Продольные и поперечные деформации. Коэффициент Пуассона. Закон Гука. Продольные и поперечные деформации Диаграмма растяжения малоуглеродистой стали

Изменение размеров, объема и возможно формы тела, при внешнем воздействии на него, называют в физике деформацией. Тело деформируется при растяжении, сжатии или (и), при изменении его температуры.

Деформация появляется тогда, когда разные части тела совершают разные перемещения. Так, например, если резиновый шнур тянуть за концы, то разные его части сместятся относительно друг друга, и шнур окажется деформированным (растянется, удлинится). При деформации изменяются расстояния между атомами или молекулами тел, поэтому возникают силы упругости.

Пусть прямой брус, длиной и, имеющий постоянное сечение, закреплен одним концом. За другой конец его растягивают, прикладывая силу (рис.1). При этом тело удлиняется на величину , которую называют абсолютным удлинением (или абсолютной продольной деформацией).

В любой точке рассматриваемого тела имеется одинаковое напряженное состояние. Линейную деформацию () при растяжении и сжатии подобных объектов называют относительным удлинением (относительной продольной деформацией):

Относительная продольная деформация

Относительная продольная деформация - величина безразмерная. Как правило относительное удлинение много меньше единицы ().

Деформацию удлинения обычно считают положительной, а деформацию сжатия отрицательной.

Если напряжение в брусе не превышает некоторого предела, экспериментально установлена зависимость:

где - продольная сила в поперечных сечениях бруса; S - площадь поперечного сечения бруса; E - модуль упругости (модуль Юнга) - физическая величина, характеристика жёсткости материала. Принимая о внимание то, что нормальное напряжение в поперечном сечении ():

Абсолютное удлинение бруса можно выразить как:

Выражение (5) является математической записью закона Р. Гука, который отражает прямую зависимость между силой и деформацией при небольших нагрузках.

В следующей формулировке, закон Гука используется не только при рассмотрении растяжения (сжатия) бруса: Относительная продольная деформация прямо пропорциональна нормальному напряжению.

Относительная деформация при сдвиге

При сдвиге относительную деформацию характеризуют при помощи формулы:

где - относительный сдвиг; - абсолютный сдвиг слоев параллельных по отношению друг к другу; h — расстояние между слоями; - угол сдвига.

Закон Гука для сдвига записывают как:

где G - модуль сдвига, F - сила, вызывающая сдвиг, параллельная сдвигающимся слоям тела.

Примеры решения задач

ПРИМЕР 1

Задание Каково относительное удлинение стального стержня, если его верхний конец закреплен неподвижно (рис.2)? Площадь поперечного сечения стержня . К нижнему концу стержня прикреплен груз массой кг. Считайте, что собственная масса стержня много меньше, чем масса груза.

Решение Сила, которая заставляет стержень растягиваться, равна силе тяжести груза, который находится на нижнем конце стержня. Эта сила действует вдоль оси стержня. Относительное удлинение стержня найдем как:

где . Прежде чем проводить расчет, следует найти в справочниках модуль Юнга для стали. Па.

Ответ

ПРИМЕР 2

Задание Нижнее основание металлического параллелепипеда с основанием в виде квадрата со стороной a и высотой h закреплено неподвижно. На верхнее основание параллельно основанию действует сила F (рис.3). Какова относительная деформация сдвига ()? Модуль сдвига (G) считайте известным.

Напряжения и деформации при растяжении и сжатии связаны между собой линейной зависимостью, которая называется законом Гука , по имени английского физика Р. Гука (1653-1703 г.г.), установившего этот закон.
Сформулировать закон Гука можно так: нормальное напряжение прямо пропорционально относительному удлинению или укорочению .

Математически эта зависимость записывается так:

σ = E ε .

Здесь Е – коэффициент пропорциональности, который характеризует жесткость материала бруса, т. е. его способность сопротивляться деформации; его называют модулем продольной упругости , или модулем упругости первого рода .
Модуль упругости, как и напряжение, выражаются в паскалях (Па) .

Значения Е для различных материалов устанавливаются экспериментально-опытным путем, и их величину можно найти в соответствующих справочниках.
Так, для стали Е = (1,96.…2,16) х 105 МПа, для меди Е = (1,00...1,30) х 105 МПа и т. д.

Следует оговориться, что закон Гука справедлив лишь в определенных пределах нагружения.
Если в формулу закона Гука подставить полученные ранее значения относительного удлинения и напряжения: ε = Δl / l , σ = N / А , то можно получить следующую зависимость:

Δl = N l / (E А) .

Произведение модуля упругости на площадь сечения Е ×А , стоящее в знаменателе, называют жесткостью сечения при растяжении и сжатии; оно характеризует одновременно и физико-механические свойства материала бруса и геометрические размеры поперечного сечения этого бруса.

Приведенную выше формулу можно читать так: абсолютное удлинение или укорочение бруса прямо пропорционально продольной силе и длине бруса, и обратно пропорционально жесткости сечения бруса.
Выражение Е А / l называют жесткостью бруса при растяжении и сжатии .

Приведенные выше формулы закона Гука справедливы лишь для брусьев и их участков, имеющих постоянное поперечное сечение, изготовленных из одного материала и при постоянной силе. Для бруса, имеющего несколько участков, отличающихся материалом, размерами сечения, продольной силой, изменение длины всего бруса определяется, как алгебраическая сумма удлинений или укорочений отдельных участков:



Δl = Σ (Δl i)

Деформация

Деформация (англ. deformation ) - это изменение формы и размеров тела (или части тела) под действием внешних сил, при изменении температуры, влажности, фазовых превращениях и других воздействиях, вызывающих изменение положения частиц тела. При увеличении напряжения деформация может закончиться разрушением. Способность материалов сопротивляться деформации и разрушению под воздейстивем различного вида нагрузок характеризуется механическими свойствами этих материалов.

На появление того или иного вида деформации большое влияние оказывает характер приложенных к телу напряжений. Одни процессы деформации связаны с преобладающим действием касательной составляющей напряжения, другие - с действием его нормальной составляющей.

Виды деформации

По характеру приложенной к телу нагрузки виды деформации подразделяют следующим образом:

  • Деформация растяжения;
  • Деформация сжатия;
  • Деформация сдвига (или среза);
  • Деформация при кручении;
  • Деформация при изгибе.

К простейшим видам деформации относятся: деформация растяжения, деформация сжатия, деформация сдвига. Выделяют также следующие виды деформации: деформация всестороннего сжатия, кручения, изгиба, которые представляют собой различные комбинации простейших видов деформации (сдвиг, сжатие, растяжение), так как сила приложенная к телу, подвергаемому деформации, обычно не перпендикулярна его поверхности, а направлена под углом, что вызывает как нормальные, так и касательные напряжения. Изучением видов деформации занимаются такие науки, как физика твёрдого тела, материаловедение, кристаллография.

В твёрдых телах, в частности - металлах, выделяют два основных вида деформаций - упругую и пластическую деформацию, физическая сущность которых различна.

Сдвигом называют такой вид деформации, когда в поперечных сечениях возникают только перерезывающие силы . Такое напряженное состояние соответствует действию на стержень двух равных противоположно направленных и бесконечно близко расположенных поперечных сил (рис. 2.13, а, б ), вызывающих срез по плоскости, расположенной между силами.

Рис. 2.13. Деформация и напряжения при сдвиге

Срезу предшествует деформация – искажение прямого угла между двумя взаимно-перпендикулярными линиями. При этом на гранях выделенного элемента (рис. 2.13, в ) возникают касательные напряжения. Величина смещения граней называется абсолютным сдвигом . Значение абсолютного сдвига зависит от расстояния h между плоскостями действия сил F . Более полно деформацию сдвига характеризует угол , на который изменяются прямые углы элемента – относительный сдвиг:

. (2.27)

Используя ранее рассмотренный метод сечений, легко убедиться, что на боковых гранях выделенного элемента возникают только перерезывающие силыQ=F , являющиеся равнодействующими касательных напряжений:

Принимая во внимание, что касательные напряжения распределены равномерно по поперечному сечению А , их значение определяется соотношением:

. (2.29)

Экспериментально установлено, что в пределах упругих деформаций величина касательных напряжений пропорциональна относительному сдвигу (закон Гука при сдвиге):

где G – модуль упругости при сдвиге (модуль упругости второго рода).

Между модулями продольной упругости и сдвига существует взаимосвязь

,

где – коэффициент Пуассона.

Приближенные значения модуля упругости при сдвиге, МПа: сталь – 0,8·10 5 ; чугун – 0,45·10 5 ; медь – 0,4·10 4 ; алюминий – 0,26·10 5 ; резина – 4.

2.4.1.1. Расчеты на прочность при сдвиге

Чистый сдвиг в реальных конструкциях реализовать крайне сложно, так как вследствие деформации соединяемых элементов происходит дополнительный изгиб стержня, даже при сравнительно небольшом расстоянии между плоскостями действия сил. Однако в ряде конструкций нормальные напряжения в сечениях малы и ими можно пренебречь. В этом случае условие прочностной надежности детали имеет вид:

, (2.31)

где – допускаемые напряжение на срез, которые обычно назначают в зависимости от величины допускаемого напряжения при растяжении:

– для пластичных материалов при статической нагрузке =(0,5…0,6) ;

– для хрупких – =(0,7 … 1,0) .

2.4.1.2. Расчеты на жесткость при сдвиге

Они сводятся к ограничению упругих деформаций. Решая совместно выражение (2.27)–(2.30), определяют величину абсолютного сдвига:

, (2.32)

где – жесткость при сдвиге.

Кручение

2.4.2.1. Построение эпюр крутящих моментов

2.4.2.2. Деформации при кручении

2.4.2.4. Геометрические характеристики сечений

2.4.2.5. Расчеты на прочность и жесткость при кручении

Кручением называют такой вид деформации, когда в поперечных сечениях возникает единственный силовой фактор – крутящий момент .

Деформация кручения происходит при нагружении бруса парами сил, плоскости действия которых перпендикулярны к его продольной оси.

2.4.2.1. Построение эпюр крутящих моментов

Для определения напряжений и деформаций бруса строят эпюру крутящих моментов, показывающую распределение крутящих моментов по длине бруса. Применив метод сечений и рассмотрев в равновесии любую часть, станет очевидно, что момент внутренних сил упругости (крутящий момент ) должен уравновесить действие внешних (вращающих) моментов на рассматриваемую часть бруса. Принято момент считать положительным, если наблюдатель смотрит на рассматриваемое сечение со стороны внешней нормали и видит вращающий момент Т , направленным против хода движения часовой стрелки. При противоположном направлении моменту приписывается знак минус.

Например, условие равновесия для левой части бруса имеет вид (рис. 2.14):

– в сечении А-А:

– в сечении Б-Б :

.

Границами участков при построении эпюры являются плоскости действия вращающих моментов .

Рис. 2.14. Расчетная схема бруса (вала) при кручении

2.4.2.2. Деформации при кручении

Если на боковую поверхность стержня круглого поперечного сечения нанести сетку (рис. 2.15, а ) из равноотстоящих окружностей и образующих, а к свободным концам приложить пары сил с моментами Т в плоскостях, перпендикулярных к оси стержня, то при малой деформации (рис. 2.15, б ) можно обнаружить:

Рис. 2.15. Схема деформации при кручении

· образующие цилиндра превращаются в винтовые линии большого шага;

· квадраты, образованные сеткой, превращаются в ромбы, т.е. происходит сдвиг поперечных сечений;

· сечения, круглые и плоские до деформации, сохраняют свою форму и после деформации;

· расстояние между поперечными сечениями практически не изменяется;

· происходит поворот одного сечения относительно другого на некоторый угол.

На основании этих наблюдений теория кручения бруса основана на следующих допущениях:

· поперечные сечения бруса, плоские и нормальные к его оси до деформации, остаются плоскими и нормальными к оси и после деформации;

· равноотстоящие поперечные сечения поворачиваются относительно друг друга на равные углы;

· радиусы поперечных сечений в процессе деформации не искривляются;

· в поперечных сечениях возникают только касательные напряжения. Нормальные напряжения малы. Длину бруса можно считать неизменной;

· материал бруса при деформации подчиняется закону Гука при сдвиге: .

В соответствии с этими гипотезами кручение стержня круглого поперечного сечения представляют как результат сдвигов, вызванных взаимным поворотом сечений.

На стержне круглого поперечного сечения радиусом r , заделанным одним концом и нагруженным вращающим моментом Т на другом конце (рис. 2.16, а ), обозначим на боковой поверхности образующую АD , которая под действием момента займет положение АD 1 . На расстоянии Z от заделки выделим элемент длиной dZ . Левый торец этого элемента в результате кручения повернется на угол , а правый – на угол (). Образующая ВС элемента займет положениеВ 1 С 1 , отклонившись от исходного положения на угол . В силу малости этого угла

Отношение представляет угол закручивания единицы длины стержня и называется относительным углом закручивания . Тогда

Рис. 2.16. Расчетная схема определения напряжений
при кручении стержня круглого поперечного сечения

Принимая во внимание (2.33), закон Гука при кручении можно описать выражением:

. (2.34)

В силу гипотезы, что радиусы круглых поперечных сечений не искривляются, касательные напряжения сдвига в окрестностях любой точки тела, находящейся на расстоянии от центра (рис. 2.16, б ), равны произведению

т.е. пропорциональны расстоянию ее до оси.

Значение относительного угла закручивания по формуле (2.35) может быть найдено из условия, что элементарная окружная сила () на элементарной площадке размером dA , расположенной на расстоянии от оси бруса, создает относительно оси элементарный момент (рис. 2.16, б ):

Сумма элементарных моментов, действующих по всему поперечному сечению А , равна крутящему моменту М Z . Считая, что :

.

Интеграл представляет собой чисто геометрическую характеристику и носит название полярного момента инерции сечения .

Отношение абсолютного удлинения стержня к его первоначальной длине называетсяотносительным удлинением (– эпсилон) или продольной деформацией. Продольная деформация – это безразмерная величина. Формула безразмерной деформации:

При растяжении продольная деформация считается положительной, а при сжатии – отрицательной.
Поперечные размеры стержня в результате деформирования также изменяются, при этом при растяжении они уменьшаются, а при сжатии – увеличиваются. Если материал является изотропным, то его поперечные деформации равны между собой:
.
Опытным путем установлено, что при растяжении (сжатии) в пределах упругих деформаций отношение поперечной деформации к продольной является постоянной для данного материала величиной. Модуль отношения поперечной деформации к продольной, называемый коэффициентом Пуассона иликоэффициентом поперечной деформации, вычисляется по формуле:

Для различных материалов коэффициент Пуассона изменяется в пределах. Например, для пробки, для каучука, для стали, для золота.

Закон Гука
Сила упругости, возникающая в теле при его деформации, прямо пропорциональна величине этой деформации
Для тонкого растяжимого стержня закон Гука имеет вид:

Здесь - сила, которой растягивают (сжимают) стержень, - абсолютное удлинение (сжатие) стержня, а - коэффициент упругости (или жёсткости).
Коэффициент упругости зависит как от свойств материала, так и от размеров стержня. Можно выделить зависимость от размеров стержня (площади поперечного сечения и длины) явно, записав коэффициент упругости как

Величина называется модулем упругости первого рода или модулем Юнга и является механической характеристикой материала.
Если ввести относительное удлинение

И нормальное напряжение в поперечном сечении

То закон Гука в относительных единицах запишется как

В такой форме он справедлив для любых малых объёмов материала.
Также при расчёте прямых стержней применяют запись закона Гука в относительной форме

Модуль Юнга
Модуль Юнга (модуль упругости) - физическая величина, характеризующая свойства материала сопротивляться растяжению/сжатию при упругой деформации.
Модуль Юнга рассчитывается следующим образом:

Где:
E - модуль упругости,
F - сила,
S - площадь поверхности, по которой распределено действие силы,
l - длина деформируемого стержня,
x - модуль изменения длины стержня в результате упругой деформации (измеренного в тех же единицах, что и длина l).
Через модуль Юнга вычисляется скорость распространения продольной волны в тонком стержне:

Где - плотность вещества.
Коэффициент Пуассона
Коэффициент Пуассона (обозначается как или) - абсолютная величина отношения поперечной к продольной относительной деформации образца материала. Этот коэффициент зависит не от размеров тела, а от природы материала, из которого изготовлен образец.
Уравнение
,
где
- коэффициент Пуассона;
- деформация в поперечном направлении (отрицательна при осевом растяжении, положительна при осевом сжатии);
- продольная деформация (положительна при осевом растяжении, отрицательна при осевом сжатии).

9. Абсолютная и относительная деформация при растяжении (сжатии). Коэффициент Пуассона.

Если под действием силы брус длиной изменил свою продольную величину на , то эта величина называется абсолютной продольной деформацией (абсолютное удлинение или укорочение). При этом наблюдается и поперечная абсолютная деформация .

Отношение называется относительной продольной деформацией, а отношение - относительной поперечной деформацией.

Отношение называется коэффициентом Пуассона, который характеризует упругие свойства материала.

Коэффициент Пуассона имеет значение . (для стали он равен )

10. Сформулировать закон Гука при растяжении (сжатии).

I форма. В поперечных сечениях бруса при центральном растяжении (сжатии) нормальные напряжения равны отношению продольной силы к площади поперечного сечения:

II форма. Относительная продольная деформация прямо пропорциональна нормальному напряжению , откуда .

11. Как определяются напряжения в поперечных и наклонных сечениях бруса?

– сила, равная произведению напряжения на площадь наклонного сечения :

12. По какой формуле можно определить абсолютное удлинение (укорочение) бруса?

Абсолютное удлинение (укорочение) бруса (стержня) выражается формулой:

, т.е.

Учитывая, что величина представляет собой жесткость поперечного сечения бруса длиной можно сделать вывод: абсолютная продольная деформация прямо пропорциональна продольной силе и обратно пропорциональна жесткости поперечного сечения. Этот закон впервые сформулировал Гук в 1660 году.

13. Как определяются температурные деформации и напряжения?

При повышении температуры у большинства материалов механические характеристики прочности уменьшаются, а при понижении температуры – увеличиваются. Например, у стали марки Ст3 при и ;

при и , т.е. .

Удлинение стержня при нагревании определяется по формуле , где - коэффициент линейного расширения материала стержня, - длина стержня.

Возникающее в поперечном сечении нормальное напряжение . При понижении температуры происходит укорочение стержня и возникают напряжения сжатия.

14. Дать характеристику диаграммы растяжения (сжатия).

Механические характеристики материалов определяются путем испытаний образцов и построением соответствующих графиков, диаграмм. Наиболее распространенным является статическое испытание на растяжение (сжатие).

Предел пропорциональности (до этого предела справедлив закон Гука);

Предел текучести материала;

Предел прочности материала;

Разрушающее (условное) напряжение;

Точка 5 соответствует истинному разрушающему напряжению.

1-2 площадка текучести материала;

2-3 зона упрочнения материала;

и - величина пластической и упругой деформации.

Модуль упругости при растяжении (сжатии), определяемый как: , т.е. .

15. Какие параметры характеризуют степень пластичности материала?

Степень пластичности материала может быть охарактеризовано величинами:

Остаточным относительным удлинением – как отношение остаточной деформации образца к первоначальной его длине:

где - длина образца после разрыва. Величина для различных марок стали находится в пределах от 8 до 28 %;

Остаточным относительным сужением – как отношение площади поперечного сечения образца в месте разрыва к первоначальной площади:

где - площадь поперечного сечения разорванного образца в наиболее тонком месте шейки. Величина находится в пределах от нескольких процентов для хрупкой высокоуглеродистой стали до 60 % для малоуглеродистой стали.

16. Задачи, решаемые при расчете на прочность при растяжении (сжатии).

Законы Р. Гука и С. Пуассона

Рассмотрим деформации стержня, представленного на рис. 2.2.

Рис. 2.2 Продольные и поперечные деформации при растяжении

Обозначим через абсолютное удлинение стержня. При растяжении – это положительная величина. Через – абсолютную поперечную деформацию. При растяжении – это отрицательная величина. Знаки и соответственно меняются при сжатии.

Отношения

(эпсилон) или , (2.2)

называют относительным удлинением. Оно положительно при растяжении.

Отношения

Или , (2.3)

называют относительной поперечной деформацией. Она отрицательна при растяжении.

Р. Гук в 1660 г. открыл закон, который гласил: «Каково удлинение, такова сила». В современном написании закон Р. Гука записывается так:

то есть напряжение пропорционально относительной деформации. Здесь – модуль упругости первого рода Э. Юнга – это физическая постоянная в пределах действия закона Р. Гука. Для различных материалов она различна. Например, для стали она равна 2·10 6 кгс/см 2 (2·10 5 МПа), для дерева – 1·10 5 кгс/см 2 (1·10 4 МПа), для резины – 100 кгс/см 2 (10 МПа) и т.д.

Учитывая, что , а , получим

где – продольная сила на силовом участке;

– длина силового участка;

– жесткость при растяжении-сжатии.

То есть абсолютная деформация пропорциональна продольной силе, действующей на силовом участке, длине этого участка и обратно пропорциональна жесткости при растяжении-сжатии.

При подсчете по действию внешних нагрузок

где – внешняя продольная сила;

– длина участка стержня, на котором она действует. В этом случае применяют принцип независимости действия сил*).

С. Пуассон доказал, что соотношение – есть постоянная величина, различная для различных материалов, то есть

или , (2.7)

где – коэффициент С. Пуассона. Это, вообще говоря, отрицательная величина. В справочниках ее значение дается «по модулю». Например, для стали она равна 0,25…0,33, для чугуна – 0,23…0,27, для резины – 0,5, для пробки – 0, то есть . Однако для древесины он может быть и больше 0,5.

Экспериментальное исследование процессов деформации и

Разрушения растянутых и сжатых стержней

Русский ученый В.В. Кирпичев доказал, что деформации геометрически подобных образцов подобны, если подобно расположить действующие на них силы, и что по результатам испытаний небольшого образца можно судить о механических характеристиках материала. При этом, конечно, учитывается масштабный фактор, для чего вводится масштабный коэффициент, определяемый экспериментально.

Диаграмма растяжения малоуглеродистой стали

Испытания производят на машинах разрывного действия с одновременной записью диаграммы разрушения в координатах – сила, – абсолютная деформация (рис. 2.3, а). Затем производят пересчет эксперимента с целью построения условной диаграммы в координатах (рис. 2.3, б).

По диаграмме (рис. 2.3, а) можно проследить следующее:

– до точки справедлив закон Гука;

– от точки до точки деформации остаются упругими, но закон Гука уже не справедлив;

– от точки до точки деформации растут без увеличения нагрузки. Здесь происходит разрушение цементного каркаса ферритовых зерен металла, и нагрузка передается на эти зерна. Появляются линии сдвига Чернова–Людерса (под углом 45° к оси образца);

– от точки до точки – стадия вторичного упрочнения металла. В точке нагрузка достигает максимума, и затем появляется сужение в ослабленном сечении образца – «шейка»;

– в точке – образец разрушается.

Рис. 2.3 Диаграммы разрушения стали при растяжении и сжатии

Диаграммы позволяют получить следующие основные механические характеристики стали:

– предел пропорциональности – наибольшее напряжение, до которого справедлив закон Гука (2100…2200 кгс/см 2 или 210…220 МПа);

– предел упругости – наибольшее напряжение, при котором деформации еще остаются упругими (2300 кгс/см 2 или 230 МПа);

– предел текучести – напряжение, при котором деформации растут без увеличения нагрузки (2400 кгс/см 2 или 240 МПа);

– предел прочности – напряжение, соответствующее наибольшей нагрузке, выдерживаемой образцом за время опыта (3800…4700 кгс/см 2 или 380…470 МПа);