чтобы разбираться в этом разнообразии и понимать причины появления тех или иных классификаций и изменений в них, необходимо иметь общее представление о том, каковы классификационные подходы (школы) и в чем различия между ними.

В настоящей статье представлен краткий обзор основных направлений и школ биологической систематики. При этом, по вполне понятным причинам, больше внимания уделяется тем из них, которые в настоящее время доминируют в таксономических исследованиях.

Разнообразие подходов к изучению биологического разнообразия

Биология является одной из наиболее «классифицирующих» отраслей естествознания. В ней сложилось несколько дисциплин, которые описывают разнообразие живых существ посредством разработки соответствующих классификаций.

Собственно биологическая систематика изучает таксономическое разнообразие, элементам которого соответствуют таксоны. Биогеография изучает пространственное разнообразие сообществ животных и растений, описывая его системой биогеографических выделов разного ранга. Биоценология изучает структурное и функциональное разнообразие локальных сообществ, разрабатывая системы синтаксонов, гильдий и т.п. Особые подходы разрабатываются для изучения разнообразия жизненных форм : в данном случае единицами классификации являются биоморфы.

Уже в этом наглядно проявляется «разнокачественность» классификационных подходов, каждый из которых имеет дело с особым проявлением биологического разнообразия. В рамках каждой из названных дисциплин складываются разные школы и направления, по-своему толкующие предмет, задачи и методы классифицирования.

Так, в систематике, изучающей таксоны, развиваются типологический, фенетический и филогенетический подходы, по-разному трактующие основные понятия и концепции систематики. Если ранняя систематика была исключительно морфологической, то в последнее время обособляются подходы, использующие иные категории данных, – кариосистематика (хромосомы), геносистематика (ДНК и РНК) и т.д. Наконец, нельзя не отметить разнообразие количественных методов, разрабатываемых современной нумерической таксономией.

Многообразие конкретных классификаций, к которому приводит многообразие подходов и методов, нередко является камнем преткновения и для теоретиков, и для практиков. Действительно, если бы разные классификационные теории и методы в конечном итоге давали одни и те же результаты, большинство проблем, связанных с их существованием, разрешалось бы само собой. Но коль скоро их конвергенции не происходит, проблема остается; более того, она усугубляется, поскольку разнообразие подходов и методов, а с ними и самих классификаций, со временем увеличивается.

В рамках традиций классической науки с этим многообразием издавна ведется непримиримая борьба. В качестве исходной позиции принимается, что в природе царит единый закон, которому подчинено все сущее, – нечто вроде абсолютной истины. Соответственно, задача состоит в том, чтобы открыть этот закон и тем самым познать Истину. Изначально такая позиция «укоренена» в библейском учении о едином – и потому единственном – плане божественного творения. В отношении таксономического разнообразия таким всеобщим законом считается естественная система живых организмов: ее разработка составляет основную задачу классической биологической систематики. Эта система – единственная по исходному условию, поэтому сторонники этой идеи убеждены, что ее поиск возможен лишь в рамках некоторого единственно верного таксономического учения. А любое уклонение от него есть таксономическое невежество, способное породить лишь заведомо ошибочные классификации – «искусственные» системы.

Начиная с середины ХХ столетия в науке развивается иная традиция, названная «неклассической» или даже «постнеклассической». Она считает нормальным разнообразие взглядов на объекты научного исследования и, тем самым, способов их описания. Такого рода научный плюрализм считается неизбежным и неустранимым, поскольку вытекает из фундаментальных свойств как познаваемого мира, так и процесса познания.

С этой точки зрения разнообразие подходов в биологической систематике может быть обусловлено двумя категориями причин общего порядка.

Причины первой категории кроются в структуре самого таксономического разнообразия: оно, как и всякое природное явление, познавательно неисчерпаемо. Для всякого исследователя бывает доступно не разнообразие в целом, но лишь тот или иной его частный аспект . Очевидно, что чем сложнее объект исследования, тем более он «многоаспектен». Таким образом, таксономическое разнообразие «раскладывается» на несколько частных аспектов, каждый из которых отражается в особой классификации.

Понятно, что каждый такой аспект существует не сам по себе: его вычленение как объекта исследования возможно лишь на основании некоторой биологической (или какой-либо иной) теории. В рамках этой теории определяются те свойства разнообразия, которые считаются наиболее существенными для изучения. Из этого ясно: сколько теорий о таксономическом разнообразии может быть разработано, столькими аспектами оно будет явлено исследователям. И это составляет вторую категорию причин многообразия представлений о таксономическом разнообразии: они кроются в характере познавательной деятельности человека.

Расхождения в понимании того, что и как надлежит исследовать в биологической систематике, затрагивают весьма глубинные пласты. Так, для одних ученых таксономическое разнообразие – это сумма обитающих на Земле видов или даже просто организмов, для других – иерархия естественных групп, распознаваемых в качестве объективно существующих таксонов разного ранга. Что касается принципов познания, то здесь расхождения обнаруживаются уже на уровне логики: типологическая систематика оперирует двузначной логикой, новая систематика – вероятностной логикой, а кладистика – логикой так называемых одноместных высказываний.

Без особой натяжки можно утверждать, что каждому аспекту таксономического разнообразия соответствует определенная школа систематики. Она формулирует соответствующие теоретические принципы, позволяющие распознать и вычленить именно данный аспект, и разрабатывает наиболее подходящие методы его изучения и представления в форме классификации.

Очевидно, пытаясь разобраться в разнообразии школ систематики, нужно видеть не только их различия, но и уметь находить области «пересечения» разных школ. Это позволяет корректно интерпретировать результаты, полученные с помощью какого-то одного подхода, в рамках другого.

Ранние этапы: схоластика и эссенциализм

Развитие науки связано с изменением доминирующих представлений о самой природе и о способах ее изучения. Так, когда-то преобладала библейская мифология, в настоящее время доминирует естественнонаучное мировоззрение. Среди способов познания одно время царил дедуктивный метод, затем его сменил индуктивный, в настоящее время их обобщает гипотетико-дедуктивная схема аргументации.

Это очевидным образом исторически обуславливает школы систематики: каждая из них соответствует своему времени и своей философии науки. В XVI–XVII вв. в систематике царила схоластика, веком позже – типология, во второй половине XIX в. их потеснило эволюционное направление.

У всякого развития есть одно очень важное свойство: кроме появления новизны, оно характеризуется преемственностью . Это значит, что ничто в систематике не проходит бесследно: однажды возникнув, та или иная классификационная идея оказывает большее или меньшее влияние на последующую историю таксономической науки. Поэтому живший в IV в. до н.э. Аристотель – отец родо-видовой схемы классифицирования – столь же современен, как и, скажем, Симпсон, в середине ХХ в. разработавший основы эволюционной таксономии (о них см. далее в этом и следующих разделах). В итоге сложившееся к настоящему времени здание науки систематики представляет собой причудливое переплетение прежних и новых представлений о задачах и принципах классифицирования в биологии.

Первые письменно зафиксированные классификации живых организмов известны фактически с тех самых времен, как появилась письменность. Достаточно напомнить, что уже в самых первых текстах Ветхого Завета, датируемых XII–X вв. до н.э., присутствует классификация позвоночных животных: в Книге Бытия говорится о рыбах водных и птицах пернатых, гадах и зверях земных, сотворенных «по роду их». Примечательно, что это архаичное деление позвоночных животных на четыре основные класса будет унаследовано христианской наукой Нового времени: его можно обнаружить в научных монографиях вплоть до начала XIX в.

Основы метода классифицирования, ставшего ведущим в современной систематике, были заложены в IV в. до н.э. двумя великими философами античности – Платоном и, главным образом, его учеником Аристотелем Их ключевой идеей было создание такой идеальной процедуры, которая гарантировала бы получение истинных заключений из истинных предпосылок. Это привело к силлогистике – совокупности правил логики, дающих возможность непротиворечиво описывать разнообразие любых (как тогда полагалось) природных явлений.

Следует подчеркнуть, что логические процедуры, разработанные античными философами, были неразрывно связаны с их общим натурфилософским мировоззрением. Для них мир был Космосом, исполненным порядка и гармонии (в противоположность Хаосу). В части, касающейся живых организмов, этот порядок явлен в том, что они образуют своего рода «прогрессию», или «Лестницу Природы», – ряд от простейших до самых сложных существ. Поэтому процедура классифицирования, если она правильная, должна сама собой раскрывать перед исследователем искомый порядок. В Новое время такого рода представления оказали сильнейшее влияние на формирование систематики как науки, в которой проблема метода классифицирования как была, так и остается одной из центральных.

Важной частью натурфилософии Аристотеля было учение о сущностях – скрытых внутренних свойствах вещей и явлений, которые так или иначе проявляются в их существенных характеристиках. По этим характеристикам сущности могут быть опознаны, что позволяет определить истинное место каждой вещи среди подобных ей вещей. Соответственно, характеристики, с сущностями не связанные, не позволяют сделать этого.

Десятью веками позже философы-неоплатоники развили аристотелев метод, дав будущей систематике окончательно оформленную иерархическую схему классифицирования. В ее основе лежит достаточно формализованная двузначная логика родо-видовых отношений, означающая, что всякая вещь может быть познана и описана через род и видовые отличия. Род указывает на общие признаки данной вещи с другими вещами одного с нею рода, тогда как вид указывает на ее отличительные особенности. Следует иметь в виду, что в данном случае «род» и «вид» понимаются только логически и никакого отношения к их современному биологическому содержанию не имеют.

Увязывание этой схемы с учением о сущностях дало представление об иерархии сущностей : сущность первого порядка заложена в саму вещь, сущностью второго порядка является ее вид, сущностью третьего порядка – ее род, причем уровней промежуточных родов может быть достаточно много. Это сделало классификационную схему иерархической, в сжатом виде она выглядит так:

Genus summum (общий род)

Genus intermedium (промежуточный род)

Genus proximum (ближайший род)

Species infima (конечные виды)

Двузначный характер аристотелевой логики, заложенной в эту схему, означает, что на каждом шаге иерархии соответствующий род делится строго на два рода более низкого ранга или на два вида. Ее воплощением стало так называемое древо Порфирия, названное в честь философа-неоплатоника, на котором каждый шаг классификации был изображен как ветвление дерева. Впрочем, эта чересчур жесткая логическая схема на практике редко претворялась в конкретные классификации, но во всяком случае она стала тем идеалом, который направлял усилия классификаторов при построении названной системы.

Средневековая схоластика во многих отношениях развила учение о сущностях и представления о способах классификации живых организмов. Ее важнейший вклад в становление систематики был связан с развитием аристотелева учения о сущностях.

Аристотель признавал в одной и той же вещи много разных сущностей (по цвету, фактуре, назначению и т.п.), что позволяло строить много разных систем. В противовес этому в конце XVI столетия Чезальпино выдвинул идею о главной сущности , что в принципе позволяло определить место вещи в окружающем мире единственным образом. Именно в связи с этим уточнением в рамках схоластики сформировалось ключевое понятие естественной системы – единой и потому единственной. Это, собственно, и положило начало систематике как науке. Очевидно, это более соответствовало утвердившемуся в христианском мире представлению о естественной системе как о воплощении плана божественного творения.

Эту систему определили как такую, которую составляют естественные группы организмов, существующие в самой природе, а не выделенные человеком по каким-то своим соображениям (как, например, лекарственные растения). Задача, таким образом, заключалась в том, чтобы распознать каждую такую группу по ее «естеству» – т.е. по признакам, посредством которых ученому явлена сущность организмов, составляющих данную группу.

Но здесь не все было просто: единодушия в понимании «естественного» статуса такого рода групп не было. Мнения разделились между двумя философскими течениями – реализмом и номинализмом , которые сыграли заметную роль в развитии систематики. Принципиальная разница между ними в том, признавать или не признавать реальными, т.е. существующими объективно в природе, сущности высших порядков и соответствующие им группы организмов (таксоны).

Реалисты считали (и считают), что вся иерархия и, соответственно, таксоны разных рангов реальны, поскольку обозначены реальными сущностями разных порядков. Рассмотрим для примера лошадь, которая наделена сущностью «лошадности». Согласно реалистам, кроме этого, есть сущности высших порядков, относящиеся к этой же лошади, – ее «копытность», «млекопитающность», «животность» и т.д. Им, очевидно, соответствуют естественные группы (таксоны) – «копытные», «млекопитающие», «животные». Это значит, что в построении многоуровневой классификации, включающей отряды, классы, типы, есть глубокий смысл: именно вся эта иерархия и есть естественная система.

В отличие от этого, номиналисты полагают, что за общими понятиями, обозначающими таксоны, никакой реальности нет: есть только «лошадность», присущая конкретной лошади или, в крайнем случае, виду лошадей, но нет никакой реальной сущности, которая соответствовала бы понятиям копытного или млекопитающего. При этом они ссылаются на непрерывность аристотелевой «Лестницы Природы»: по сути, это означает возможность любого произвольного разрезания единого ряда на отрезки, соответствующие высшим таксонам, т.е. эта непрерывная лестница и является сама по себе естественной системой.

Важным элементом схоластической процедуры служит принцип единого основания деления . Он означает, что для правильного определения места вида в естественной системе, которое соответствовало бы его сущности, необходимо всю классификацию сверху донизу строить по признакам, выражающим эту сущность. Примером применения этого принципа может служить «древо Порфирия», в котором определено место Платона среди одушевленных и неодушевленных сущностей.

Очевидно, названный принцип достаточно эффективен лишь при решении каких-то частных классификационных задач, связанных с познанием единичных объектов. Его появление легко понять, если учесть, что в пору формирования схоластики философы основное внимание уделяли принципам и методам познания, а в реальном мире они черпали лишь примеры применения этих принципов. Но как только наука нового времени основной задачей поставила разработку классификаций, объемлющих самые разные по своим «сущностям» организмы, сразу стала очевидной ограниченность принципа единого основания. От него, а с ним и от схоластики довольно легко отказались, чему в немалой степени способствовало развитие эмпирического направления в систематике).

Продолжение следует

Дата: _________ урок №1

Тема: «Введение. Систематика как биологическая наука».

Обучающая – продолжать формирование представлений о многообразии органического мира, закрепить знания учащихся об основных систематических группах живых организмов, сформировавшихся за миллионы лет эволюции.

Развивающая – развивать умение выделять главное, умение анализировать; развивать умение учащихся оперировать понятиями, формировать научное мировоззрение.

Воспитательная – раскрыть значение работ К. Линнея для развитии биологии; на основе этого продолжить формировать интерес и позитивное отношение к изучению истории развития биологии.

Тип урока:

изучения новой темы

словесные, демонстрация.

Оборудование:

портреты К. Линнея, таблицы по общей биологии. Презентация.

ХОД УРОКА

I. Организационный момент. Приветствие учащихся

II. Изучение новой темы

1. Слово учителя. Проблема, которую нам нужно будет решить, звучит так – Почему многообразие современного органического мира является результатом биологической эволюции? Что изучает систематика?

Длительная, охватывающая период в несколько миллиардов лет эволюция когда-то появившихся на Земле примитивных живых организмов через смену одних групп другими привела к современному разнообразию органического мира. Разнообразие жизни на Земле с трудом поддается описанию. Полагают, что сейчас на нашей планете обитает свыше 10 млн. видов живых организмов и не менее 500 млн. видов вымерло в былые геологические эпохи. Нет, и никогда, не будет человека, который знал бы все эти виды. Тем более возникает необходимость в системе живой природы, руководствуясь которой мы могли бы найти место любого организма, который нас заинтересовал, будь то бактерия, вызывающая болезнь, новый гриб, жук или клещ, птица или рыба. Эту необходимость естествоиспытатели поняли давно, когда началась эпоха Великих географических открытий.

– К чему в итоге привел эволюционный процесс? (Приложение 1 Слайд 2).

Итак, в конце XVII в. – начале XVIII в. в биологической науке накапливается огромный фактический описательный материал.

«Ариаднина нить ботаники – система, без которой в ботанике хаос, – писал К. Линней в «Философии ботаники». – Система – вотнить, ухватившись за которую можно благополучно выбраться из пестроты фактов».

«История систематики» (Приложение 2, Приложение 1 Слайд 3).

Поэзия названий

Цветов, деревьев, трав...

Я раньше по поляне

Шел, голову задрав.

Я с именами древними

Был шапочно знаком:

Деревья звал деревьями,

Цветок я звал цветком.

Был прав великий гений,

Цветам названья дав:

В отечестве растений

Нет безымянных трав.

Георгий Кондаков

«Карл Линней и его заслуги перед наукой» (Приложение 1 Слайды 4-7).

К. Линней старался систематизировать все. (Приложение 1 Слайд 20). Описания растений и животных отличались сложностью и противоречивостью. Каждый вид растений и животных в разных странах назывался по-разному и даже в одной стране имел нескольку названий. Это приводило к ошибкам и вызывало споры.

Линней взял за основу систематики растений тычинки и пестики – такие мелкие части цветка, на которые натуралисты и внимания не обращали.

На самом деле пестик и тычинка – главные части цветка. Они участвуют в образовании плодов и семян. (Приложение 1 Слайд 8).

Учитель (ученики записывают в тетради). Линней разбил все растения по числу и строению тычинок на 24 класса, классы разделил на отряды, отряды – на роды, роды – на виды.

Под видом он понимал группы организмов, происходящих отобщих предков и дающих при скрещивании плодовитое потомство.

Каждому растению Линней дал видовое и родовое название на латинском языке.

Такой способ обозначения растений двумя словами называется бинарной (двойной) номенклатурой. Попытка применить бинарную номенклатуру была сделана еще за 100 лет до Линнея (К. Баугин), но Линней первым применил её широко и прочно закрепил в науке.

Из двух слов одно – существительное – обозначает род, а второе (чаще всего прилагательное) – название вида.

Например, Лютик едкий и Лютик золотистый, Клевер красный и Клевер ползучий, Пшеница твердая и Пшеница мягкая. Здесь Лютик, Клевер, Пшеница – названия родов, а золотистый, едкий, красный, ползучий, твердая, мягкая – названия видов.

Раньше шиповник назывался «обыкновенной лесной розой с «новым душистым цветком» – по Линнею он стал Розой лесной. Линней подсчитал, что из шести прилагательных и трех существительных, то есть из девяти слов, можно составить названия для 100 видов.

И если раньше, по словам современников, пользоваться видовыми названиями представляло «величайшее затруднение для па­мяти, языка и пера», то новая система была практичной, удобной и удивительным образом облегчила занятия наукой. Благодаря системе Линнея за несколько десятилетий число известных видов растений увеличилось от 7 000 до 100 000.

Сам Линней знал и описал около 10000 видов растений и свы­ше 4200 видов животных.

Линней провел реформу языка ботаники. Он впервые пред­ложил такие названия частей цветка, как венчик, пыльник, нектар­ник, завязь, рыльце, тычиночная нить, цветоложе, цветоножка, околоцветник. Линней ввел в ботанику около 100 новых терминов.

Но система Линнея, непревзойденная по своей простоте и изяществу, была все-таки искусственной: она помогала распознавать растения, но не раскрывала их родственных связей.

Линней и сам понимал искусственность своей системы, но считал, что такая система, которая учит распознавать растения, необходима, пока нет естественной.

Правда, Линней понимал под естественной системой такую, которая отражала бы порядок природы, установленный «Твор­цом», а не исторический процесс развития организмов, как это по­нимается сейчас.

«Карл Линней и его заслуги перед наукой»(продолжение). Линней представлял себе живой мир в виде непрерывной цепи, в которой растительные звенья незаметно переходят в животные.

Всех животных Линней разделил на шесть классов (млекопитающие, птицы, амфибии, рыбы, насекомые и черви) и каждому классу дал соответствующую характеристику.

Каждому животному он также дал родовое и видовое название: Синица большая, Синица болотная (гаечка), Синица черная (ковка); Воробей домовой, Воробей полевой и так далее.

Линней первый выделил классы млекопитающих и птиц причислил к млекопитающим кита (которого раньше принимали за рыбу) и отделил червей от насекомых.

Человека Линней поместил рядом с обезьянами. Он сделал это за 120 лет до Ч. Дарвина, обосновавшего происхождение человека. Но при этом Линней заметил, что близость в системе не говорит о кровном родстве.

Вопроса о происхождении видов для Линнея не существовало. Он полагал, что все виды созданы «всемогущим Творцом».

Карл Линней умер 22 января 1778 г. Весь Упсальский университет присутствовал на похоронах. На могиле поставили памятник с медальоном и надписью «Карлу Линнею – князю ботаников. Друзья и ученики. 1778 г».

– Какая наука занимается классификацией и описанием родственных организмов? (Систематика)

5. Слово учителя

Наибольшее развитие систематика получила в биологии, где её задачей является описание и обозначение всех существующих и вымерших организмов, установление родственных отношений и связей между отдельными видами и группами видов. Стремясь к созданию полной системы, или классификации, органического мира, систематика опирается на данные и теоретические положения всех биологических дисциплин; по своему духу и характеру систематика неразрывно связана с теорией эволюции. Особая функция систематики состоит в создании практической возможности ориентироваться во множестве существующих видов животных (около 1,5 млн.), растений (около 350-500 тыс.) и микроорганизмов. Это относится и к вымершим видам. Систематика животных и систематика растений имеют одни задачи и много общего в методах исследования.

Чарльз Дарвин предложил понимать естественную систему как результат исторического развития живой природы. Он писал в книге «Происхождение видов»: …общность происхождения и есть та связь между организмами, которая раскрывается перед нами при помощи наших классификаций».

Дарвин предположил, что наблюдаемая таксономическая структура связана с их происхождением друг от друга. Так возникла эволюционная систематика, ставящая во главу угла выяснение происхождения организмов, для чего используются как морфологические, так и эмбриологические и палеонтологические методы.

Новый шаг в этом направлении был сделан последователем Дарвина, немецким биологом Эрнстом Геккелем. Из генеалогии Геккель заимствовал понятие «генеалогическое (родословное) древо». Родословное древо Геккеля включало все известные к тому времени крупные группы живых организмов, а также некоторые неизвестные (гипотетические) группы, которые играли роль «неизвестного предка» и помешались в развилках ветвей или в основании этого древа. Такое чрезвычайно наглядное изображение очень помогло эволюционистам, и с тех пор – с конца XIX века – филогенетическая систематика Дарвина-Геккеля господствует в биологической науке. Одним из первых следствий победы филогенетики стало изменение последовательности в преподавании курсов ботаники и зоологии в школах и университетах: если раньше изложение начинали с млекопитающих (как в «Жизни животных» А. Брема), а затем спускались «вниз» по «лестнице природы», то теперь изложение начинают с бактерий или одноклеточных животных.

Биологическая систематика – дисциплина, в задачи которой входит разработка принципов классификации живых организмов и практическое приложение этих принципов к построению системы. Под классификацией здесь понимается описание и размещение в системе всех существующих и вымерших организмов.

Предмет изучения систематики – описание, обозначение, классификация и построение системы живой природы, которая бы не только отражала сходство в строении организмов и их родство, но и учитывала историю возникновения и эволюцию разных групп организмов. (Приложение 1 Слайды 10-15).

В настоящее время используется совокупность признаков организмов:

Особенности строения организмов и их клеток;

История развития группы на основе ископаемых остатков;

Особенности размножения и эмбрионального развития;

Нуклеотидный состав ДНК и РНК;

Состав белков;

Тип питания;

Тип запасных питательных веществ;

Распространение организмов и т.д.

Принципы систематики

Одну из первых систем живой природы создал шведский натуралист К. Линней и описал ее в «Системе природы» (1758). Его труды положены в основу современной научной систематики.

В основу своей системы К. Линней положил два принципа: бинарной номенклатуры и иерархичности.

В соответствии с бинарной номенклатурой каждый вид называется по-латыни двумя словами: существительным и прилагательным.

По современным правилам, упоминая вид организмов в тексте (научной статье, книге) впервые, приводят по-латыни и фамилию автора, его описавшего. Например, лютик ядовитый пишется RanunculussceleratusLinnaeus (Лютик ядовитый Линнея). Некоторые самые знаменитые систематики настолько общеизвестны, что их фамилии пишутся сокращенно. Например, Trifoliumrepens L . (Клевер ползучий Линнея).

Если виду дано название, изменять его нельзя.

Принцип иерархичности или соподчиненности, означает, что виды животных, объединяются в роды, роды – в семейства, семейства – в отряды, отряды – в классы, классы – в типы, типы – в царства.

При классификации бактерий, грибов и растений вместо ранга отряд используется порядок, а вместо тип – отдел. Часто, чтобы подчеркнуть разнообразие в какой-либо группе, используют подчиненные категории, например, подвид, подрод, подотряд, подкласс или надсемейство, надкласс.

В микробиологии употребляются такие термины, как " штамм " и " клон ".

Любое растение или животное должно последовательно принадлежать ко всем семи категориям.

Сравнительно новым является понятие надцарства. Оно было предложено в 1990 Карлом Вёзе и ввело разделение всей биомассы Земли: 1) эукариоты (все организмы, клетки которых содержат ядро); 2) бактерии и археи.

Обладающих единственным в своём роде набором морфологических (структурных) и функциональных признаков, т.е. внешним видом, особенностями расположения органов и их работы и т.п;

Способных, скрещиваясь между собой, давать плодовитое потомство;

Сходных по генотипу (количеству, размеру и форме хромосом);

Занимающих одну и ту же экологическую нишу.

Изучение биологического разнообразия, описание новых, еще не известных науке видов пока далеки от завершения. Находки новых видов возможны даже среди таких крупных животных, как млекопитающие. В середине 50-х годов XX в. ленинградский зоолог А.В. Иванов открыл новый тип животных – погонофоры. По масштабам это открытие может быть сравнимо с открытием новой планеты Солнечной системы.

6. Фронтальная беседа по проверке изученного материала.

IV. Закрепление

Тестирование (устное).

1. К каким растениям относятся водоросли?

К низшим;

К высшим;

2. К какому отделу относятся растения, занимающие в настоящее время господствующее положение на Земле?

К водорослям;

К покрытосеменным.

3. К какой группе живых организмов относятся бактерии?

К эукариотам;

К прокариотам;

К внеклеточным организмам;

Все ответы верны.

4. Почему растения, грибы, животных относят к эукариотам?

Они не делятся митозом;

Они не имеют оформленного ядра;

Они имеют оформленное ядро;

Они имеют ядерную ДНК, замкнутую в кольцо.

5. На какиеподцарства делят царство животных?

На беспозвоночных и позвоночных;

На земноводных, рыб, пресмыкающихся, птиц;

На одноклеточных и многоклеточных;

На червей, членистоногих, моллюсков, хордовых.

Домашнее задание: повторить конспект.