Древесная биомасса. Зольный состав древесины различных пород деревьев в пойменном биотопе Альтернативные топочные материалы

Дрова - самый древний и традиционный источник тепловой энергии, который относится к возобновляемому виду топлива. По определению, дрова - это соразмерные очагу куски древесины, используемые для разведения и поддержания в нём огня. По своему качеству, дрова - это самое нестабильное топливо в мире.

Тем не менее, весовой процентный состав любой дровяной массы примерно одинаков. В него входят - до 60% целлюлозы, до 30% лигнина, 7...8% сопутствующих углеводородов. Остальное (1...3%) -

Государственный стандарт на дрова

На территории России действует
ГОСТ 3243-88 Дрова. Технические условия
Скачать (cкачиваний: 1689)

Стандарт времён Советского Союза определяет:

  1. Сортамент дров по размеру
  2. Допустимое количество гнилой древесины
  3. Сортамент дров по теплотворности
  4. Методику учёта количества дров
  5. Требования к транспортированию и хранению
    дровяного топлива

Из всей ГОСТ-овской информации, самая ценная - это методы обмеров дровяных штабелей и коэффициенты для перевода величин из складочной меры в плотную (из складометра - в кубометр). Кроме этого, вызывает ещё некоторый интерес пунктик по ограничению ядровой и заболонной гнили (не более 65% площади торца), а также запрет на наружную трухлявость. Вот только трудно представить себе такие гнилые дрова в наш космический век погони за качеством.

Что касается теплотворности,
то ГОСТ 3243-88 разделяет все дрова на три группы:

Учёт дров

Для учёта любой материальной ценности, самое главное - способы и методы подсчёта её количества. Количество дров можно учитывать, или в тоннах и килограммах, или в складочных и кубических метрах и дециметрах. Соответственно - в массовых или в объёмных единицах измерения

  1. Учёт дров в массовых единицах измерения
    (в тоннах и килограммах)
    Этот способ учёта дровяного топлива используется крайне редко из-за своей громоздкости и неповоротливости. Он позаимствован у строителей-деревообработчиков и является альтернативным методом для тех случаев, когда дрова проще взвесить, нежели определить их объём. Так, например, иногда при оптовых поставках дровяного топлива бывает проще взвешивать отгруженные «с верхом» вагоны и автомобили-лесовозы, нежели определять объём возвышающихся на них бесформенных дровяных «шапок»

    Преимущества

    - простота обработки информации для дальнейшего подсчёта суммарной теплотворности топлива при теплотехнических расчётах. Потому что, теплотворность весовой меры дров высчитывается по и практически неизменна для любой породы дерева, независимо от географического места её и степени . Таким образом, при учёте дров в массовых единицах происходит учёт чистого веса горючего материала за минусом веса влаги, количество которой определяется прибором-влагомером

    Недостатки
    учёта дров в массовых единицах измерения
    - способ абсолютно неприемлем для обмера и учёта партий дров в полевых условиях лесозаготовки, когда требуемого спецоборудования (весов и прибора-влагомера) может не оказаться под рукой
    - результат замера влажности вскорости становится неактуальным, дрова быстро сыреют или подсыхают на воздухе

  2. Учёт дров в объёмных единицах измерения
    (в складочных и кубических метрах и дециметрах)
    Этот способ учёта дровяного топлива получил самое широкое распространение, как наиболее простой и быстрый способ учёта дровяной топливной массы. Поэтому, учёт дров повсеместно производится в объёмных единицах измерения - складометрах и кубометрах (складочная и плотная меры)

    Преимущества
    учёта дров в объёмных единицах измерения
    - предельная простота в исполнении обмеров дровяных штабелей линейным метром
    - результат обмера легко контролируется, остаётся неизменным долгое время и не вызывает сомнениям
    - методика обмеров дровяных партий и коэффициенты для перевода величин из складочной меры в плотную стандартизированы и изложены в

    Недостатки
    учёта дров в массовых единицах измерения
    - платой за простоту учёта дров в объёмных единицах становится усложнение дальнейших теплотехнических расчётов для подсчёта суммарной теплотворности дровяного топлива (нужно учитывать породу дерева, место его произрастания, степень трухлявости дров и т.д.)

Теплотворность дров

Теплотворность дров,
она же - теплота сгорания дров,
она же - теплотворная способность дров

Чем теплотворность дров отличается от теплотворности древесины?

Теплотворность древесины и теплотворность дров - родственные и близкие по значению величины, отождествляемые в повседневной жизни с понятиями «теория» и «практика». В теории мы изучаем теплотворность древесины, а на практике - имеем дело с теплотворностью дров. При этом, реальные дровяные чурбаки могут иметь куда более широкий спектр отклонений от нормы, нежели лабораторные образцы.

Например, у реальных дров есть кора, которая не является древесиной в прямом смысле этого слова и, тем не менее - занимает объём, участвует в процессе горения дров и имеет собственную теплотворность. Зачастую, теплотворность коры значительно отличается от теплотворности самой древесины. Кроме этого, реальные дрова могут быть , иметь разную плотность древесины в зависимости от , иметь большой процент и др.

Таким образом, для реальных дров - показатели теплотворности носят обобщённый и слегка заниженный характер, поскольку для реальных дров - нужно учитывать в комплексе все отрицательные факторы, снижающие их теплотворность. Этим и объясняется разница в меньшую сторону по величине между теоретически-расчётными значениями теплотворности древесины и практически-прикладными значениями теплотворности дров.

Иными словами, теория и практика - это разные вещи.

Теплотворность дров - это объём полезного тепла, образующийся при их сгорании. Под полезным теплом подразумевается теплота, которую можно отобрать от очага без ущерба для процесса горения. Теплотворность дров - важнейший показатель качества дровяного топлива. Теплотворность дров может колебаться в широких пределах и зависит, в первую очередь, от двух факторов - самой древесины и её .

  • Теплотворность древесины зависит от количества горючего древесинного вещества, присутствующего в единице массы или объёма древесины. (более подробно про теплотворность древесины в статье - )
  • Влажность древесины зависит от количества воды и иной влаги, присутствующих в единице массы или объёма древесины. (более подробно про влажность древесины в статье - )

Таблица объёмной теплотворности дров

Градация теплотворности по
(при влажности древесины 20%)

Порода дерева удельная теплотворная способность дров
(ккал/дм 3)
Берёза 1389...2240

Первая группа
по ГОСТ 3243-88:

берёза, бук, ясень, граб, ильм, вяз, клён, дуб, лиственница

бук 1258...2133
ясень 1403...2194
граб 1654...2148
ильм не найдено
(аналог - вяз)
вяз 1282...2341
клён 1503...2277
дуб 1538...2429
лиственница 1084...2207
сосна 1282...2130

Вторая группа
по ГОСТ 3243-88:

сосна, ольха

ольха 1122...1744
ель 1068...1974

Третья группа
по ГОСТ 3243-88:

ель, кедр, пихта, осина, липа, тополь, ива

кедр 1312...2237
пихта

не найдено
(аналог - ель)

осина 1002...1729
липа 1046...1775
тополь 839...1370
ива 1128...1840

Теплотворность гнилых дров

Абсолютно верно утверждение, что гниль ухудшает качество дров и уменьшает их теплотворность. Но вот, на сколько сильно уменьшается теплотворность гнилых дров - это вопрос. Советские ГОСТ 2140-81 и определяют методику измерения размеров гнили, ограничивают количество гнили в полене и количество гнилых поленьев в партии (не более 65% площади торца и не более 20% от общей массы, соответственно). Но, при этом - стандарты никак не указывают на изменение теплотворности самих дров.

Очевидно, что в пределах требований ГОСТ-ов не наступает сколь существенного изменения общей теплотворности дровяной массы из-за гнили, поэтому - отдельными гнилыми чурбаками можно смело пренебречь.

Если же гнили больше, чем допустимо по стандарту, то учёт теплотворности таких дров целесообразно производить в единицах измерения. Потому что, при гниении древесины происходят процессы, которые разрушают вещество и нарушают его клеточную структуру. При этом, соответственно - уменьшается древесины, что в первую очередь сказывается на её весе и практически не сказывается на её объёме. Таким образом, массовые единицы теплотворности будут более объективны для учёта теплотворности очень гнилых дров.

По определению, массовая (весовая) теплотворность дров - практически не зависит от их объёма, породы дерева и степени трухлявости. И, только влажность древесины - оказывает большое влияние на массовую (весовую) теплотворную способность дров

Теплотворность весовой меры трухлых и гнилых дров практически равна теплотворности весовой меры обычных дров и зависит только от влажности самой древесины. Потому что, только вес воды вытесняет вес горючего древесинного вещества из весовой меры дров, плюс потери тепла на испарение воды и разогрев водяного пара. Что собственно нам и надо.

Теплотворность дров из разных регионов

Объёмная теплотворность дров для одной и той же породы дерева, произрастающего в разных регионах может отличаться за счёт изменения плотности древесины в зависимости от водонасыщённости почвы в районе произрастания. Причём, совсем не обязательно это должны быть разные регионы или области страны. Даже в пределах небольшого участка (10...100 км) лесозаготовки, теплотворность дров для одной и той же породы дерева может изменяться с разницей в 2...5% за счёт изменения древесины. Это объясняется тем, что в засушливой местности (в условиях недостатка влаги) нарастает и образуется более мелкая и плотная клеточная структура древесины, нежели в богатой на воду болотистой земле. Таким образом, суммарное количество горючего вещества в единице объёма будет выше для дров, заготовленных на более сухих участках даже для одного и того же района лесозаготовки. Конечно, разница не так уж и велика, примерно 2...5%. Тем не менее, при крупных заготовках дров это может дать реальный экономический эффект.

Массовая теплотворность для дров из одной и той же породы дерева, произрастающего в разных регионах абсолютно не будет разниться, поскольку теплотворность не зависит от плотности древесины, а зависит только от её влажности

Зола | Зольность дров

Зола - это минеральные вещества, которые содержатся в дровах и которые остаются в твёрдом остатке после полного сгорания дровяной массы. Зольность дров - это степень их минерализации. Зольность дров измеряется в процентах от общей массы дровяного топлива и показывает на количественное содержание в нём минеральных веществ.

Различают внутреннюю и внешнюю золу

Внутренняя зола Внешняя зола
Внутренняя зола - это минеральные вещества, которые содержатся непосредственно в Внешняя зола - это минеральные вещества, которые попали в дрова извне (например, при заготовке, транспортировке или хранении)
Внутренняя зола - тугоплавкая масса (выше 1450 °С), которая легко удаляется из высокотемпературной зоны горения топлива Внешняя зола - легкоплавкая масса (менее 1350°С), которая спекается в шлак, прикипающий к футеровке камеры сгорания отопительного агрегата. Как следствие такого спекания и прикипания - внешняя зола плохо удаляется из высокотемпературной зоны горения топлива
Содержание внутренней золы древесинного вещества находится в пределах от 0,2 до 2,16% от общей дровяной массы Содержание внешней золы может достигать 20% от общей дровяной массы
Зола - это нежелательная часть топлива, которая снижает его горючую составляющую и затрудняет эксплуатацию отопительных агрегатов

Влажность

Влажность древесной биомассы — это количественная характеристика, показывающая содержание в биомассе влаги. Различают абсолютную и относительную влажность биомассы.

Абсолютной влажностью называют отношение массы влаги к массе сухой древесины:

Где W a — абсолютная влажность, %; м — масса образца во влажном состоянии, г; м 0 — масса того же образца, высушенного до постоянного значения, г.

Относительной или рабочей влажностью называют отношение массы влаги к массе влажной древесины:


Где W p — относительная, или рабочая, влажность, %

При расчетах процессов сушки древесины используется абсолютная влажность. В теплотехнических расчетах применяется только относительная, или рабочая, влажность. С учетом этой установившейся традиции в дальнейшем мы будем пользоваться только относительной влажностью.

Различают две формы влаги, содержащейся в древесной биомассе: связанную (гигроскопическую) и свободную. Связанная влага находится внутри стенок клеток и удерживается физико-химическими связями; удаление этой влаги сопряжено с дополнительными затратами энергии и существенно отражается на большинстве свойств древесинного вещества.

Свободная влага находится в полостях клеток и в межклеточных пространствах. Свободная влага удерживается только механическими связями, удаляется значительно легче и оказывает меньшее влияние на механические свойства древесины.

При выдерживании древесины на воздухе происходит обмен влагой между воздухом и древесинным веществом. Если влажность древесинного вещества очень высока, то при этом обмене происходит высыхание древесины. Если влажность его низка, то древесинное вещество увлажняется. При длительном пребывании древесины на воздухе, стабильных температуре и относительной влажности воздуха влажность древесины становится также стабильной; это достигается тогда, когда упругость паров воды окружающего воздуха сравняется с упругостью паров воды у поверхности древесины. Величина устойчивой влажности древесины, выдержанной длительное время при определенной температуре и влажности воздуха, одинакова для всех древесных пород. Устойчивую влажность называют равновесной, и она полностью определяется параметрами воздуха, в среде которого она находится, т. е. его температурой и относительной влажностью.

Влажность стволовой древесины. В зависимости от величины влажности стволовую древесину подразделяют на мокрую, свежесрубленную, воздушно-сухую, комнатно-сухую и абсолютно сухую.

Мокрой называют древесину, длительное время находившуюся в воде, например при сплаве или сортировке в водном бассейне. Влажность мокрой древесины W p превышает 50%.

Свежесрубленной называют древесину, сохранившую влагу растущего дерева. Она зависит от породы древесины и изменяется в пределах W p =33...50 %.

Средняя влажность свежесрубленной древесины составляет, %, у ели 48, у лиственницы 45, у пихты 50, у сосны кедровой 48, у сосны обыкновенной 47, у ивы 46, у липы 38, у осины 45, у ольхи 46, у тополя 48, у березы бородавчатой 44, у бука 39, у вяза 44, у граба 38, у дуба 41, у клена 33.

Воздушно-сухая — это древесина, выдержанная длительное время на открытом воздухе. Во время пребывания на открытом воздухе древесина постоянно подсыхает и ее влажность постепенно снижается до устойчивой величины. Влажность воздушно-сухой древесины W p =13...17 %.

Комнатно-сухая древесина — это древесина, длительное время находящаяся в отапливаемом и вентилируемом помещении. Влажность комнатно-сухой древесины W p =7...11 %.

Абсолютно сухая — древесина, высушенная при температуре t=103±2 °С до постоянной массы.

В растущем дереве влажность стволовой древесины распределена неравномерно. Она изменяется как по радиусу, так и по высоте ствола.

Максимальная влажность стволовой древесины ограничена суммарным объемом полостей клеток и межклеточных пространств. При гниении древесины ее клетки разрушаются, в результате чего образуются дополнительные внутренние полости, структура гнилой древесины по мере развития процесса гниения становится рыхлой, пористой, прочность древесины при этом резко снижается.

По указанным причинам влажность древесной гнили не ограничена и может достигнуть столь высоких значений, при которых ее сжигание станет неэффективным. Увеличенная пористость гнилой древесины делает ее очень гигроскопичной, находясь на открытом воздухе, она быстро увлажняется.

Зольность

Зольностью называют содержание в топливе минеральных веществ, остающихся после полного сгорания всей горючей массы. Зола является нежелательной частью топлива, так как снижает содержание горючих элементов и затрудняет эксплуатацию топочных устройств.

Зола подразделяется на внутреннюю, содержащуюся в древесном веществе, и внешнюю, попавшую в топливо при заготовке, хранении и транспортировании биомассы. В зависимости от вида зола имеет различную плавкость при нагревании до высокой температуры. Легкоплавкой называется зола, имеющая температуру начала жидкоплавкого состояния ниже 1350°С. Среднеплавкая зола имеет температуру начала жидкоплавкого состояния в пределах 1350-1450 °С. У тугоплавкой золы эта температура выше 1450 °С.

Внутренняя зола древесной биомассы является тугоплавкой, а внешняя — легкоплавкой.

Зольность коры различных пород варьирует от 0,5 до 8% и выше при сильном загрязнении при заготовке или складировании.

Плотность древесины

Плотность древесинного вещества — это отношение массы материала, образующего стенки клеток, к занимаемому им объему. Плотность древесинного вещества одинакова для всех пород древесины и равна 1,53 г/см 3 . По рекомендации комиссии СЭВ, все показатели физико-механических свойств древесины определяются при абсолютной влажности 12 % и пересчитываются на эту влажность.

Плотность различных пород древесины

Порода Плотность кг/м 3
При стандартной влажности Абсолютно сухая
Лиственница 660 630
Сосна 500 470
Кедр 435 410
Пихта 375 350
Граб 800 760
Акация белая 800 760
Груша 710 670
Дуб 690 650
Клен 690 650
Ясень обыкновенный 680 645
Бук 670 640
Вяз 650 615
Береза 630 600
Ольха 520 490
Осина 495 470
Липа 495 470
Ива 455 430

Насыпная плотность отходов в виде различных измельченных отходов древесины колеблется в широких пределах. Для сухой стружки от 100 кг/м 3 , до 350 кг/м 3 и более у влажной щепы.

Теплотехнические характеристики древесины

Древесную биомассу в том виде, в котором она поступает в топки котлоагрегатов, называют рабочим топливом. Состав древесной биомассы, т. е. содержание в ней отдельных элементов, характеризуется следующим уравнением:
С р +Н р +О р +N р +A р +W р =100%,
где С р, Н р, О р, N p - содержание в древесной массе соответственно углерода, водорода, кислорода и азота, %; A р, W p - содержание в топливе соответственно золы и влаги.

Для характеристики топлива в теплотехнических расчетах пользуются понятиями сухая масса и горючая масса топлива.

Сухая масса топлива представляет собой в данном случае биомассу, высушенную до абсолютно сухого состояния. Ее состав выражается уравнением
С с +Н с +О с +N с +A с =100%.

Горючая масса топлива — это биомасса, из которой удалены влага и зола. Ее состав определяется уравнением
С г +Н г +О г +N r =100%.

Индексы у знаков компонентов биомассы означают: р — содержание компонента в рабочей массе, с — содержание компонента в сухой массе, г — содержание компонента в горючей массе топлива.

Одной из примечательных особенностей стволовой древесины является удивительная стабильность ее элементарного состава горючей массы. Поэтому удельная теплота сгорания различных пород древесины практически не отличается.

Элементарный состав горючей массы стволовой древесины практически одинаков для всех пород. Как правило, варьирование содержания отдельных компонентов горючей массы стволовой древесины находится в пределах погрешности технических измерений., На основании этого при теплотехнических расчетах, наладке топочных устройств, сжигающих стволовую древесину и т. п., можно без большой погрешности принимать следующий состав стволовой древесины на горючую массу: С г =51%, Н г =6,1%, О г =42,3%, N г =0,6%.

Теплотой сгорания биомассы называется количество тепла, выделяемое при сгорании 1 кг вещества. Различают высшую и низшую теплоту сгорания.

Высшая теплота сгорания — это количество тепла выделившееся при сгорании 1 кг биомассы при полной конденсации всех паров воды, образовавшихся при горении, с отдачей ими тепла, израсходованного на их испарение (так называемой скрытой теплоты парообразования). Высшая теплота сгорания Q в определяется по формуле Д. И. Менделеева (кДж/кг):
Q в =340С р +1260Н р -109О р.

Низшая теплота сгорания (НТС) — количество тепла, выделившееся при сгорании 1 кг биомассы, без учета тепла, израсходованного на испарение влаги, образовавшейся при сгорании этого топлива. Ее значение определяется по формуле (кДж/кг):
Q р =340C р +1030H р -109О р -25W р.

Теплота сгорания стволовой древесины зависит только от двух величин: зольности и влажности. Низшая теплота сгорания горючей массы (сухой беззольной!) стволовой древесины практически постоянна и равна 18,9 МДж/кг (4510 ккал/кг).

Виды древесных отходов

В зависимости от производства, при котором образуются древесные отходы, их можно подразделить на два вида: отходы лесозаготовок и отходы деревообработки.

Отходы лесозаготовок — это отделяемые части дерева в процессе лесозаготовительного производства. К ним относятся хвоя, листья, неодревесневшие побеги, ветви, сучья, вершинки, откомлевки, козырьки, фаутные вырезки ствола, кора, отходы производства колотых балансов и т. п.

В своем естественном виде отходы лесозаготовок малотранспортабельны, при энергетическом использовании они предварительно измельчаются в щепу.

Отходы деревообработки — это отходы, образующиеся в деревообрабатывающем производстве. К ним относятся: горбыль, рейки, срезки, короткомер, стружка, опилки, отходы производства технологической щепы, древесная пыль, кора.

По характеру биомассы древесные отходы могут быть подразделены на следующие виды: отходы из элементов кроны; отходы из стволовой древесины; отходы из коры; древесная гниль.

В зависимости от формы и размера частиц древесные отходы обычно подразделяются на следующие группы: кусковые древесные отходы и мягкие древесные отходы.

Кусковые древесные отходы - это откомлевки, козырьки, фаутные вырезки, горбыль, рейка, срезки, короткомеры. К мягким древесным отходам относятся опилки и стружки.

Важнейшей характеристикой измельченной древесины является ее фракционный состав. Фракционный состав есть количественное соотношение частиц определенных размеров в общей массе измельченной древесины. Фракцией измельченной древесины называют процентное содержание частиц определенного размера в общей массе.

Измельченную древесину по размерам частиц можно подразделить на следующие виды:

  • древесную пыль , образующуюся при шлифовании древесины, фанеры и древесных плит; основная часть частиц проходит через сито с отверстием 0,5 мм;
  • опилки , образующиеся при продольной и поперечной распиловке древесины, они проходят через сито с отверстиями 5...6 мм;
  • щепу , получаемую при измельчении древесины и древесных отходов в рубительных машинах; основная часть щепы проходит через сито с отверстиями 30 мм и остается на сите с отверстиями 5...6 мм;
  • — крупную щепу, размеры частиц которой больше 30 мм.

Отдельно отметим особенности древесной пыли. Древесная пыль, образующаяся при шлифовании древесины, фанеры, древесностружечных и древесноволокнистых плит не подлежит хранению, как в буферных складах котельных, так и в складах межсезонного хранения мелкого древесного топлива ввиду ее высокой парусности и взрывоопасности. При сжигании древесной пыли в топочных устройствах должно быть обеспечено выполнение всех правил по сжиганию пылевидного топлива, предупреждающих возникновение вспышек и взрывов внутри топочных устройств и в газовых трактах паровых и водогрейных котлов.

Древесно-шлифовальная пыль представляет собой смесь древесных частиц размером в среднем 250 мкм с абразивным порошком, отделившимся от шлифовальной шкурки в процессе шлифования древесного материала. Содержание абразивного материала в древесной пыли может доходить до 1 % по массе.

Особенности сжигания древесной биомассы

Важной особенностью древесной биомассы как топлива является отсутствие в ней серы и фосфора. Как известно, основной потерей тепла в любом котлоагрегате является потеря тепловой энергии с уходящими газами. Величина этой потери определяется температурой отходящих газов. Эта температура при с жигании топлив, содержащих серу, во избежание серно-кислотной коррозии хвостовых поверхностей нагрева поддерживается не ниже 200...250 °С. При сжигании же древесных отходов, не содержащих серу, эта температура может быть понижена до 100...120 °С, что позволит существенно повысить КПД котлоагрегатов.

Влажность древесного топлива может изменяться в очень широких пределах. В мебельном и деревообрабатывающем производствах влажность некоторых видов отходов составляет 10...12%, в лесозаготовительных предприятиях влажность основной части отходов составляет 45...55%, влажность коры при окорке отходов после сплава или сортировки в водных бассейнах достигает 80%. Повышение влажности древесного топлива снижает производительность и КПД котлоагрегатов. Выход летучих при сжигании древесного топлива очень высок — достигает 85%. Это является также одной из особенностей древесной биомассы как топлива и требует иметь большую протяженность факела, в котором осуществляется сгорание выходящих из слоя горючих компонентов.

Продукт коксования древесной биомассы — древесный уголь отличается высокой реакционной способностью по сравнению с ископаемыми углями. Высокая реакционная способность древесного угля обеспечивает возможность работы топочных устройств при низких значениях коэффициента избытка воздуха, что положительно влияет на эффективность работы котельных установок при сжигании в них древесной биомассы.

Однако наряду с этими положительными свойствами древесина имеет особенности, отрицательно влияющие на работу котлоагрегатов. К таким особенностям, в частности, относится способность поглощения влаги, т. е. увеличение влажности в водной среде. С ростом влажности быстро падает низшая теплота сгорания, растет расход топлива, затрудняется горение что требует принятия специальных конструктивных решений в котельно-топочном оборудовании. При влажности 10% и зольности 0,7% НТС составит 16.85 МДж/кг, а при влажности 50% всего 8,2 МДж/кг. Таким образом расход топлива котлом при одинаковой мощности изменится более чем в 2 раза при переходе с сухого топлива на влажное.

Характерной особенностью древесины как топлива является незначительное содержание внутренней золы (не превышает 1%). В то же время внешние минеральные включения у отходов лесозаготовок иногда достигают 20%. Зола, образующаяся при сгорании чистой древесины тугоплавка, и удаление ее из зоны горения топки не представляет особой технической сложности. Минеральные включения в древесной биомассе легкоплавки. При сгорании древесины со значительным их содержанием образуется спекшийся шлак, удаление которого из высокотемпературной зоны топочного устройства затруднено и требует для обеспечения эффективной работы топки особых технических решений. Спекшийся шлак, образующийся при сжигании высокозольной древесной биомассы, имеет химическое сродство с кирпичом, и при высоких температурах в топочном устройстве спекается с поверхностью кирпичной кладки стенок топки, что затрудняет шлакоудаление.

Жаропроизводительностью обычно называется максимальная температура горения, развиваемая при полном сгорании топлива без избытка воздуха, т. е. в условиях, когда все выделяющееся при сгорании тепло полностью расходуется на нагрев образующихся продуктов сгорания.

Термин жаропроизводительность предложен в свое время Д. И. Менделеевым, как характеристика топлива, отражающая его качество с точки зрения возможности использования для осуществления высокотемпературных процессов. Чем выше жаропроизводительность топлива, тем выше качество тепловой энергии, выделяющейся при его сжигании, тем выше эффективность работы паровых и водогрейных котлов. Жаропроизводительность представляет собой предел, к которому приближается реальная температура в топке по мере совершенствования процесса сгорания.

Жаропроизводительность древесного топлива зависит от его влажности и зольности. Жаропроизводительность абсолютно сухой древесины (2022 °С) всего на 5% ниже жаропроизводительности жидкого топлива. При влажности древесины 70% жаропроизводительность понижается более чем в 2 раза (939 °С). Поэтому влажность 55-60% практический предел использования древесины в топливных целях.

Влияние зольности древесины на ее жаропроизводительность значительно слабее влияния на этот фактор влажности.

Влияние влажности древесной биомассы на эффективность работы котельных установок чрезвычайно существенно. При сжигании абсолютно сухой древесной биомассы с малой зольностью эффективность работы котлоагрегатов, как по их производительности, так и по КПД приближается к эффективности работы котлоагрегатов на жидком топливе и превосходит в некоторых случаях эффективность работы котлоагрегатов, использующих некоторые виды каменных углей.

Повышение влажности древесной биомассы неизбежно вызывает снижение эффективности работы котельных установок. Это следует знать и постоянно разрабатывать и проводить мероприятия по недопущению попадания в древесное топливо атмосферных осадков, почвенных вод и т. п.

Зольность древесной биомассы затрудняет ее сжигание. Наличие в древесной биомассе минеральных включений обусловлено применением недостаточно совершенных технологических процессов заготовки древесины и ее первичной обработки. Необходимо отдавать предпочтение таким технологическим процессам, при которых загрязнение древесных отходов минеральными включениями может быть сведено к минимуму.

Фракционный состав измельченной древесины должен быть оптимальным для данного вида топочного устройства. Отклонения в размере частиц от оптимального, как в сторону увеличения, так и в сторону уменьшения снижают эффективность работы топочных устройств. Рубительные машины, применяемые для измельчения древесины в топливную щепу, не должны давать больших отклонений в размере частиц в сторону их увеличения. Вместе с тем наличие большого количества слишком малых частиц также нежелательно.

Для обеспечения эффективного сжигания древесных отходов необходимо, чтобы конструкция котлоагрегатов отвечала особенностям этого вида топлива.

"BM Engineering" выполняет полный комплекс услуг по проектированию, строительству, вводу в эксплуатацию и последующему обслуживанию: заводов по переработке биомассы (производство гранул и брикетов), комбикормовых заводов Мы предлагаем первоначально выполнить Комплексный анализ и технические консультации целесообразности строительства предполагаемого объекта и его рентабельности, а именно:

  • анализ сырьевой базы и оборотных средств для производства
  • расчет основного оборудования
  • расчет дополнительного оборудования и механизмов
  • стоимость монтажа, пусконаладочных работ, обучения персонала
  • расчет стоимости подготовки производственной площадки
  • расчет себестоимости производства или комплекса утилизации отходов
  • расчет рентабельности производства или комплекса утилизации отходов
  • расчет окупаемости инвестиций
  • Стоимость расчетов определяется после получения официального запроса и формирования перечня и полноты наших услуг.

    СПЕЦИАЛИЗАЦИЯ КОМПАНИИ BM Engineering:

    • ПРОИЗВОДСТВО ОБОРУДОВАНИЯ : пеллетные/брикетные линии, сушильные комплексы, дезинтеграторы, прессы для биомассы
    • МОНТАЖ ПРОИЗВОДСТВЕННЫХ КОМПЛЕКСОВ : проектирование, поиск площадок, строительство, ввод в эксплуатацию
    • ПУСКО-НАЛАДКА ОБОРУДОВАНИЯ : запуск и настройка оборудования
    • ОБУЧЕНИЕ ПЕРСОНАЛА : постановка работы технического отдела, создание отделов сбыта, логистики, маркетинга с "0"
    • СЕРВИСНОЕ ОБСЛУЖИВАНИЕ : полное сервисное и гарантийное обслуживание
    • АВТОМАТИЗАЦИЯ ПРОИЗВОДСТВА : внедрение систем контроля и учета на производстве
    • СЕРТИФИКАЦИЯ : подготовка к сертификации по EN+, ISO

Инжиниринговая компания в сфере переработки биомассы BM Engineering впервые на рынке Украины обеспечивает выполнение полного комплекса услуг по созданию под ключ современных заводов по переработке биомассы, производящих пеллеты, брикеты, а также комбикорм. На этапе подготовки проекта специалисты компании дают квалифицированное заключение о целесообразности строительства объекта, его предполагаемой рентабельности и сроке окупаемости.

Мы анализируем будущее производство от А до Я! Начинаем исследование с расчета объема сырьевой базы, ее качества, логистики поставок. Количества биомассы на начальном этапе и поставок ее должно быть достаточно для бесперебойной работы оборудования длительное время. На основе объективной информации, собранной о будущем производстве, мы рассчитываем характеристики основного оборудования, а по желанию заказчика дополнительного оборудования и механизмов.

В общую стоимость проекта обязательно входят затраты на подготовку производственной площадки, монтажные и пусконаладочные работы, обучение персонала. А в прогнозе себестоимости продукции заранее учтены энергоэффективность и конкретная стоимость производства единицы готовой продукции, ее технические и качественные характеристики, соответствие международным стандартам, прибыльность и период окупаемости инвестиций. Использование оборудования для производства экструдированных кормов значительно повышает доходность животноводства за счет повышения их качества и снижения себестоимости.

Сертификация и аудит пеллетного производства в соответствии с нормами европейских стандартов серии EN 17461 предусматривает, что на всех этапах работы от получения и контроля качества биосырья до изготовления пеллет, их упаковки, маркировки, хранения, доставки и использования, необходимо строго соблюдать единые нормативы, технические условия и правила.

В соответствии с системой ENplus сертификат необходимо получать на конкретную партию биотоплива после проведения соответствующих испытаний по всем параметрам в сертифицированной лаборатории. Запомните! Сертифицированная продукция стоит в несколько раз дороже!

Полный комплекс инжиниринговых услуг, выполняемых компанией «BM Engineering», включает: составление бизнес-плана производства с расчетом энергоэффективности, рентабельности и себестоимости продукции, проектирование, строительство, пусконаладочные работы, ввод в эксплуатацию и сервисное обслуживание. Кроме того, компания поставляет оборудование собственного производства, выполняет работы по автоматизации и сертификации построенных предприятий.

Уникальный модуль переработки биомассы (щепы и опилок) МБ-3 разработан по новейшей технологии, при которой биосырье не сушат перед прессованием с большими затратами энергии, а моют в гидромойке. Загрязнители (металл, частицы почвы, мусор) удаляют потоком воды, а чистые и влажные частицы сырья по конвейеру, а затем через сито, поступают во входной бункер модуля переработки.

Вращающийся шнек перетирает влажную биомассу и продавливает ее через сито. При биохимической реакции в клетках древесины (биополимерах) выделяется тепло. Оптимальную температуру увлажненной массы поддерживает модуль термостабилизации. Тепловой насос обеспечивает циркуляцию подогретой воды по всему контуру переработки. Весь технологический процесс контролирует система автоматизации.

Комплектация модуля:

  • гидромойка;
  • модуль переработки биомассы;
  • тепловой насос;
  • модуль термостабилизации;
  • система автоматизация технологического процесса.
Технические характеристики модуля переработки биомассы МБ-3:
  • производительность - 1000 кг/ч;
  • мощность электродвигателей - до 100 кВт;
  • входное сырье: размер частиц - до 4 см, влажность - до 50%;
  • транспортировочные габариты - 2000х2200х12000 мм;
  • масса - 16700 кг.

Только в первом полугодии 2015 года было проведено 6 специализированных семинаров «Основы пеллетного производства», на которых прошло обучение около 200 слушателей. Со второго полугодия 2015 года семинары проводятся ежемесячно и пользуются возрастающей популярностью у слушателей. Те специалисты, которые прослушали все лекции и посмотрели на работающее оборудование, полностью изменили отношение к технологии производства пеллет. Метод влажного прессования – абсолютно новый инновационный подход к переработке биомассы, за которым будущее.

Влажность древесной биомассы - это количественная характеристика, показывающая содержание в биомассе влаги. Различают абсолютную й относительную влажность биомассы.

Абсолютной влажностью называют отношение массы влаги к массе сухой древесины:

Wa= т~т° 100,

Где №а - абсолютная влажность, %; т - масса образца во влажном состоянии, г; т0 - масса того же образца, высушен­ного до постоянного значения, г.

Относительной или рабочей влажностью на­зывают отношение массы влаги к массе влажной древесины:

Где Wр - относительная, или рабочая, влажность, 10

Пересчет абсолютной влажности в относительную и наобо­рот производится по формулам:

Зола подразделяется на внутреннюю, содержащуюся в древесном веществе, и внешнюю, попавшую в топливо при заготовке, хранении и транспортировании биомассы. В зависи­мости от вида зола имеет различную плавкость при нагревании до высокой температуры. Легкоплавкой называется зола, имеющая температуру начала жидкоплавкого состояния ниже 1350°. Среднеплавкая зола имеет температуру начала жидкоплавкого состояния в пределах 1350-1450 °С. У туго­плавкой золы эта температура выше 1450 °С.

Внутренняя зола древесной биомассы является тугоплавкой, а внешняя - легкоплавкой. Содержание золы в различных ча­стях деревьев различных пород показано в табл. 4.

Зольность стволовой древесины. Содержание внутренней золы стволовой древесины изменяется в пределах от 0,2 до 1,17%. На основании этого в соответствии с рекомендациями по нормативному методу теплового расчета котельных агрегатов в расчетах топочных устройств зольность стволовой древе­сины всех пород должна приниматься равной 1 % сухой массы

4. Распределение золы в частях дерева для различных пород

Количество золы в абсолютно сухой массе, %

Ветви, сучья, корни

Древесины. Это правомерно, если попадание минеральных вклю­чений в измельченную стволовую древесину исключено.

Зольность коры. Зольность коры больше зольности стволовой древесины. Одной из причин этого является то, что поверхность коры все время роста дерева обдувается атмосферным возду­хом и улавливает при этом содержащиеся в нем минеральные аэрозоли.

По наблюдениям, проведенным ЦНИИМОД для сплавной древесины в условиях архангельских лесопильных и деревообра­батывающих предприятий, зольность отходов окорки составляла

У ели 5,2, у сосны 4,9%- Повышение зольности коры в этом случае объясняется загрязнением коры во время сплава хлыстов по рекам.

Зольность коры различных пород на сухую массу, по дан­ным А. И. Померанского , составляет: сосна 3,2 %, ель 3,95, береза 2,7, ольха 2,4 %. По данным НПО ЦКТИ им. И. И. Пол - зунова, зольность коры различных пород варьирует от 0,5 до 8%.

Зольность элементов кроны. Зольность элементов кроны превышает зольность древесины и зависит от породы древе­сины и места ее произрастания. По данным В. М. Никитина, зольность листьев 3,5 %. Ветки и сучья имеют внутреннюю зольность от 0,3 до 0,7%. Однако в зависимости от типа тех­нологического процесса заготовки древесины их зольность су­щественно изменяется из-за загрязнения их внешними мине­ральными включениями. Загрязнение ветвей и сучьев в про­цессе заготовки, трелевки и вывозки наиболее интенсивно при влажной погоде весной и осенью.

Плотность. Плотность материала характеризуется отношением его массы к объему. При изучении этого свойства применительно к древесной биомассе различают следующие по­казатели: плотность древесинного вещества, плотность абсо­лютно сухой древесины, плотность влажной древесины.

Плотность древесинного вещества - это отно­шение массы материала, образующего стенки клеток, к зани­маемому им объему. Плотность древесинного вещества одина­кова для всех пород древесины и равна 1,53 г/см3.

Плотность абсолютно сухой древесины есть отношение массы этой древесины к занимаемому ею объему:

P0 = m0/V0, (2.3)

Где ро - плотность абсолютно сухой древесины; то - масса об­разца древесины при №р=0; V0 - объем образца древесины при №р=0.

Плотность влажной древесины представляет собой отношение массы образца при данной влажности к его объему при той же влажности:

Р w = mw/Vw, (2.4)

Где рту - плотность древесины при влажности Wp; mw - масса образца древесины при влажности Vw - объем, за­нимаемый образцом древесины при влажности Wр.

Плотность стволовой древесины. Величина плотности ство­ловой древесины зависит от ее породы, влажности и коэффи­циента разбухания /Ср. Все породы древесины по отношению к коэффициенту разбухания КР разделяются на две группы. К первой группе относятся породы, у которых коэффициент разбухания /Ср = 0,6 (белая акация, береза, бук, граб, листвен­ница). Ко второй группе относятся все остальные породы, у ко­торых /<р=0,5.

По первой группе для белой акации, березы, бука, граба, лиственницы плотность стволовой древесины можно вычислить по следующим формулам:

Pw = 0,957-------- ------- р12, W< 23%;

100-0.4WP " (2-5)

Loo-УР р12" №р>23%

Для всех остальных пород плотность стволовой древесины вычисляется по формулам:

0* = П-Ш.00-0.5ГР Л7Р<23%; (2.6)

Ріг = °,823 100f°lpp Ри. її">"23%,

Где ріг - плотность при стандартной влажности, т. е. при абсо­лютной влажности 12 %.

Величина плотности при стандартной влажности определя­ется для различных пород древесины по табл. 6.

6. Плотность стволовой древесины различных пород прн стандартной влажности н в абсолютно сухом состоянии

Плотность, кг/м!

Плотность, кг/м3

Р0 в абсо­

Р0 в абсо­

Стандарт­

Стандарт­

Лиственница

Ясень обыкновен­

Орех грецкий

Акация белая

Плотность коры. Плотность коры исследована гораздо меньше. Имеются лишь отрывочные данные, которые дают довольно пеструю картину этого свойства коры. В настоящей работе будем ориентироваться на данные М. Н. Симонова и Н. Л. Леонтьева . Для расчета плотности коры при­мем формулы той же структуры, что и формулы для расчета плотности стволовой древесины, подставив в них коэффици­енты объемного разбухания коры. Плотность коры будем под­считывать по следующим формулам: коры сосны

(100-ТГР)Р13 ^р<230/

103,56- 1.332ГР" " (2.7)

1,231(1-0,011ГР)" ^>23%-"

Коры ели Pw

W P<23%; W*> 23%;

Гр<23%; Гр>23%.

Р w - (100 - WP) р12 102,38 - 1,222 WP

Коры березы

1,253(1 _0,01WP)

(100- WP)pia 101,19 - 1,111WP

1,277(1 -0,01 WP)

Плотность луба значительно выше, чем плотность корки. Об этом свидетельствуют данные А. Б. Большакова (Сверд - НИИПдрев) о плотности частей коры в абсолютно сухом со­стоянии (табл. 8).

Плотность гнилой древесины. Плотность гнилой древесины в начальной стадии гниения обычно не понижается, а в неко­торых случаях даже увеличивается. При дальнейшем развитии процесса гниения плотность гнилой древесины уменьшается и в конечной стадии становится значительно меньше плотности здоровой древесины,

Зависимость плотности гнилой древесины от стадии пораже­ния ее гнилью приведена в табл. 9.

9. Плотность гнили древесины в зависимости от стадии ее поражения

Рц(ЮО-ІГР) 106- 1.46WP

Значение pis гнилой древесины равно: гниль осины pi5 = = 280 кг/м3, гниль сосны pS5=260 кг/м3, гниль березы р15 = = 300 кг/м3.

Плотность элементов кроны деревьев. Плотность элементов кроны практически не изучена. В топливной щепе из элементов кроны преобладающим по объему компонентом является щепа из сучьев и ветвей, близкая по показателям плотности к ство­ловой древесине. Поэтому при проведении практических расче­тов в первом приближении можно принять плотность элементов кроны равной плотности стволовой древесины соответствующей породы.

Крупные угли после сгорания и равномерный жар — признак хорошего сырья

Основные критерии

Наиболее важные показатели для топочного материала: плотность, влажность и теплоотдача. Все они тесно связаны между собой и определяют насколько эффективным и полезным является горение дров. Стоит рассмотреть каждый из них более подробно, учитывая разные породы древесины и способы ее заготовки.

Плотность

Первое, на что обращает внимание грамотный покупатель при заказе топочного материала из древесины — это его плотность. Чем выше этот показатель, тем качественнее является порода.

Все породы дерева разделяют на три основные категории:

  • малоплотные (мягкие);
  • среднеплотные (умеренно твердые);
  • высокоплотные (твердые).

У каждой из них разная плотность, а значит и удельная теплота сгорания дров. Наиболее качественными считаются твердые сорта. Они долго горят и выделяют больше тепла. К тому же они образуют много углей, которые поддерживают жар в топке.

Из-за своей твердости такие дрова трудно поддаются обработке, поэтому некоторые потребители предпочитают среднеплотную древесину, например, березу или ясень. Их структура позволяет без особых усилий колоть поленья вручную.

Влажность

Второй показатель — это влажность, то есть процентное содержание в структуре древесины воды. Чем выше это значение, тем больше плотность, при этом используемый ресурс выделит меньше тепла при одинаково затраченных усилиях.

Удельная теплота сгорания сухих березовых дров характеризуется, как более продуктивная, нежели влажных. Стоит отметить такую особенность березы: ее можно класть в топку практически сразу после рубки, ведь она отличается небольшой влажностью. Для максимизации полезного эффекта лучше подготовить материал должным образом.

Для повышения качества древесины за счет снижения процента содержания в ней влаги применяются такие подходы:

  • Свежие дрова оставляют на определенный срок под навесом для усушки. Количество дней зависит от сезона и может колебаться от 80 до 310 дней.
  • Часть дров сушат в помещении, что повышает их теплотворную способность.
  • Лучший вариант — искусственная просушка. Теплотворность выводится на максимальный уровень за счет доведения процента влажности до нуля, а времени на подготовку древесины требуется минимум.

Теплоотдача

Такой показатель, как теплоотдача дров как бы подытоживает предыдущие две характеристики. Именно он указывает на то сколько тепла может дать выбранный материал при соблюдении конкретных условий.

Наибольшей является теплота сгорания дров у твердых пород. Соответственно противоположным образом обстоят дела с мягкой древесиной. При равных условиях и естественной усушке разница в показаниях может достигать почти 100%. Именно поэтому для экономии средств есть смысл приобрести более дорогие в закупке качественные дрова, так как их выработка более эффективная.

Здесь стоит упомянуть такое свойство, как температура горения дров. Наибольшей она является у граба, бука и ясеня, более 1000 градусов Цельсия, при этом производится максимальное количество жара на уровне 85-87%. К ним приближаются дуб и лиственница, а наименьшими показателями отличаются тополь и ольха с выработкой 39-47% при температуре в районе 500 градусов.

Породы древесины

Теплотворная способность дров в наибольшей степени зависит именно от породы древесины. Выделяют две основные категории: хвойные и лиственные. Качественный топочный материал относится ко второй группе. Здесь также имеется своя классификация, так как не все сорта подходят для той или иной цели по своей плотности.

Хвойные

Зачастую самой доступной древесиной является хвоя. Ее низкая стоимость обуславливается не только распространенностью елей и сосен, но и ее свойствами. Дело в том, что теплоемкость дров такого плана невысокая, а также имеется масса других недостатков.

Главный недостаток хвойных пород — наличие большого количества смол. При нагревании таких дров смола начинает расширятся и закипать, что в результате приводит к разбросу искр и горящих фрагментов на дальнее расстояние. Также смола приводит к образованию копоти и гари, которые засоряют камин и дымоход.

Лиственные

Гораздо выгоднее использовать лиственные породы. Все сорта разделяются на три категории, в зависимости от их плотности. К мягким породам относятся:

  • липа;
  • осина;
  • тополь;
  • ольха;

Они быстро прогорают и поэтому не имеют особой ценности в плане обогрева дома.

К среднеплотным относят такие деревья, как:

  • клен;
  • береза;
  • лиственница;
  • акация;
  • вишня.

Удельная теплота сгорания березовых дров приближается к породам, которые относят к твердым, в частности к дубу.

  • граб;
  • орех;
  • кизил;

Теплотворность дров такого типа максимальная, но при этом обработка древесины затрудняется из-за ее высокой плотности.

Дуб — еще один популярный вид топлива

Полезные качества таких пород обусловливают их более высокую стоимость, зато это позволяет сократить объем материала, который понадобится для поддержания комфортной температуры в доме.

Выбор материала

Даже самые высокие качества древесины могут быть сведены на нет, если ее подобрать неверно с учетом конкретного вида деятельности. Например, практически не имеет значения что использовалось для ночного костра при посиделках с друзьями. Совершенно другое дело — растопка камина или печи в бане.

Для камина

Отопление дома может стать проблемой, если загрузить в печь неподходящие дрова. Особенно это опасно при использовании камина, так как искрящееся бревно может привести даже к пожару.

Ненавязчивое горение дров и жар, исходящий от камина — это изюминка гостиной комнаты

Для долгого горения и выделения большого количества тепла стоит отдавать предпочтение дубу, акации, а также березе и ореху. Для прочистки дымохода время от времени можно жечь осину и ольху. Плотность у этих пород небольшая, зато они обладают свойством выжигать сажу.

Для бани

Для обеспечения высокой температуры в парилке бани необходима максимальная теплоотдача дров. Кроме того, можно улучшить условия отдыха, если использовать такие породы, которые насыщают комнату приятным запахом, без выделения вредных веществ и смол.

Прочитайте так же о в дополнение к данной статье.

Для обогрева парилки оптимальным выбором станут, конечно же, дубовые и березовые поленья. Они твердые, дают хороший жар при небольшом объеме и к тому же выделяют приятные испарения. Дополнительный оздоровительный эффект также способны оказать липа и ольха. Использовать можно только хорошо просушенные материалы, но не старше полутора-двух лет.

Для барбекю

При приготовлении пищи на мангале и барбекю основным моментом является не само горение дров, а образование углей. Именно поэтому не имеет смысла использовать тонкие неплотные ветки. Их можно взять только для розжига костра, а затем добавить в топку крупные твердые поленья. Для того чтобы дым имел особый аромат, для мангала рекомендуется использовать фруктовые дрова. Можно комбинировать их с дубом и акацией.

При использовании разных сортов древесины обращайте внимание на размер чурок. Например, дубу понадобится больше времени для горения и тления, нежели яблоне, поэтому имеет смысл брать более толстые фруктовые поленья.

Альтернативные топочные материалы

Теплотворность дров определенных пород достаточно велика, но далеко не максимально возможная. Для того чтобы сэкономить средства и площадь для хранения топочного материала сегодня все больше внимания обращается на альтернативные варианты. Оптимальным является использование прессованных брикетов.

При одинаковых объемах загрузки печи прессованная древесина вырабатывает гораздо больше тепла. Такой эффект возможен за счет увеличения плотности материала. К тому же здесь гораздо более низкий процент влажности. Еще один плюс — минимальное образование золы.

Брикеты и пеллеты изготавливаются из опилок и древесной крошки. За счет прессования отходов удается создать невероятно плотный топочный материал, с которым не смогут сравниться даже самые лучшие сорта древесины. При большей стоимости за кубометр брикетов, итоговая экономия может составить весьма значительную сумму.

Готовить и закупать топочные материалы необходимо на основании тщательного анализа их свойств. Только качественные дрова способны обеспечить вас необходимым жаром, не принеся вреда ни вашему здоровью, ни самой отопительной конструкции.