Основы расчета конструкций по предельным состояниям. Готовимся к проверкам по предельным состояниям. Метод расчета по предельным состояниям

Предельные состояния - это такие состояния, при которых конструкция не может больше использоваться в результате дей­ствия внешних нагрузок и внутренних напряжений. В конструк­циях из дерева и пластмасс могут возникать две группы предель­ных состояний - первая и вторая.

Расчет по предельным состояниям конструкций в целом и ее элементов должен производиться для всех стадий: транспортировки, монтажа и эксплуатации - и должен учитывать все возможные сочетания нагрузок. Целью расчета является не допустить ни первого, ни второго предельного состояний в процессах перевозки, сборки и эксплуа­тации конструкции. Это выполняется на основании учета норма­тивных и расчетных нагрузок и сопротивлений материалов.

Метод предельного состояния является первым шагом в обеспечении надежности строительных конструкций. Надежностью называют способность объекта сохранять в процессе эксплуатации качество, заложенное при проектировании. Специфика теории надежности строительных конструкций состоит в необходимости учитывать случайные значения нагрузок на системы со случайными прочностными показателями. Характерной особенностью метода предельных состояний является то, что все исходные величины, оперируемые при расчете, случайные по своей природе представлены в нормах детерминированными, научно-обоснованными, нормативными значениями, а влияние их изменчивости на надежность конструкций учитывается соответствующими коэффициентами. Каждый из коэффициентов надежности учитывает изменчивость только одной исходной величины, т.е. носит частный характер. Поэтому метод предельных состояний иногда называют методом частных коэффициентов. Факторы, изменчивость которых влияет на уровень надежности конструкций, могут быть отнесены к пяти основным категориям: нагрузки и воздействия; геометрические размеры элементов конструкций; степень ответственности сооружений; механические свойства материалов; условия работы конструкции. Рассмотрим перечисленные факторы. Возможное отклонение нормативных нагрузок в большую или меньшую сторону учитывается коэффициентом надежности по нагрузке 2, который в зависимости от вида нагрузки имеет различную величину больше или меньше единицы. Эти коэффициенты наряду с нормативными величинами представлены в главе СНиП 2.01.07-85 Нормы проектирования. "Нагрузки и воздействия". Вероятность совместного действия нескольких нагрузок учитывают умножением нагрузок на коэффициент сочетания, который представлен в той же главе норм. Возможное неблагоприятное отклонение геометрических размеров элементов конструкций учитывается коэффициентом точности. Однако этот коэффициент в чистом виде не принимается. Этот фактор используется при вычислении геометрических характеристик, принимая расчетные параметры сечений с минусовым допуском. С целью разумного сбалансирования затрат на здания и соружения различного назначения вводится коэффициент надежности по назначению < 1. Степень капитальности и ответственности зданий и сооружений разбивается на три класса ответственности. Этот коэффициент (равный 0,9; 0,95; 1) вводится в качестве делителя к значению расчетного сопротивления или в качестве множителя к значению расчетных нагрузок и воздействий.

Основным параметром сопротивления материала силовым воздействиям является нормативное сопротивление, устанавливаемое нормативными документами по результатам статистических исследований изменчивости механических свойств материалов путем испытаний образцов материала по стандартным методикам. Возможное отклонение от нормативных значений учитывается коэффициентом надежности по материалу ут > 1. Он отражает статистическую изменчивость свойств материалов и их отличие от свойств испытанных стандартных образцов. Характеристика, получаемая делением нормативного сопротивления на коэффициент т, называется расчетным сопротивлением Я. Эта основная характеристика прочности древесины нормируется СНиП П-25-80 "Нормы проектирования. Деревянные конструкции".

Неблагоприятное влияние окружающей и эксплуатационной среды как то: ветровая и монтажная нагрузки, высота сечения, температурно-влажностные условия - учитываются путем введения коэффициентов условий работы т. Коэффициент т может быть меньше единицы, если данный фактор или совокупность факторов снижают несущую способность конструкции, и больше единицы - в противоположном случае. Для древесины эти коэффициенты представлены в СНиП 11-25-80 "Нормы проектирования.

Нормативные предельные значения прогибов отвечают следующим предъявляемым требованиям:а) технологические (обеспечение условий нормальной эксплуатации техники и подъемно-транспортного оборудования, контрольно-измерительных приборов и т.д); б) конструктивные (обеспечение целостности примыкающих друг к другу элементов конструкций, их стыков, наличие зазора между несущими конструкциями и конструк-циями перегородок, фахверка и т.д., обеспечение заданных уклонов); в) эстетико-психологические (обеспечение благоприятных впечатлений от внешнего вида конструкций, предотвращение ощущения опасности).

Величина предельных прогибов зависит от пролета и вида прикладываемых нагрузок. Для деревянных конструкций покрытия зданий от действия постоянных и временных длительных нагрузок предельный прогиб колеблется от (1/150)- i до (1/300) (2). Прочность древесины снижается также под действием некоторых химических препаратов от биопоражения, внедренных под давлением в автоклавах на значительную глубину. В этом случае коэффициент условия работы тиа = 0,9. Влияние концентрации напряжений в расчетных сечениях растянутых элементов, ослабленных отверстиями, а также в изгибаемых элементах из круглых лесоматериалов с подрезкой в расчетном сечении отражает коэффициент условия работы т0 = 0,8. Деформативность древесины при расчете деревянных конструкций по второй группе предельных состояний учитывается базовым модулем упругости Е, который при направлении усилия вдоль волокон древесины принят 10000 МПа, а поперек волокон 400 МПа. При расчете на устойчивость модуль упругости принят 4500 МПа. Базовый модуль сдвига древесины (6) в обоих направлениях равен 500 МПа. Коэффициент Пуассона древесины поперек волокон при напряжениях, направ-ленных вдоль волокон, принимается равным пдо о = 0,5, а вдоль волокон при напряже-ниях, направленных поперек волокон, п900 = 0,02. Поскольку длительность и уровень нагружения влияет не только на прочность, но и на деформационные свойства древесины, величина модуля упругости и модуля сдвига умножается на коэффициент тй = 0,8 при расчете конструкций, в которых напряжения в элементах, возникающие от постоянных и временных длительных нагрузок, превышают 80% суммарного напряжения от всех нагрузок. При расчете металлодеревянных конструкций упругие характеристики и расчетные сопротивления стали и соединений стальных элементов, а также арматуры принимаются по главам СНиП по проектированию стальных и железобетонных конструкций.

Из всех листовых конструкционных материалов с использованием древесного сырья только фанеру рекомендуется использовать в качестве элементов несущих конструкций, базовые расчетные сопротивления которых приведены в табл.10 СНиП П-25-80. При соответствующих условиях работы клеефанерных конструкций расчетом по первой группе предельных состояний предусматривается умножение базовых расчетных сопротивлений фанеры на коэффициенты условий работы тв, тй, тн и тл. При расчете по второй группе предельных состояний упругие характеристики фанеры в плоскости листа принимаются по табл. 11 СниП П-25-80. Модуль упругости и модуль сдвига для конструкций, находящихся в различных условиях эксплуатации, а также подвергающихся совместному воздействию постоянной и временной длительных нагрузок, следует умножить на соответствующие коэффициенты условий работы, принятых для древесины

Первая группа наиболее опасна. Она определяется непригод­ностью к эксплуатации, когда конструкция теряет несущую спо­собность в результате разрушения или потери устойчивости. Это­го не происходит, пока максимальные нормальные о или скалы­вающие т напряжения в ее элементах не превосходят расчетных (минимальных) сопротивлений материалов, из которых они изго­товлены. Это условие записывается формулой

а,т

К предельным состояниям первой группы относится: разрушение любого вида, общая потеря устойчивости конструкции или местная потеря устойчивости элемента конструкции, нарушение узлов соединений, превращающих конструкцию в изменяемую систему, развитие недопустимых по величине остаточных деформаций. Расчет по несущей способности ведется по вероятному худшему случаю, а именно: по наибольшей нагрузке и наименьшему сопротивлению материала, найденному с учетом всех влияющих на него факторов. Неблагоприятные сочетания приводятся в нормах.

Вторая группа менее опасна. Она определяется непригод­ностью конструкции к нормальной эксплуатации, когда она про­гибается до недопустимой величины. Этого не происходит, пока максимальный относительный прогиб ее /// не превосходит пре­дельно допускаемых значений. Это условие записывается фор­мулой

Г/1 <. (2.2)

Расчет деревянных конструкций по второму предельному состоянию по деформациям распространяется в основном на изгибаемые конструкции и имеет целью ограничить величину деформаций. Расчет ведут на нормативные нагрузки без умножения их на коэффициенты надежности в предположении упругой работы древесины. Расчет по деформациям ведется по средним характеристикам древесины, а не по сниженным, как при проверке несущей способности. Это объясняется тем, что увеличение прогиба в отдельных случаях, при употреблении в дело древесины пониженного качества, не представляет опасности для целостности конструкций. Этим же объясняется и то, что расчет по деформациям проводится на нормативные, а не на расчетные нагрузки. В качестве иллюстрации предельного состояния второй группы можно привести пример, когда в результате недопустимого прогиба стропил появляются трещины в кровельном покрытии. Протекание влаги в этом случае нарушает нормальную эксплуатацию здания, приводит к снижению долговечности древесины из-за ее увлажнения, но при этом здание продолжает эксплуатироваться. Расчет по второму предельному состоянию, как правило, имеет подчиненное значение, т.к. главным считается обеспечение несущей способности. Однако и ограничения прогибов имеют особенно важное значение для конструкций с податливыми связями. Поэтому деформации деревянных конструкций (составные стойки, составные балки, дощато-гвоздевые конструкции) необходимо определять с учетом влияния податливости связей (СНиП П-25-80. Табл.13).

Нагрузки, действующие на конструкции, определяются Строи­тельными нормами и правилами - СНиП 2.01.07-85 «Нагрузки и воздействия». При расчете конструкций из дерева и пластмасс учитываются, главным образом, постоянная нагрузка от собст­венного веса конструкций и других элементов зданий g и кратко­временные нагрузки от веса снега S, давления ветра W. Учитываются также нагрузки от веса людей и оборудования. Каждая нагрузка имеет нормативное и расчетное значение. Нор­мативное значение удобно обозначать индексом н.

Нормативные нагрузки являются исходными зна­чениями нагрузок: Временные нагрузки определяются в резуль­тате обработки данных многолетних наблюдений и измерений. Постоянные нагрузки вычисляются по значениям собственного веса и объема конструкций, прочих элементов здания и обору­дования. Нормативные нагрузки учитываются при расчете кон­струкций по второй группе предельных состояний - по прогибам.

Расчетные нагрузки определяются на основании нормативных с учетом их возможной переменчивости, особенно в большую сторону. Для этого значения нормативных нагрузок умножают на коэффициент надежности по нагрузке у, значения которого различны для разных нагрузок, но все они больше единицы. Значения распределенных нагрузок даются в нормах в килопаскалях (кПа), что соответствует килоньютонам на квадратный метр (кН/м). В большинстве расчетов применяются линейные значения нагрузок (кН/м). Расчетные нагрузки применяются при расчете конструкций по первой группе предельных состоя­ний, по прочности и устойчивости.

g", действующая на кон­струкцию, состоит из двух частей: первая часть - нагрузка от всех элементов ограждающих конструкций и материалов, под держиваемых данной конструкцией. Нагрузка от каждого эле­мента определяется путем умножения его объема на плотность материала и на шаг расстановки конструкций; вторая часть - нагрузка от собственного веса основной несущей конструкции. При предварительном расчете нагрузку от собственного веса основной несущей конструкции можно определить приближенно, задаваясь реальными размерами сечений и объемами элементов конструкции.

равна произведению нор­мативной на коэффициент надежности по нагрузке у. Для наг­рузки от собственного веса конструкций у= 1,1, а для нагрузок от утепления, кровли, пароизоляции и других у = 1,3. Постоян­ную нагрузку от обычных скатных покрытий с углом наклона а удобно относить к их горизонтальной проекции путем деления ее на cos а.

Нормативная снеговая нагрузка s H определяется исходя из нормативного веса снегового покрова so, который дается в нор­мах нагрузок (кН/м 2) горизонтальной проекции покрытия в за­висимости от снегового района страны. Эту величину умножают на коэффициент р, учитывающий уклон и другие особенности формы покрытия. Тогда нормативная нагрузка s H = s 0 p- При двускатных покрытиях, имеющих а ^ 25°, р=1, при а > 60° р = 0, а при промежуточных углах наклона 60° >* <х > 25° р == (60° - а°)/35°. Эта. нагрузка является равномерной и мо­жет быть дву- или односторонней.

При сводчатых покрытиях по сегментным фермам или аркам равномерная снеговая нагрузка определяется с учетом коэффи­циента р, который зависит от отношения длины пролета / к вы­соте свода /: р = //(8/).

При отношении высоты свода к пролету f/l= 1/8 снеговая нагрузка может быть треугольной с максимальным значением на одной опоре s" и 0,5 s" на другой и нулевым значением в коньке. Коэффициенты р, определяющие величины максимальной снеговой нагрузки при отношениях f/l = 1/8, 1/6 и 1/5, соответ­ственно равны 1,8; 2,0 и 2,2. Снеговая нагрузка на покрытия стрельчатой формы может определяться как на двускатные, считая условно покрытие дву­скатным по плоскостям, проходящим через хорды осей пол у арок. Расчетная снеговая нагрузка равна произведению норматив­ной нагрузки на коэффициент надежности по нагрузке 7- Для большинства легких деревянных и пластмассовых конструкций при отношении нормативных постоянной и снеговой нагрузок g n /s H < 0,8 коэффициент у = 1,6. При больших отношениях этих нагрузок у =1,4.

Нагрузка от веса человека с грузом принимается равной - нормативная р" = 0,1 кН и расчетная R = р и у = 0,1 1,2 = 1,2 кН. Ветровая нагрузка. Нормативная ветровая нагрузка w состоит из давления ш"+ и отсоса w n - ветра. Исходными дан­ными при определении ветровой нагрузки являются значения давления ветра, направленного перпендикулярно поверхностям покрытияи стен зданий Wi (МПа), зависящие от ветрового райо­на страны ипринимаемые по нормам нагрузок и воздействий. Нормативные ветровые нагрузки w" определяются умножением нормального давления ветра на коэффициент k, учитывающий высоту зданий, и аэродинамический коэффициент с, учитываю­щий его форму. Для большинства зданий из дерева и пласт­масс, высота которых не превышает 10 м, к = 1.

Аэродинамический коэффициент с зависит от формы здания, его абсолютных и относительных размеров, уклонов, относитель­ных высот покрытий и направления ветра. На большинство скат­ных покрытий, угол наклона которых не превышает а= 14°, ветровая нагрузка действует в виде отсоса W-. При этом она в основном не увеличивает, а уменьшает усилия в конструкциях от постоянных и снеговых нагрузок и при расчете может не учитываться в запас прочности. Ветровая нагрузка должна обя­зательно учитываться при расчете стоек и стен зданий, а также при расчете конструкций треугольной и стрельчатой формы.

Расчетная ветровая нагрузка равна нормативной, умножен­ной на коэффициент надежности у= 1,4. Таким образом, w = = w"y.

Нормативные сопротивления древесины R H (МПа) являются основными характеристиками прочности древесины чистых от пороков участков. Они определяются по результатам многочис­ленных лабораторных кратковременных испытаний малых стан­дартных образцов сухой древесины влажностью 12 % на растяжение, сжатие, изгиб, смятие и скалывание.

95 % испытанных образцов древесины будут при сжатии иметь прочность, равную или большую, чем ее нор­мативное значение.

Значения нормативных сопротивлений, приведенные в прилож. 5, практически используются при лабораторном контроле прочности древесины в процессе изготовления деревянных конструкций и при определении несущей способности эксплуатируемых несущих конструкций при их обследованиях.

Расчетные сопротивления древесины R (МПа) - это основ­ные характеристики прочности реальной древесины элементов реальных конструкций. Эта древесина имеет естественные допус­каемые пороки и работает под нагрузками в течение многих лет. Расчетные сопротивления получаются на основании норма­тивных сопротивлений с учетом коэффициента надежности по материалу у и коэффициента длительности нагружения т ал по формуле

R= R H m a Jy.

Коэффициент у значительно больше единицы. Он учитывает снижение прочности реальной древесины в результате неодно­родности строения и наличия различных пороков, которых не бывает в лабораторных образцах. В основном прочность дре­весины снижают сучки. Они уменьшают рабочую площадь се­чения, перерезая и раздвигая ее продольные волокна, создают эксцентриситет продольных сил и наклон волокон вокруг сучка. Наклон волокон вызывает растяжение древесины поперек и под углом к волокнам, прочность которой в этих направлениях зна­чительно ниже, чем вдоль волокон. Пороки древесины почти в два раза снижают прочность древесины при растяжении и при­мерно в полтора раза при сжатии. Трещины наиболее опасны в зонах работы древесины на скалывание. С увеличением разме­ров сечений элементов напряжения при их разрушении умень­шаются за счет большей неоднородности распределения напря­жений по сечениям, что тоже учитывается при определении рас­четных сопротивлений.

Коэффициент длительности нагружения т дл <С 1- Он учиты­вает, что древесина без пороков может неограниченно долго выдерживать лишь около половины той нагрузки, которую она выдерживает при кратковременном нагружении в процессе испытаний. Следовательно, ее длительное R in сопротивление Я йЛ почти Щ^ вдвое ниже кратковременного / t g.

Качество древесины естественно влияет на величины ее рас­четных сопротивлений. Древесина 1-го сорта - с наименьшими пороками имеет наибольшие расчетные сопротивления. Расчет­ные сопротивления древесины 2-го и 3-го сортов соответственно ниже. Например, расчетное сопротивление древесины сосны и ели 2-го сорта сжатию получается из выражения

%. = # с н т дл /у= 25-0,66/1,25 = 13 МПа.

Расчетные сопротивления древесины сосны и ели сжатию, растяжению, изгибу, скалыванию и смятию приведены в прилож. 6.

Коэффициенты условий работы т к расчетным сопротивле­ниям древесины учитывают условия, в которых изготовляются и работают деревянные конструкции. Коэффициент породы т„ учитывает различную прочность древесины разных пород, отли­чающихся от прочности древесины сосны и ели. Коэффициент нагрузки т„ учитывает кратковременность действия ветровой и монтажных нагрузок. При смятии т н = 1,4, при остальных видах напряжений т н = 1,2. Коэффициент высоты сечений при изгибе древесины клеедеревянных балок с высотой сечения более 50 см /72б снижается от 1 до 0,8, при высоте сечения 120 см - еще более. Коэффициент толщины слоев клеедеревянных элемен­тов учитывает повышение их прочности при сжатии и изгибе по мере уменьшения толщины склеиваемых досок, в результате чего увеличивается однородность строения клееной древесины. Значения его находятся в пределах 0,95...1,1. Коэффициент гнутья m rH учитывает дополнительные напряжения изгиба, возни­кающие при выгибе досок в процессе изготовления гнутых клеедеревянных элементов. Он зависит от отношения радиуса выгиба к толщине досок г/б и имеет значения 1,0...0,8 при увеличении этого отношения от 150 до 250. Коэффициент температуры m t учитывает снижение прочности древесины конструкций, работа­ющих при температуре от +35 до +50 °С. Он уменьшается от 1,0 до 0,8. Коэффициент влажности т вл учитывает снижение прочности древесины конструкций, работающих во влажной сре­де. При влажности воздуха в помещениях от 75 до 95 % т вл = 0,9. На открытом воздухе в сухой и нормальных зонах т вл = 0,85. При постоянном увлажнении и в воде т вл = 0,75. Коэффициент концентрации напряжения т к = 0,8 учитывает местное снижение прочности древесины в зонах врезками и отверстиями при растя­жении. Коэффициент длительности нагрузок т дл = 0,8 учитывает снижение прочности древесины в результате того, что длитель­ные нагрузки составляют иногда более 80 % от общей суммы нагрузок, действующих на конструкцию.

Модуль упругости древесины , определенный при кратковременных лабораторных испытаниях, Е кр = 15-Ю 3 МПа. При учете деформаций при длительном нагружении, при расчете по прогибам £=10 4 МПа (прилож. 7).

Нормативные и расчетные сопротивления строительной фане­ры были получены теми же способами, что и для древесины. При этом учитывалась ее листовая форма и нечетное число слоев с взаимно перпендикулярным направлением волокон. По­этому прочность фанеры по этим двум направлениям различна и вдоль наружных волокон она несколько выше.

Наиболее широко применяется в конструкциях семислойная фанера марки ФСФ. Ее расчетные сопротивления вдоль волокон наружных шпонов равны: растяжению # ф. р = 14 МПа, сжатию #ф. с = 12 МПа, изгибу из плоскости /? ф.„ = 16 МПа, скалыванию в плоскости # ф. ск = 0,8 МПа и срезу /? ф. ср - 6 МПа. Поперек волокон наружных шпонов эти величины соответственно равны: растяжению Я ф _ р = 9 МПа, сжатию # ф. с = 8,5 МПа, изгибу # Ф.и = 6,5 МПа, скалыванию R$. CK = 0,8 МПа, срезу # ф. ср = = 6 МПа. Модули упругости и сдвига вдоль наружных волокон равны соответственно Ё ф = 9-10 3 МПа и б ф = 750 МПа и по­перек наружных волокон £ ф = 6-10 3 МПа и G$ = 750 МПа.

Расчет на прочность может производиться по одной из двух методик - по предельному состоянию, или по допускаемым напряжениям. Методика расчета по допускаемым напряжениям принята при расчете машиностроительных конструкций, и основы ее использования приведены в курсе «Сопротивления материалов». При расчете строительных конструкций принята методика расчета по предельному состоянию, более совершенная, чем методика расчета по допускаемым напряжениям.

Предельное напряженное состояние – состояние, когда в точке возникает напряженное состояние, ведущее к возникновению нового процесса. Например, к развитию пластической деформации, к образованию трещины и т.д. Различные ПНС возникают при различных видах нагружения.

Предельное состояние – такое состояние, при котором конструкция теряет работоспособность или ее состояние становится нежелательной. Усилия вызывающие предельное состояние называются предельными

Следует различать предельные состояния и предельные напряженные состояния. Не всегда эти понятия совпадают. Примеры:

Увеличение напряжений при изгибе балки до предела текучести приводит достижению ПНС в точках максимально удаленных от нейтральной линии. Дальнейшее увеличение нагрузки приводит к достижению напряжениями уровня предела текучести во всем сечении – предельного состояния в сечении, в конструкции происходит качественные изменения, перемещения резко увеличиваются, поскольку в наиболее нагруженном сечении образуется пластический шарнир.

Увеличение напряжений при растяжении приводит к последовательному появлению следующих предельных напряженных состояний: а) начала равномерной пластической деформации; б) образования шейки; в) разрушения.

Метод расчета по предельным состояниям

В соответствии с ГОСТ 27751-88 "Надежность строительных конструкций и оснований. Основные положения по расчету" предельные состояния подразделяются на две группы:

    первая группа включает предельные состояния, которые ведут к полной непригодности к эксплуатации конструкций, оснований (зданий или сооружений в целом) или к полной (частичной) потере несущей способности зданий и сооружений в целом;

    вторая группа включает предельные состояния, затрудняющие нормальную эксплуатацию конструкций (оснований) или уменьшающие долговечность зданий (сооружений) по сравнению с предусматриваемым сроком службы.

Предельные состояния первой группы характеризуются:

    разрушением любого характера (например, пластическим, хрупким, усталостным);

    потерей устойчивости формы, приводящей к полной непригодности к эксплуатации;

    потерей устойчивости положения;

    переходом в изменяемую систему;

    качественным изменением конфигурации;

    другими явлениями, при которых возникает необходимость прекращения эксплуатации (например, чрезмерными деформациями в результате ползучести, пластичности, сдвига в соединениях, раскрытия трещин, а также образованием трещин).

Предельные состояния второй группы характеризуются:

    достижением предельных деформаций конструкции (например, предельных прогибов, поворотов) или предельных деформаций основания;

    достижением предельных уровней колебаний конструкций или оснований;

    образованием трещин;

    достижением предельных раскрытий или длин трещин;

    потерей устойчивости формы, приводящей к затруднению нормальной эксплуатации;

    другими явлениями, при которых возникает необходимость временного ограничения эксплуатации здания или сооружения из-за неприемлемого снижения их срока службы (например, коррозионные повреждения).

Первое предельное состояние для растянутых и сжатых элементов выражается соотношением:

где
– расчетное сопротивление по пределу текучести;

– предел текучести;

– коэффициент надежности по материалу (γ С >1);

– расчетное сопротивление по пределу прочности;

– предел прочности;

– коэффициент условий работы (γ С <1);

-коэффициент надежности для элементов конструкций, рассчитываемых на прочность с использованием расчетных сопротивленийR u ;

– площадь поперечного сечения растянутого (сжатого) элемента.

Для изгибаемых элементов:

Формально величину в правой части неравенств (2 .0), (2 .0), (2 .0), мы можем принять за допускаемое напряжение, приемы расчета по предельному состоянию и допускаемым напряжениям совпадают, однако при расчете по предельным состояниям общий и неизменный коэффициент запаса прочности заменяется несколькими переменными величинами. Это позволяет при расчете по предельному состоянию проектировать эксплуатационно равнопрочные конструкции.

При определении расчетных сопротивлений для сварных швов R W учитываются следующее: основной материал сварной конструкции, вспомогательные материалы используемые при сварке (марки покрытых электродов, электродных проволок), наличие либо отсутствие физических методов контроля сварного шва.

16 ноября 2011

При расчете по этому методу конструкция рассматривается в своем расчетном предельном состоянии. За расчетное предельное состояние принимается такое состояние конструкции, при котором она перестает удовлетворять предъявляемым к ней эксплуатационным требованиям, т. е. либо теряет способность сопротивляться внешним воздействиям, либо получает недопустимую деформацию или местное повреждение.

Для стальных конструкций установлено два расчетных предельных состояния:

  1. первое расчетное предельное состояние, определяемое несущей способностью ( , устойчивостью или выносливостью); этому предельному состоянию должны удовлетворять все стальные конструкции;
  2. второе расчетное предельное состояние, определяемое развитием чрезмерных деформаций (прогибов и перемещений); этому предельному состоянию должны удовлетворять конструкции, в которых величина деформаций может ограничить возможность их эксплуатации.

Первое расчетное предельное состояние выражается неравенством

где N — расчетное усилие в конструкции от суммы воздействий расчетных нагрузок Р в наиболее невыгодной комбинации;

Ф — несущая способность конструкции, являющаяся функцией геометрических размеров конструкции, расчетного сопротивления материала R и коэффициента условий работы m.

Расчетные нагрузки Р, на которые рассчитывается конструкция (по предельному состоянию), принимаются несколько больше нормативные. Расчетная нагрузка определяется, как произведение нормативной нагрузки на коэффициент перегрузки n (больший единицы), учитывающий опасность превышения нагрузки по сравнению с ее нормативным значением вследствие возможной изменчивости нагрузки:

Значения коэффициентов п приведены в таблице Нормативные и расчетные нагрузки, коэффициенты перегрузки.

Таким образом, конструкции рассматривают под воздействием не эксплуатационных (нормативных), а расчетных нагрузок. От воздействия расчетных нагрузок в конструкции определяют расчетные усилия (осевое усилие N или момент М), которые находят по общим правилам сопротивления материалов и строительной механики.

Правая часть основного уравнения (1.I) — несущая способность конструкции Ф — зависит от предельного сопротивления материала силовым воздействиям, характеризуемого механическими свойствами материала и называемого нормативным сопротивлением R н, а также от геометрических характеристик сечения (площади сечения F, момента сопротивления W и т. п.).

Для строительной стали нормативное сопротивление принято равным пределу текучести,

(для наиболее распространенной строительной стали марки Ст. 3 σ т = 2 400 кг/см 2).

За расчетное сопротивление стали R принимают напряжение, равное нормативному сопротивлению, умноженному на коэффициент однородности k (меньший единицы), учитывающий опасность снижения сопротивления материала по сравнению с нормативным его значением вследствие изменчивости механических свойств материала

Для обычных малоуглеродистых сталей k = 0,9, а для сталей повышенного качества (низколегированные) k = 0,85.

Таким образом, расчетное сопротивление R — это напряжение, равное наименьшему возможному значению предела текучести материала, которое и принимается для конструкции как предельное.

Таким образом, основное расчетное уравнение (1.I) будет иметь следующий вид:

  • при проверке конструкции на прочность при действии осевых сил или моментов

где N и M — расчетные осевые силы или моменты от расчетных нагрузок (с учетом коэффициентов перегрузки); F нт — площадь сечения нетто (за вычетом отверстий); W нт — момент сопротивления сечения нетто (за вычетом, отверстий);

  • при проверке конструкции на устойчивость

где F бр и W бр — площадь и момент сопротивления сечения брутто (без вычета отверстий); φ и φ б — коэффициенты, уменьшающие расчетное сопротивление до значений, обеспечивающих устойчивое равновесие.

Обычно при расчете намеченной конструкции сначала подбирают сечение элемента и потом проверяют напряжение от расчетных усилий, которое не должно превышать расчетного сопротивления, умноженного на кoэффициeнт условий работы.

Поэтому наряду с формулами вида (4.I) и (5.I) будем записывать эти формулы в рабочем виде через расчетные напряжения, например:

  • при проверке на прочность

  • при проверке на устойчивость

где σ — расчетное напряжение в конструкции (от расчетных нагрузок).

Коэффициенты φ и φ б в формулах (8.I) и (9.I) правильнее записывать в правой части неравенства, как коэффициенты, снижающие расчетные сопротивления до критических напряжений. И только в целях удобства ведения расчета и сравнения результатов они записываются в знаменателе левой части этих формул.

* Значения нормативных сопротивлений и коэффициентов однородности приведены в «Строительных нормах и правилах» (СНиП), а также в «Нормах и технических условиях проектирования стальных конструкций» (НиТУ 121-55).

«Проектирование стальных конструкций»,
К.К.Муханов


Различают несколько категорий напряжений: основные, местные, дополнительные и внутренние. Основные напряжения — это напряжения, которые развиваются внутри тела в результате уравновешивания воздействий внешних нагрузок; они учитываются расчетом. При неравномерном распределении силового потока по сечению, вызванном, например, резким изменением сечения или наличием отверстия, возникает местная концентрация напряжений. Однако в пластических материалах, к которым относится строительная сталь,…

При расчете то допускаемым напряжениям конструкция рассматривается в ее рабочем состоянии под действием нагрузок, допускаемых при нормальной эксплуатации сооружения, т. е. нормативных нагрузок. Условие прочности конструкции заключается в том, чтобы напряжения в конструкции от нормативных нагрузок не превышали установленных нормами допускаемых напряжений, которые представляют собой некоторую часть от предельного напряжения материала, принимаемого для строительной стали…

по геометрическому признаку :

    массив - конструкция, в которой все размеры одного порядка;

    брус - элемент, в котором два размера во много раз меньше третьего;

    плита - элемент, в котором один размер во много раз меньше двух других;

    стержневые системы представляют собой геометрически неизменяемые системы стержней, соединенных между собой шарнирно или жестко. К ним относятся строительные фермы (балочные или консольные)

с точки зрения статики:

    статически определимые – конструкции, усилия или напряжения в которых могут быть определены только из уравнений равновесия;

    статически неопределимые – конструкции, для которых одних уравнений статики недостаточно;

по используемым материалам : стальные, деревянные, железобетонные, бетонные, каменные (кирпичные);

с точки зрения напряженно-деформированного состояния (т.е. возникающих в конструкциях внутренних усилий, напряжений и деформаций под действием внешней нагрузки): простейшие, простые, сложные.

  1. Требования к несущим конструкциям:

Надежность – способность конструкции сохранять свои эксплуатационные качества в течение всего срока службы сооружения, а также в период ее транспортирования с заводов на строительную площадку и в момент монтажа.

Долговечность - предельный срок службы зданий и сооружений, в течение которого они сохраняют требуемые эксплуатационные качества.

Индустриальность

Унификация - ограничение количества типоразмеров параметров зданий и типовых изделий с учетом их взаимозаменяемости.

  1. Физический смысл предельных состояний конструкций. Примеры предельных состояний первой и второй групп. Суть расчета по предельным состояниям.

Предельными называются такие состояния для здания, сооружения, а также основания или отдельных конструкций, при которых они перестают удовлетворять заданным эксплуатационным требованиям, а также требованиям, заданным при их возведении. Предельные состояния конструкций (зданий) подразделяются на две группы:

    К предельным состояниям первой группы относятся: общая потеря устойчивости формы; потеря устойчивости положения; хрупкое, вязкое или иного характера разрушение; разрушение под совместным воздействием силовых факторов и неблагоприятных влияний внешней среды и др.

    К предельным состояниям второй группы относятся состояния, затрудняющие нормальную эксплуатацию конструкций (зданий) или снижающие их долговечность вследствие появлений недопустимых перемещений (прогибов, осадок, углов поворота), колебаний и трещин;

Суть расчета: метод расчета строительных конструкций по предельным состояниям имеет своей целью не допустить наступления ни одного из предельных состояний, которые могут возникнуть в конструкции (здании).

  1. Структура и содержание основных расчетных формул при расчете по предельным состояниям первой и второй групп.

При расчетах по предельным состояниям первой и второй групп в качестве главного прочностного показателя материала, как уже отмечалось, устанавливается его сопротивление, которое (наряду с другими характеристиками) может принимать нормативные и расчетные значения:

R n - нормативное сопротивление материала , представляет собой основной параметр сопротивления материалов внешним воздействиям и устанавливается соответствующими главами строительных норм (с учетом условий контроля и статистической изменчивости сопротивлений). Физический смысл нормативного сопротивления R n - это контрольная или браковочная характеристика сопротивления материала с обеспеченностью не менее 0,95%;

R - расчетное сопротивление материала , определяется по формуле:

γ m - коэффициент надежности по материалу , учитывает возможные отклонения сопротивления материала в неблагоприятную сторону от нормативных значений, γ m > 1.

γ c - коэффициент условий работы , учитывает особенности работы материалов, элементов и соединений конструкций, а также зданий и сооружений в целом, если эти особенности имеют систематический характер, но не отражаются в расчетах прямым путем (учет температуры, влажности, агрессивности среды, приближенности расчетных схем и др.);

N ; N ; γ f , учитывает возможные отклонения нагрузок в неблагоприятную (большую или меньшую) сторону от их нормативных значений; γ n - коэффициент надежности по ответственности , учитывает экономические, социальные и экологические последствия, которые могут возникать в результате аварий.

N s ег и сервисное сопротивление R ser считаются расчетными для расчетов по предельным состояниям второй группы.

При расчетах по первой группе предельных состояний , которые связаны с обеспечением несущей способности конструкций (здания), принимают расчетные значения: расчетные нагрузки N и расчетные сопротивления материала R.

    Работа материалов для несущих конструкций под нагрузкой и их расчетные характеристики.

    Сталь .

три участка работы стали: 1 - участок упругой работы; 2 - участок пластической работы; 3 - участок упругопластической работы.

нормативные и расчетные сопротивления, необходимые для расчета конструкций, принимаются по пределу текучести

R уп - нормативное сопротивление стали, принятое по пределу текучести; R y - расчетное сопротивление стали, принятое по пределу текучести;

R ип - нормативное сопротивление стали, принятое по временному сопротивлению; R и - расчетное сопротивление стали, принятое по временному сопротивлению;

    Древесина

Деревянные конструкции выполняются из лесоматериалов хвойных и лиственных пород, которые делятся на круглые - бревна, пиленые - пиломатериалы и строительную фанеру.

Работа древесины зависит от вида загружения (растяжение, сжатие, изгиб, смятие, скалывание), направления действия усилия по отношению к направлению волокон древесины, длительности приложения нагрузки, породы древесины и других факторов. Наличие пороков древесины (косослоя, сучков, трещин и т.п.) оказывает существенное влияние на ее прочность. Древесина подразделяется на три сорта, наиболее качественная древесина отнесена к первому сорту.

Диаграмма работы древесины вдоль волокон: 1 - на растяжение; 2 - на сжатие; Я^р - временное сопротивление чистой древесины; с - нормальные напряжения; е - относительные деформации

    Железобетон. Железобетон является комплексным строительным материалом, в котором совместно работают бетон и стальная арматура. Для понимания работы железобетона и определения характеристик, необходимых для расчета, рассмотрим каждый из входящих в его состав материалов.

Основным показателем качества бетона является класс прочности на сжатие, который устанавливается на основании испытаний бетонных кубов в возрасте 28 суток.

Диаграмма напряжений и деформаций бетона: 1 - зона упругих деформаций; 2- зона пластических деформаций; σ bu - временное сопротивление бетона сжатию; σ btu - временное сопротивление бетона растяжению; Еb - модуль упругости бетона;

    Арматура. Арматура в железобетонных конструкциях принимается в зависимости от типа конструкции, наличия предварительного напряжения, а также условий эксплуатации зданий и сооружений

По характеру работы арматуры, отраженной на диаграмме, различают три вида арматурных сталей: 1. Сталь с выраженной площадкой текучести (мягкая арматурная сталь). Предел текучести таких сталей -σ у 2 - Арматурная сталь с условным пределом текучести - σ 0.2 . Предел текучести таких сталей принимается равным напряжению, при котором остаточные деформации образца составляют 0,2%. 3 - Арматурная сталь с линейной зависимостью σ 0.2 - почти до разрыва. Для таких сталей предел текучести устанавливается как для сталей второго вида.

Диаграммы растяжения арматурных сталей:

.

    Каменная кладка. Прочность каменной кладки зависит в основном от прочности камня (кирпича) и раствора.

Диаграмма деформаций каменной кладки при сжатии: 1 - зона упругих деформаций; 2- зона пластических деформаций; R и - временное сопротивление (средний предел прочности сжатию кладки); tg φ 0 = E 0 - модуль упругости (начальный модуль деформации)

Строительные конструкции должны, прежде всего, обладать доста-точной надёжностью — т. е. способностью выполнять определённые функции в соответствующих условиях в течение определённого сро-ка. Прекращение выполнения строительной конструкцией хотя бы одной из предусмотренных для неё функций называется отказом.

Таким образом, под отказом понимают возможность наступле-ния такого случайного события, результатом которого являются со-циальные или экономические потери. Считается, что конструкция в момент, предшествующий отказу, переходит в предельное состояние.

Предельными называются такие состояния, при наступлении ко-торых конструкция перестаёт удовлетворять предъявляемым к ней требованиям, т. е. она теряет способность сопротивляться внешним нагрузкам или получает недопустимые перемещения либо местные повреждения.

Причинами наступления в строительных конструкциях предель-ных состояний могут быть перегрузки, невысокое качество матери-алов, из которых они изготовлены, и другое.

Основное отличие рассматриваемого метода от прежних методов расчёта (расчет по допускаемым напряжениям) в том, что здесь чётко устанавливаются предельные состоя-ния конструкций и вместо единого коэффициента запаса прочности k в расчёт вводится система расчётных коэффициентов, гарантиру-ющих конструкцию с определённой обеспеченностью от наступления этих состояний при самых неблагоприяных (но реально возможных) условиях. В настоящее время этот метод расчета принят в качестве основного официального.

Железобетонные конструкции могут потерять необходимые эксплуатационные качества по одной из двух причин:

1. В результате исчерпания несущей способности (разрушение материала в наиболее нагруженных сечениях, потери устойчивости отдельных элементов или всей конструкцией в целом);

2. В следствии чрезмерных деформаций (прогибов, колебаний, осадок), а также из-за образования трещин или чрезмерного их раскрытия.

В соответствии с указанными двумя причинами, которые могут вызвать потерю эксплуатационных качеств конструкций, нормами установлены две группы их предельных состояний:

По несущей способности (первая группа);

По пригодности к нормальней эксплуатации (вторая группа).

Задачей расчёта является предотвращение наступления в рас-сматриваемой конструкции любого предельного состояния в период изготовления, транспортирования, монтажа и эксплуатации.

Расчёты по предельным состояниям первой группы должны обеспечивать в период эксплуатации конструкции и для других ста-дий работы её прочность, устойчивость формы, устойчивость по-ложения, выносливость и др.


Расчёты по предельным состояниям второй группы выполняют, чтобы предотвратить в период эксплуатации конструкции и на дру-гих стадиях её работы чрезмерное по ширине раскрытие трещин, приводящее к преждевременной коррозии арматуры , или их образованиие, а также чрезмерные перемещения.

Расчётные факторы

Это нагрузки и механические характеристики материалов (бетона и арматуры). Они обладают статистической изменчивостью или раз-бросом значений. В расчётах по предельным состояниям учитывают (в неявной форме) изменчивость нагрузок и механических характе-ристик материалов, а также различные неблагоприятные или благо-приятные условия работы бетона и арматуры , условия изготовления и эксплуатации элементов зданий и сооружений.

Нагрузки, механические характеристики материалов и расчёт-ные коэффициенты нормированы. При проектировании железобе-тонных конструкций значения нагрузок, сопротивлений бетона и ар-матуры устанавливают по главам СНиП 2.01.07-85* и СП 52-101-2003.

Классификация нагрузок. Нормативные и расчёт-ные нагрузки

Нагрузки и воздействия на здания и сооружения в зависимости от продолжительности их действия делят на постоянные и временные. Последние, в свою очередь, подразделяются на длительные, крат-ковременные и особые.

являются вес несущих и ограждающих конструкций зданий и сооружений, вес и давление грунтов, воздей-ствие предварительного напряжения железобетонных конструкций.

относятся: вес стационар-ного оборудования на перекрытиях — станков, аппаратов, двига-телей, ёмкостей и т. п.; давление газов, жидкостей, сыпучих тел в ёмкостях; нагрузки на перекрытия от складируемых материалов и стеллажного оборудования в складских помещениях, холодильни-ках, зернохранилищах, книгохранилищах, архивах и подобных по-мещениях; температурные технологические воздействия от стацио-нарного оборудования; вес слоя воды на водонаполненных плоских покрытиях и др.

Относятся: вес людей, ремонтных материалов в зонах обслуживания и ремонта оборудова-ния, снеговые нагрузки с полным нормативным значением, ветро-вые нагрузки, нагрузки, возникающие при изготовлении, перевозке и монтаже элементов конструкций и некоторые др.

относятся: сейсмические и взрывные воз-действия; нагрузки, вызываемые резкими нарушениями технологи-ческого процесса, временной неисправностью или поломкой обору-дования и т. п.

Нагрузки в соответствии со СНиП 2.01.07-85* делятся также на нормативные и расчётные.

Нормативными называются нагрузки или воздействия близкие по величине к наибольшим возможным при нормальной эксплуата-ции зданий и сооружений. Их значения приводятся в нормах.

Изменчивость нагрузок в неблагоприятную сторону оценивают коэффициентом надёжности по нагрузке γ f .

Расчётное значение нагрузки gдля расчёта конструкции на проч-ность или устойчивость определяется путём умножения её норма-тивного значения g п на коэффициент γ f , обычно больший 1

Значения дифференцированы в зависимости от характера на-грузок и их величины. Так, например, при учёте собственного веса бетонных и железобетонных конструкций = 1,1; при учёте соб-ственного веса различных стяжек, засыпок, утеплителей, выполня-емых в заводских условиях, = 1,2, а на строительной площадке = 1,3. Коэффициенты надёжности по нагрузке для равномер-но распределённых нагрузок следует принимать:

1,3 — при полном нормативном значении менее 2 кПа (2 кН/м 2);

1,2 — при полном нормативном значении 2 кПа (2 кН/м 2) и бо-лее. Коэффициент надёжности по нагрузке для собственного веса при расчёте конструкции на устойчивость положения против всплы-тия, опрокидывания и скольжения, а также в других случаях, когда уменьшение массы ухудшает условия работы конструкции, прини-мают равным 0,9.

Расчёты по предельным состояниям второй группы ведут по нор-мативным нагрузкам или по расчётным, взятым с γ f = 1.

Здания и сооружения подвергаются одновременному действию различных нагрузок. Поэтому расчёт здания или сооружения в це-лом, либо отдельных его элементов, должен выполняться с учётом наиболее неблагоприятных сочетаний этих нагрузок или усилий, вы-званных ими. Неблагоприятные, но реально возможные сочетания нагрузок при проектировании выбираются в соответствии с реко-мендациями СНиП 2.01.07-85*.

В зависимости от состава учитываемых нагрузок различают сочетания:

- основные , включающие постоянные, длительные и кратковременные нагрузки

Т = ΣТ пост + ψ 1 ΣТ длит + ψ 2 ΣТ крат,

где Т = М, Т, Q;

ψ - коэффициент сочетаний (если учитывается 1 кратковременная нагрузка, то ψ 1 = ψ 2 =1,0, если в сочетание входят 2 и более кратковременных нагрузок, то ψ 1 = 0,95, ψ 2 = 0,9);

- особые , включающие дополнительно к постоянным, длительным и кратковременным нагрузкам особую нагрузку (ψ 1 = 0,95, ψ 2 = 0,80).