Где проходит цикл кребса. ★★★FITNESS LIVE★★★Спортивное питание. Пентозофосфатный путь окисления глюкозы обслуживает восстановительные синтезы в клетке

Цикл трикарбоновых кислот - он же цикл Кребса, поскольку существование такого цикла было предположено Гансом Кребсом в 1937 году.
За это спустя 16 лет он был удостоен Нобелевской премии по физиологии и медицине. Значит, открытие весьма значительное. В чём же смысл этого цикла и почему он так важен?

Как ни крути, все равно придётся начать довольно-таки издалека. Если вы взялись читать эту статью, то хотя бы понаслышке знаете, что основной источник энергии для клеток - это глюкоза. Она постоянно присутствует в крови в практически неизменной концентрации - для этого существуют специальные механизмы, запасающие или высвобождающие глюкозу.

Внутри каждой клетки находятся митохондрии - отдельные органеллы ("органы" клетки), перерабатывающие глюкозу для получения внутриклеточного источника энергии - АТФ. АТФ (аденозинтрифосфорная кислота) универсальна и очень удобна в использовании, как источник энергии: она напрямую встраивается в белки, обеспечивая их энергией. Самый простой пример - это белок миозин, благодаря которому мышцы способны сокращаться.

Глюкозу невозможно превратить в АТФ, несмотря на то, что в ней содержится большое количество энергии. Как извлечь эту энергию и направить в нужное русло, не прибегая к варварским (по клеточным меркам) средствам типа сжигания? Надо использовать обходные пути, благо ферменты (белковые катализаторы) позволяют некоторым реакциям протекать гораздо быстрее и эффективнее.

Первый этап - это превращение молекулы глюкозы в две молекулы пирувата (пировиноградной кислоты) или лактата (молочной кислоты). При этом выделяется небольшая часть (примерно 5%) той энергии, что запасена в молекуле глюкозы. Лактат получается при анаэробном окислении - то есть в отсутствие кислорода. Также есть способ превращения глюкозы в анаэробных условиях в две молекулы этанола и углекислый газ. Это называется брожением, и этот способ мы рассматривать не будем.


...Так же как не будем мы рассматривать подробно сам механизм гликолиза, то есть расщепления глюкозы в пируват. Поскольку, цитируя Леинджера, "Превращение глюкозы в пируват катализируется десятью ферментами, действующими последовательно". Желающие могут открыть учебник по биохимии и подробно ознакомиться со всеми стадиями процесса - он изучен очень хорошо.

Казалось бы, путь от пирувата до углекислого газа должен быть довольно простым. Но оказалось, что он осуществляется посредством девятистадийного процесса, который и называется циклом трикарбоновых кислот. Это кажущееся противоречие с принципом экономии (неужели нельзя было проще?) отчасти объясняется тем, что цикл связывает между собой несколько метаболических путей: вещества, образующиеся в цикле, являются прекурсорами других молекул, уже не имеющих отношения к дыханию (например, аминокислот), а любые другие соединения, подлежащие утилизации, в итоге попадают в цикл и либо "сгорают" для получения энергии, либо перерабатываются в те, которые находятся в недостатке.

Первая стадия, которая традиционно рассматривается в отношении к циклу Кребса - это окислительное декарбоксилирование пирувата в ацетильный остаток (Acetyl-CoA). CoA, если кто не знает - это кофермент А, имеющий в своём составе тиольную группу, на которой он может переносить ацетильный остаток.


Расщепление жиров тоже приводит к ацетилам, которые также вступают в цикл Кребса. (Синтезируются они аналогично - из Acetyl-CoA, что объясняет тот факт, что в жирах почти всегда присутствуют только кислоты с чётным числом атомов углерода).

Ацетил-КоА конденсируется с молекулой оксалоацетата, давая цитрат. При этом высвобождается кофермент А и молекула воды. Эта стадия необратима.

Цитрат дегидрируется в цис-аконитат - вторую трикарбоновую кислоту в цикле.

Цис-аконитат присоединяет обратно молекулу воды, превращаясь уже в изолимонную кислоту. Эта и предыдущая стадии обратимы. (Ферменты катализируют как прямую, так и обратную реакции - вы же знаете, да?)

Изолимонная кислота декарбоксилируется (необратимо) и одновременно окисляется, давая кетоглутаровую кислоту. При этом NAD+, восстанавливаясь, превращается в NADH.

Следующая стадия - окислительное декарбоксилирование. Но при этом образуется не сукцинат, а сукцинил-КоА, который на следующей стадии гидролизуется, направляя высвобождающуюся энергию на синтез АТФ.

При этом образуется ещё одна молекула NADH и молекула FADH2 (кофермент, отличный от NAD, который однако так же может окисляться и восстанавливаться, запасая и отдавая энергию).

Выходит, что оксалоацетат работает как катализатор - он не накапливается и не расходуется в процессе. Так и есть - концентрация оксалоацетата в митохондриях поддерживается довольно низкой. А как избежать накопления других продуктов, как согласовать между собой все восемь стадий цикла?

Для этого, как оказалось, существуют специальные механизмы - своего рода отрицительная обратная связь. Как только концентрация какого-то продукта растёт выше нормы, это блокирует работу фермента, ответственного за его синтез. А для обратимых реакций всё ещё проще: при превышении концентрации продукта реакция просто начинает идти в обратную сторону.

И ещё пара мелких замечаний

Этот метаболический путь назван именем открывшего его автора - Г. Кребса, получившего (совместно с Ф. Липманом) за данное открытие в 1953 г. Нобелевскую премию. В цикле лимонной кислоты улавливается большая часть свободной энергии , образующейся при распаде белков, жиров и углеводов пищи. Цикл Кребса - центральный путь обмена веществ.

Образовавшийся в результате окислительного декарбоксилирования пирувата ацетил-КоА в матриксе митохондрий включается в цепь последовательных реакций окисления. Таких реакций восемь.

1-я реакция - образование лимонной кислоты . Образование цитрата происходит путем конденсации ацетильного остатка ацетил-КоА с оксалацетатом (ОА) при помощи фермента цитратсинтазы (с участием воды):

Данная реакция практически необратима, поскольку при этом распадается богатая энергией тиоэфирная связь ацетил~S-КоА.

2-я реакция - образование изолимонной кислоты. Эта реакция катализируется железосодержащим (Fe - негеминовое) ферментом - аконитазой. Реакция протекает через стадию образования цис -аконитовой кислоты (лимонная кислота подвергается дегидратации с образованием цис -аконитовой кислоты, которая, присоединяя молекулу воды, превращается в изолимонную).

3-я реакция - дегидрирование и прямое декарбоксилирование изолимонной кислоты. Реакция катализируется НАД + -зависимым ферментом изоцитратдегидрогеназой. Фермент нуждается в присутствии ионов марганца (или магния). Являясь по своей природе аллостерическим белком, изоцитратдегидрогеназа нуждается в специфическом активаторе - АДФ.

4-я реакция - окислительное декарбоксилирование α-кетоглутаровой кислоты. Процесс катализируется α-кетоглутаратдегидрогеназой - ферментным комплексом, по структуре и механизму действия похожим на пируватдегидрогеназный комплекс. В его состав входят те же коферменты: ТПФ, ЛК и ФАД - собственные коферменты комплекса; КоА-SH и НАД + - внешние коферменты.

5-я реакция - субстратное фосфорилирование. Суть реакции заключается в переносе богатой энергией связи сукцинил-КоА (макроэргическое соединение) на ГДФ с участием фосфорной кислоты - при этом образуется ГТФ, молекула которого вступает в реакцию перефосфорилирования с АДФ - образуется АТФ.

6-я реакция - дегидрирование янтарной кислоты сукцинатдегидрогеназой. Фермент осуществляет прямой перенос водорода с субстрата (сукцината) на убихинон внутренней мембраны митохондрий. Сукцинатдегидрогеназа - II комплекс дыхательной цепи митохондрий. Коферментом в этой реакции является ФАД.

7-я реакция - образование яблочной кислоты ферментом фумаразой. Фумараза (фумаратгидратаза) гидратирует фумаровую кислоту - при этом образуется яблочная кислота, причем ее L -форма, так как фермент обладает стереоспецифичностью.


8-я реакция - образование оксалацетата. Реакция катализируется малатдегидрогеназой , коферментом которой служит НАД + . Образовавшийся под действием фермента оксалацетат вновь включается в цикл Кребса и весь циклический процесс повторяется.

Последние три реакции обратимы, но поскольку НАДН?Н + захватывается дыхательной цепью, равновесие реакции сдвигается вправо, т.е. в сторону образования оксалацетата . Как видно, за один оборот цикла происходит полное окисление, “сгорание”, молекулы ацетил-КоА. В ходе цикла образуются восстановленные формы никотинамидных и флавиновых коферментов, которые окисляются в дыхательной цепи митохондрий. Таким образом, цикл Кребса находится в тесной взаимосвязи с процессом клеточного дыхания.

Функции цикла трикарбоновых кислот многообразны:

· Интегративная - цикл Кребса является центральным метаболическим путем, объединяющим процессы распада и синтеза важнейших компонентов клетки.

· Анаболическая - субстраты цикла используются для синтеза многих других соединений: оксалацетат используется для синтеза глюкозы (глюконеогенез) и синтеза аспарагиновой кислоты, ацетил-КоА - для синтеза гема, α-кетоглутарат - для синтеза глютаминовой кислоты, ацетил-КоА - для синтеза жирных кислот, холестерола, стероидных гормонов, ацетоновых тел и др.

· Катаболическая - в этом цикле завершают свой путь продукты распада глюкозы, жирных кислот, кетогенных аминокислот - все они превращаются в ацетил-КоА; глутаминовая кислота - в α-кетоглутаровую; аспарагиновая - в оксалоацетат и пр.

· Собственно энергетическая - одна из реакций цикла (распад сукцинил-КоА) является реакцией субстратного фосфорилирования. В ходе этой реакции образуется одна молекула ГТФ (реакция перефосфорилирования приводит к образованию АТФ).

· Водороддонорная - при участии трех НАД + -зависимых дегидрогеназ (дегидрогеназ изоцитрата, α-кетоглутарата и малата) и ФАД-зависимой сукцинатдегидрогеназы образуются 3 НАДН?Н + и 1 ФАДН 2 . Эти восстановленные коферменты являются донорами водорода для дыхательной цепи митохондрий, энергия переноса водородов используется для синтеза АТФ.

· Анаплеротическая - восполняющая. Значительные количества субстратов цикла Кребса используются для синтеза разных соединений и покидают цикл. Одной из реакций, восполняющих эти потери, является реакция, катализируемая пируваткарбоксилазой.

Скорость реакция цикла Кребса определяется энергетическими потребностями клетки

Скорость реакций цикла Кребса коррелирует с интенсивностью процесса тканевого дыхания и связанного с ним окислительного фосфорилирования - дыхательный контроль. Все метаболиты, отражающие достаточное обеспечение клетки энергией являются ингибиторами цикла Кребса. Увеличение соотношения АТФ/АДФ - показатель достаточного энергообеспечении клетки и снижает активность цикла. Увеличение соотношения НАД + / НАДН, ФАД/ ФАДН 2 указывает на энергодефицит и является сигналом ускорения процессов окисления в цикле Кребса.

Основное действие регуляторов направлено на активность трех ключевых ферментов: цитратсинтазы, изоцитратдегидрогеназы и a-кетоглутаратдегидрогеназы. Аллостерическими ингибиторами цитратсинтазы являются АТФ, жирные кислоты. В некоторых клетках роль ее ингибиторов играют цитрат и НАДН. Изоцитратдегидрогеназа аллостерически активируется АДФ и ингибируется при повышении уровня НАДН+Н + .

Рис. 5.15. Цикл трикарбоновых кислот (цикл Кребса)

Последний является ингибитором и a-кетоглутаратдегидрогена зы, активность которой снижается также при повышении уровня сукцинил-КоА.

Активность цикла Кребса во многом зависит от обеспеченности субстратами. Постоянная “утечка” субстратов из цикла (например, при аммиачном отравлении) может вызывать значительные нарушения энергообеспеченности клеток.

Пентозофосфатный путь окисления глюкозы обслуживает восстановительные синтезы в клетке.

Как видно из названия, в этом пути образуются столь необходимые клетке пентозофосфаты . Поскольку образование пентоз сопровождается окислением и отщеплением первого углеродного атома глюкозы, то этот путь называется также апотомическим (apex - вершина).

Пентозофосфатный путь можно разделить две части: окислительную и неокислительную. В окислительной части, включающей три реакции, образуются НАДФН?Н + и рибулозо-5-фосфат. В неокислительной части рибулозо-5-фосфат превращается в различные моносахариды с 3, 4, 5, 6, 7 и 8 атомами углерода; конечными продуктами являются фруктозо-6-фосфат и 3-ФГА.

· Окислительная часть . Первая реакция -дегидрирование глюкозо-6-фосфата глюкозо-6-фосфатдегидрогеназойс образованием δ-лактона 6-фосфоглюконовой кислоты и НАДФН?Н + (НАДФ + - кофермент глюкозо-6-фосфатдегидрогеназы).

Вторая реакция - гидролиз 6-фосфоглюконолактона глюконолактонгидролазой. Продукт реакции - 6-фосфоглюконат.

Третья реакция - дегидрирование и декарбоксилирование 6-фосфоглюконолактона ферментом 6-фосфоглюконатдегидрогеназой, коферментом которого является НАДФ + . В ходе реакции восстанавливается кофермент и отщепляется С-1 глюкозы с образованием рибулозо-5-фосфата.


· Неокислительная часть . В отличие от первой, окислительной, все реакции этой части пентозофосфатного пути обратимы (рис5.16)

Рис.5.16.Окислительная часть пентозофосфатного пути (F-вариант)

Рибулозо-5-фосфат может изомеризоваться (фермент - кетоизомераза ) в рибозу-5-фосфат и эпимеризоваться (фермент - эпимераза ) в ксилулозо-5-фосфат. Далее следуют два типа реакций: транскетолазная и трансальдолазная.

Транскетолаза (кофермент - тиаминпирофосфат) отщепляет двухуглеродный фрагмент и переносит его на другие сахара (см. схему). Трансальдолаза переносит трехуглеродные фрагменты.

В реакцию вначале вступают рибозо-5-фосфат и ксилулозо-5-фосфат. Это - транскетолазная реакция: переносится 2С-фрагмент от ксилулозо-5-фосфата на рибозо-5-фосфат.

Затем два образовавшиеся соединения реагируют друг с другом в трансальдолазной реакции; при этом в результате переноса 3С-фрагмента от седогептулозо-7-фосфата на 3-ФГА образуются эритрозо-4-фосфат и фруктозо-6-фосфат.Это F-вариант пентозофосфатного пути. Он характерен для жировой ткани.

Однако реакции могут идти и по другому пути(рис.5.17).Этот путь обозначается как L-вариант. Он протекает в печени и других органах. В этом случае в трансальдолазной реакции образуется октулозо-1,8-дифосфат.

Рис.5.17. Пентозофосфатный (апотомический) путь обмена глюкозы (октулозный, или L-вариант)

Эритрозо-4-фосфат и фруктозо-6-фосфат могут вступать в транскетолазную реакцию, в результате которой образуются фруктозо-6-фосфат и 3-ФГА.

Общее уравнение окислительной и неокислительной частей пентозофосфатного пути можно представить в следующем виде:

Глюкозо-6-Ф + 7Н 2 О + 12НАДФ + 5 Пентозо-5-Ф + 6СО 2 + 12 НАДФН?Н + + Фн.




У эукариот все реакции цикла Кребса протекают внутри митохондрий, причём катализирующие их ферменты, кроме одного, находятся в свободном состоянии в митохондриальном матриксе. У прокариот реакции цикла протекают в цитоплазме. При работе цикла Кребса окисляются различные продукты обмена, в частности токсичные недоокисленные продукты распада алкоголя, поэтому стимуляцию цикла Кребса можно рассматривать как меру биохимической детоксикации.



СубстратыПродуктыФерментТип реакцииКомментарий 1 Оксалоацета т + Ацетил-CoA + H 2 O Цитрат + CoA-SH Цитратсинта за Альдольная конденсация лимитирующая стадия, превращает C 4 оксалоацетат в С 6 2Цитрат цис-аконитат + H 2 O аконитаза 3 цис-акониат + H 2 O изоцитрат гидратация изоцитратдеги дрогеназа декарбоксилир ующая Окисление 4 Изоцитрат + NAD + Оксалосукцин ат + NADH + H + 5 Оксалосукци нат α- кетоглутарат + CO 2 декарбокси лирование необратимая стадия, образуется C 5


СубстратыПродуктыФермент Тип реакции Комментарий 6 α- кетоглутар ат + NAD + + CoA-SH сукцинил- CoA + NADH + H + + CO 2 альфакетоглу таратдегидро геназный комплекс (3 фермента) Окислитель ное декарбокси лирование образуется NADH (эквивалентно 2.5 АТФ), регенерация C 4 цепи (освобождается CoA-SH) 7 сукцинил- CoA + GDP + P i сукцинат + CoA-SH + GTP сукцинилкоф ермент А синтетаза субстратно е фосфорили рование АДФ->ATP, образуется 1 ATP (или 1 GTF) 8 сукцинат + убихинон (Q) фумарат + убихинол (QH 2) сукцинатдеги дрогеназа Окисление используется FAD как простетическая группа (FAD->FADH 2 на первой стадии реакции) в ферменте, образуется эквивалент 1.5 ATP ATP, образуется 1 ATP (или 1 GTF) 8 сукцинат + убихинон (Q) фумарат + убихинол (QH 2) сукцинатдеги дрогеназа Окисление используется FAD как простетическая группа (FAD->FADH 2 на первой стадии реакции) в ферменте, образуется эквивалент 1.5 ATP">


СубстратыПродуктыФермент Тип реакции Комментарий 9 фумарат + H 2 O L-малатфумараза H 2 O- присоедин ение 10 L-малат + NAD + оксалоаце тат + NADH + H + малатдегидро геназа окисление образуется NADH (эквивалентно 2.5 ATP) Общее уравнение одного оборота цикла Кребса: Ацетил-КоААцетил-КоА 2CO 2 + КоА + 8e КоАe



Цикл Кребса регулируется «по механизму отрицательной обратной связи», при наличии большого количества субстратов, цикл активно работает, а при избытке продуктов реакции тормозится. Регуляция осуществляется и при помощи гормонов. Такими гормонами являются: инсулин и адреналин. Глюкагон стимулирует синтез глюкозы и ингибирует реакции цикла Кребса. Как правило работа цикла Кребса не прерывается за счёт анаплеротических реакций, которые пополняют цикл субстратами: Пируват + СО 2 + АТФ = Оксалацетат(субстрат Цикла Кребса) + АДФ + Фн.


1.Интегративная функция цикл является связующим звеном между реакциями анаболизма и катаболизма. 2.Катаболическая функция превращение различных веществ в субстраты цикла: Жирные кислоты, пируват,Лей,Фен Ацетил- КоА. Арг, Гис, Глу α-кетоглутарат. Фен, тир фумарат. 3.Анаболическая функция использование субстратов цикла на синтез органических веществ: Оксалацетат глюкоза, Асп, Асн. Сукцинил-КоА синтез гема. CО 2 реакции карбоксилирования.


1.Водорододонорная функция цикл Кребса поставляет на дыхательную цепь митохондрий протоны в виде трех НАДН.Н + и одного ФАДН 2. 2.Энергетическая функция 3 НАДН.Н + дает 7.5 моль АТФ, 1 ФАДН 2 дает 1.5 моль АТФ на дыхательной цепи. Кроме того в цикле путем субстратного фосфорилировани синтезируется 1 ГТФ, а затем из него синтезируется АТФ посредствам трансфосфорилировани: ГТФ + АДФ = АТФ + ГДФ.


Для более легкого запоминания кислот, участвующих в цикле Кребса, существует мнемоническое правило: Целый Ананас И Кусочек Суфле Сегодня Фактически Мой Обед, что соответствует ряду цитрат, (цис-)аконитат, изоцитрат, (альфа-)кетоглутарат, сукцинил-CoA, сукцинат, фумарат, малат, оксалоацетат.


Существует также следующее мнемоническое стихотворение: Щуку ацетил лимонил, А нарцисса конь боялся, Он над ним изолимонно Альфа-кето-глютарался. Сукцинился коэнзимом, Янтарился фумарово, Яблочек припас на зиму, В щуку обратился снова. (щавелевоуксусная кислота, лимонная кислота, цис- аконитовая кислота, изолимонная кислота, α- кетоглутаровая кислота, сукцинил-CoA, янтарная кислота, фумаровая кислота, яблочная кислота, щавелевоуксусная кислота).

Образующийся в ПВК-дегидрогеназной реакции ацетил-SКоА далее вступает в цикл трикарбоновых кислот (ЦТК, цикл лимонной кислоты, цикл Кребса). Кроме пирувата, в цикл вовлекаются кетокислоты, поступающие из катаболизма аминокислот или каких-либо иных веществ.

Цикл трикарбоновых кислот

Цикл протекает в матриксе митохондрий и представляет собой окисление молекулы ацетил-SКоА в восьми последовательных реакциях.

В первой реакции связываются ацетил и оксалоацетат (щавелевоуксусная кислота) с образованием цитрата (лимонной кислоты), далее происходит изомеризация лимонной кислоты до изоцитрата и две реакции дегидрирования с сопутствующим выделением СО 2 и восстановлением НАД.

В пятой реакции образуется ГТФ, это реакция субстратного фосфорилирования . Далее последовательно происходит ФАД-зависимое дегидрирование сукцината (янтарной кислоты), гидратация фумаровой кислоты до малата (яблочная кислота), далее НАД-зависимое дегидрирование с образованием в итоге оксалоацетата .

В итоге после восьми реакций цикла вновь образуется оксалоацетат.

Последние три реакции составляют так называемый биохимический мотив (ФАД-зависимое дегидрирование, гидратация и НАД-зависимое дегидрирование ), он используется для введения кетогруппы в структуру сукцината. Этот мотив также присутствует в реакциях β-окисления жирных кислот . В обратной последовательности (восстановление, де гидратация и восстановление) этот мотив наблюдается в реакциях синтеза жирных кислот .

Функции ЦТК

1. Энергетическая

  • генерация атомов водорода для работы дыхательной цепи , а именно трех молекул НАДН и одной молекулы ФАДН2 ,
  • синтез одной молекулы ГТФ (эквивалентна АТФ).

2. Анаболическая . В ЦТК образуются

  • предшественник гема – сукцинил-SКоА ,
  • кетокислоты, способные превращаться в аминокислоты – α-кетоглутарат для глутаминовой кислоты, оксалоацетат для аспарагиновой,
  • лимонная кислота , используемая для синтеза жирных кислот ,
  • оксалоацетат , используемый для синтеза глюкозы .

Анаболические реакции ЦТК

Регуляция цикла трикарбоновых кислот

Аллостерическая регуляция

Ферменты, катализирующие 1-ю, 3-ю и 4-ю реакции ЦТК, являются чувствительными к аллостерической регуляции метаболитами:

Регуляция доступностью оксалоацетата

Главным и основным регулятором ЦТК является оксалоацетат , а точнее его доступность. Наличие оксалоацетата вовлекает в ЦТК ацетил-SКоА и запускает процесс.

Обычно в клетке имеется баланс между образованием ацетил-SКоА (из глюкозы, жирных кислот или аминокислот) и количеством оксалоацетата. Источником оксалоацетата является пируват , (образуемый из глюкозы или аланина), получение из аспарагиновой кислоты в результате трансаминирования или цикла АМФ-ИМФ, и также поступление из фруктовых кислот самого цикла (янтарной, α-кетоглутаровой, яблочной, лимонной), которые могут образоваться при катаболизме аминокислот или поступать из других процессов.

Синтез оксалоацетата из пирувата

Регуляция активности фермента пируваткарбоксилазы осуществляется при участии ацетил-SКоА . Он является аллостерическим активатором фермента, и без него пируваткарбоксилаза практически неактивна. Когда ацетил-SКоА накапливается, то фермент начинает работать и образуется оксалоацетат, но, естественно, только при наличии пирувата.

Также большинство аминокислот при своем катаболизме способны превращаться в метаболиты ЦТК, которые далее идут в оксалоацетат, чем также поддерживается активность цикла.

Пополнение пула метаболитов ЦТК из аминокислот

Реакции пополнения цикла новыми метаболитами (оксалоацетат, цитрат, α-кетоглутарат и т.п) называются анаплеротическими .

Роль оксалоацетата в метаболизме

Примером существенной роли оксалоацетата служит активация синтеза кетоновых тел и кетоацидоз плазмы крови при недостаточном количестве оксалоацетата в печени . Такое состояние наблюдается при декомпенсации инсулинзависимого сахарного диабета (СД 1 типа) и при голодании. При указанных нарушениях в печени активирован процесс глюконеогенеза , т.е. образования глюкозы из оксалоацетата и других метаболитов, что влечет за собой снижение количества оксалоацетата. Одновременная активация окисления жирных кислот и накопление ацетил-SКоА запускает резервный путь утилизации ацетильной группы – синтез кетоновых тел . В организме при этом развивается закисление крови (кетоацидоз ) с характерной клинической картиной: слабость, головная боль, сонливость, снижение мышечного тонуса, температуры тела и артериального давления.

Изменение скорости реакций ЦТК и причины накопления кетоновых тел при некоторых состояниях

Описанный способ регуляции при участии оксалоацетата является иллюстрацией к красивой формулировке "Жиры сгорают в пламени углеводов ". В ней подразумевается, что "пламень сгорания" глюкозы приводит к появлению пирувата, а пируват превращается не только в ацетил-SКоА, но и в оксалоацетат. Наличие оксалоацетата гарантирует включение ацетильной группы, образуемой из жирных кислот в виде ацетил-SКоА, в первую реакцию ЦТК.

В случае масштабного "сгорания" жирных кислот, которое наблюдается в мышцах при физической работе и в печени при голодании , скорость поступления ацетил-SКоА в реакции ЦТК будет напрямую зависеть от количества оксалоацетата (или окисленной глюкозы).

Если количество оксалоацетата в гепатоците недостаточно (нет глюкозы или она не окисляется до пирувата), то ацетильная группа будет уходить на синтез кетоновых тел . Такое происходит при длительном голодании и сахарном диабете 1 типа .

Цикл Кребса также называется циклом трикарбоновых кислот , так как они образуются в нем в качестве промежуточных продуктов. Представляет собой ферментативный кольцевой конвейер, «работающий» в матриксе митохондрий.

Результатом цикла Кребса является синтез небольшого количества АТФ и образование НАД · H 2 , который далее направляется на следующий этап – дыхательную цепь (окислительное фосфорилирование), расположенную на внутренней мембране митохондрий.

Образовавшаяся в результате пировиноградная кислота (пируват) поступает в митохондрии, где она в конечном итоге полностью окисляется, превращаясь в углекислый газ и воду. Сначала это происходит в цикле Кребса, затем при окислительном фосфорилировании.

До цикла Кребса пируват декарбоксилируется и дегидрируется. В результате декарбоксилирования отщепляется молекула CO 2 , дегидрирование - это отщепление атомов водорода. Они соединяются с НАД.

В результате из пировиноградной кислоты образуется уксусная, которая присоединяется к коферменту А. Получается ацетилкофермент А (ацетил-КоА) – CH 3 CO~S-КоА, содержащий высокоэнергетическую связь.

Превращение пирувата в ацетил-КоА обеспечивает большой ферментативный комплекс, состоящий из десятков полипептидов, связанным с переносчиками электронов.

Цикл Кребса начинается с гидролиза ацетил-КоА, при котором отщепляется ацетильная группа, содержащая два атома углерода. Далее ацетильная группа включается в цикл трикарбоновых кислот.

Ацетильная группа присоединяется к щавелевоуксусной кислоте, имеющей четыре атома углерода. В результате образуется лимонная кислота, включающая шесть атомов углерода. Энергию для этой реакции поставляет макроэргическая связь ацетил-КоА.

Далее следует цепь реакций, в которых связанная в цикле Кребса ацетильная группа дегидрируются с высвобождением четырех пар атомов водорода и декарбоксилируются с образованием двух молекул CO 2 . При этом для окисления используется кислород, отщепляемый от двух молекул воды, а не молекулярный . Процесс называется окислительн ым декарбоксилирование м . В конце цикла щавелевоуксусная кислота регенерируется.

Вернемся на этап лимонной кислоты. Ее окисление проходит за ряд ферментативных реакций, при которых образуются изолимонная, щавелевоянтарная и другие кислоты. В результате этих реакций, на разных стадиях цикла, восстанавливаются три молекулы НАД и одна ФАД, образуется ГТФ (гуанозинтрифосфат), содержащий макроэргическую фосфатную связь, энергия которой впоследствии используется для фосфорилирования АДФ. В результате образуется молекула АТФ.

Лимонная кислота теряет два атома углерода с образованием двух молекул CO 2 .

В результате ферментативных реакций лимонная кислота превращается в щавелевоуксусную, которая снова может соединиться с ацетил-КоА. Цикл повторяется.

В составе лимонной кислоты присоединившийся остаток ацетил-КоА сгорает с образованием углекислого газа, атомов водорода и электронов. Водород и электроны переносятся на НАД и ФАД, которые являются акцепторами для него.

Окисление одной молекулы ацетил-КоА дает одну молекулу АТФ, четыре атома водорода и две молекулы углекислого газа. То есть углекислый газ, выделяемый при аэробном дыхании, образуется на этапе цикла Кребса . При этом молекулярный кислород (O 2) здесь не используется, он необходим лишь на этапе окислительного фосфорилирования.

Атомы водорода присоединяются к НАД или ФАД, в таком виде далее попадают в дыхательную цепь.

Одна молекула глюкозы дает две молекулы пирувата и, следовательно, два ацетил-КоА. Таким образом на одну молекулу глюкозы приходится два оборота цикла трикарбоновых кислот. В общей сложности образуются две молекулы АТФ, четыре CO 2 , восемь атомов H.

Следует отметить, что не только глюкоза и образующийся из нее пируват поступают в цикл Кребса. В результате расщепления ферментом липазой жиров образуются жирные кислоты, окисление которых также приводит к образованию ацетил-КоА, восстановлению НАД, а также ФАД (флавинадениндинуклеотида).

Если клетка испытывает дефицит углеводов и жиров, то окислению могут подвергаться аминокислоты. При этом образуются ацетил-КоА и органические кислоты, которые далее участвуют в цикле Кребса.

Таким образом неважно, каким был первичный источник энергии. В любом случае образуется ацетил-КоА, представляющий собой универсальное для клетки соединение.