Случаи приведения плоской системы сил к простейшему виду. Задачи на тему приведение системы сил к простейшему виду Приведение системы к простейшему виду

Приведение системы сил к центру

Вопросы

Лекция 6

3. Условия равновесия произвольной системы сил

1. Рассмотрим произвольную систему сил . Выберем произвольную точку О за центр приведения и, воспользовавшись теоремой о параллельном переносе силы, перенесем все силы системы в данную точку, не забывая при переносе каждой силы добавлять присоединенную пару сил.

Полученную таким образом систему сходящихся сил заменим одной силой , равной главному вектору исходной системы сил. Образовавшуюся при переносе систему пар сил заменим одной парой с моментом , равным геометрической сумме моментов всех пар сил (т.е. геометрической суммой моментов исходной системы сил относительно центра О ).

Такой момент называется главным моментом системы сил относительно центра О (рис. 1.30).

Рис. 1.30. Приведение системы сил к центру

Итак, любую систему сил всегда можно заменить всего двумя силовыми факторами - главным вектором и главным моментом относительно произвольно выбранного центра приведения . Очевидно, что главный вектор системы сил не зависит от выбора центра приведения (говорят, что главный вектор инвариантен по отношению к выбору центра приведения). Очевидно также, что главный момент таким свойством не обладает, поэтому необходимо всегда указывать, относительно какого центра определяется главный момент.

2. Приведение системы сил к простейшему виду

Возможность дальнейшего упрощения произвольных систем сил зависит от значения их главного вектора и главного момента, а также от удачного выбор центра приведения. При этом возможны следующие случаи:

a) , . В данном случае система приводится к паре сил с моментом , значение которого не зависит от выбора центра приведения.

б) , . Система приводится к равнодействующей, равной , линия действия которой проходит через центр О .

в) , и взаимно перпендикулярны. Система приводится к равнодействующей, равной , но не проходящей через центр О (рис. 1.31).

Рис. 1.31. Приведение системы сил к равнодействующей

Заменим главный момент парой сил , как показано на рис. 1.31. Определим R из условия, что M 0 = R h . Затем отбросим на основании второй аксиомы статики уравновешенную систему двух сил , приложенных в точке О .

г) и параллельны. Система приводится к динамическому винту, с осью, проходящей через центр О (рис. 1.32).

Рис. 1.32. Динамический винт

д) и не равны нулю и при этом главный вектор и главный момент не параллельны и не перпендикулярны друг другу. Система приводится к динамическому винту, но ось не проходит через центр О (рис. 1.33).


Рис. 1.33. Самый общий случай приведения системы сил

Как выше было доказано, произвольная система сил, как угодно расположенных в пространстве, может быть приведена к одной силе, равной главному вектору системы и приложенной в произвольном центре приведенияО , и одной паре с моментом , равным глав­ному моменту системы относительно того же центра. По

этому в дальнейшем произвольную систему сил можно заменять эквива­лентной ей совокупностью двух векторов - силы и момента, приложенных в точкеО . При изменении положения центра приведения О главный вектор будет сохранять величину и напра­вление, а главный моментбудет изменяться. Докажем, что если главный вектор и главный момент отличны от нуля и взаимно перпендикулярны, то система сил приводится к одной силе, которую в этом случае будем называть равнодействующей (рис.8). Главный моментможно представить парой сил ( ,) с плечом , тогда силыи главный век торобразуют систему двух сил эквивалентную нулю, которую можно отбросить. Останется одна сила, действующая вдоль прямой, параллельной главному вектору и проходящей на расстоянииh =от плоскости, образуемой векторамии. Рассмотренный случай показывает, что если с самого начала выбрать центр приведения на прямой L, то систему сил сразу бы привели к равнодействующей, главный момент был бы равен нулю. Теперь докажем, что если главный вектор отличен от нуля и не перпендикулярен к главному моменту, то за центр приведения может быть выбрана такая точка О *, что главный момент относительно этой точки и главный вектор расположатся на одной прямой. Для доказательства разложим момент на две составляю­щие- одну, направленную вдоль главного вектора, и другую- перпендикулярную к главному вектору. Тем самым пара силраскладывается на две пары с моментами:и, причем плоскость первой пары перпендикулярна к, тогда плоскость второй пары, перпендикулярная к вектору(рис 9) содержит вектор. Совокупность пары с моментоми силыобразует систему сил, которая может быть сведена к одной силе (рис.8) , проходящей через точку О* . Таким образом (рис 9), совокупность главного вектораи главного моментав точкеО сведена к силе , проходящей через точкуО* , и паре с моментом параллельным этой прямой , что и требовалось доказать. Совокупность силы и пары, плоскость которой перпендикулярна к линии действия силы, называется динамой (рис.10). Пару сил можно представить двумя равными по величине силами (,), расположенными как показано на рис 10. Но, сложив две силыи, получим их суммуи оставшуюся силу, откуда следует (рис.10), что совокупность главного вектораи главного моментав точкеО , может быть сведена к двум непересекающимся силам и.

Рассмотрим некоторые случаи приведения системы сил.

1. Плоская система сил. Пусть для определённости все силы находятся в плоскости OXY . Тогда в самом общем случае

Главный вектор не равен нулю, главный момент не равен нулю, их скалярное произведение равно нулю, действительно

следовательно, главный вектор перпендикулярен главному моменту: плоская система сил приводится к равнодействующей.

2. Система параллельных сил. Пусть для определённости все силы параллельны оси OZ . Тогда в самом общем случае

Здесь также главный вектор не равен нулю, главный момент не равен нулю, а их скалярное произведение равно нулю, действительно

следовательно, главный вектор перпендикулярен главному моменту: система параллельных сил приводится к равнодействующей. В частном случае, если равна нулю, то и главный вектор сил равен нулю, и система сил приводится к паре сил, вектор момента которой находится в плоскостиOXY . Систематизируем теперь рассмотренные случаи. Напомним: произвольная пространственная система сил, приложенная к твердому телу, статически эквивалентна силе, равной главному вектору, приложенной в произвольной точке тела (центре приведения), и паре сил с моментом, равным главному моменту системы сил относительно указанного центра приведения.

1) Пусть =0,≠0. Это случай, когда система сил приводится к одной силе, которую будем называть равнодействующей системы сил. Примером такой системы сил можно считать сходящуюся систему сил, для которой линии действия всех сил пересекаются в одной точке.

2) ≠0,=0 . Система сил эквивалентна паре сил.

3) ≠0,≠0, но. Главный вектор не равен нулю, главный момент не равен нулю, их скалярное произведение равно нулю, т.е. главный вектор и главный момент ортогональны. Любая система векторов, у которой главный вектор и главный мо­мент не равны нулю и они перпендикулярны, эквивалентна равно­действующей, линия действия которой проходит через точкуО* (рис 8). Примером такой системы сил можно считать плос­кую систему сил или систему параллельных сил.

4) ≠0,≠0, и главный вектор и главный момент неортогональны. В этом случае система сил приводится к динаме или к двум непересекающимся силам.

Как выше было доказано, произвольная система сил, как угодно расположенных в пространстве, может быть приведена к одной силе, равной главному вектору системы и приложенной в произвольном центре приведения О , и одной паре с моментом , равным глав­ному моменту системы относительно того же центра. Поэтому в дальнейшем произвольную систему сил можно заменять эквива­лентной ей совокупностью двух векторов - силы и момента , приложенных в точке О . При изменении положения центра приведения О главный вектор будет сохранять величину и напра­вление, а главный момент будет изменяться. Докажем, что если главный вектор отличен от нуля и перпендикулярен к главному моменту, то система сил приводится к одной силе, которую в этом случае будем называть равнодействующей (рис.8). Главный момент можно представить парой сил ( , ) с плечом , тогда силы и главный век тор образуют систему двух

сил эквивалентную нулю, которую можно отбросить. Останется одна сила , действующая вдоль прямой, параллельной главно

Рис 8 му вектору и проходящей на расстоянии

h = от плоскости, образуемой векторами и . Рассмотренный случай показывает, что если с самого начала выбрать центр приведения на прямой L, то систему сил сразу бы привели к равнодействующей, главный момент был бы равен нулю. Теперь докажем, что если главный вектор отличен от нуля и не перпендикулярен к главному моменту, то за центр приведения может быть выбрана такая точка О *, что главный момент относительно этой точки и главный вектор расположатся на одной прямой. Для доказательства разложим момент на две составляю­щие- одну , направленную вдоль главного вектора, и другую - перпендикулярную к главному вектору. Тем самым пара сил раскладывается на две пары с моментами: и , причем плоскость первой пары перпендикулярна к , тогда плоскость второй пары, перпендикулярная к вектору (рис 9) содержит вектор . Совокупность пары с моментом и силы образует систему сил, которая может быть сведена к одной силе (рис.8) , проходящей через точку О* . Таким образом (рис 9), совокупность главного вектора и главного момента в точке О сведена к силе , проходящей через точку О* , и паре с моментом параллельным этой прямой , что и требовалось доказать. Совокупность силы и пары, плоскость которой перпендикулярна к линии действия силы, называется динамой (рис.10). Пару сил можно представить двумя равными по величине силами ( , ), расположенными как показано на рис 10. Но, сложив две силы и , получим их сумму и оставшуюся силу , откуда следует (рис.10), что совокупность главного вектора и главного момента в точке О , может быть сведена к двум непересекающимся силам и .

Рассмотрим некоторые случаи приведения системы сил.

1. Плоская система сил. Пусть для определённости все силы находятся в плоскости OXY . Тогда в самом общем случае

Главный вектор не равен нулю, главный момент не равен нулю, их скалярное произведение равно нулю, действительно

следовательно, главный вектор перпендикулярен главному моменту: плоская система сил приводится к равнодействующей.

2. Система параллельных сил. Пусть для определённости все силы параллельны оси OZ . Тогда в самом общем случае

Здесь также главный вектор не равен нулю, главный момент не равен нулю, а их скалярное произведение равно нулю, действительно

следовательно, и этом случае главный вектор перпендикулярен главному моменту: система параллельных сил приводится к равнодействующей. В частном случае, если равен нулю, то и главный вектор сил равен нулю, и система сил приводится к паре сил, вектор момента которой находится в плоскости OXY . Систематизируем теперь рассмотренные случаи. Напомним: произвольная пространственная система сил, приложенная к твердому телу, статически эквивалентна силе, равной главному вектору, приложенной в произвольной точке тела (центре приведения), и паре сил с моментом, равным главному моменту системы сил относительно указанного центра приведения.

Случаи приведения к простейшему виду

Приведение к паре

Пусть в результате приведения сил к центру О оказалось, что главный вектор равен нулю, а главный момент отличен от нуля: . Тогда в силу основной теоремы статики можем написать

Это означает, что исходная система сил в этом случае эквивалентна паре сил с моментом .

Момент пары не зависит от того, какая точка выбрана в качестве центра моментов при вычислении момента пары. Следовательно, в данном случае главный момент не должен зависеть от выбора центра приведения. Но именно к этому выводу и приводит соотношение

связывающее главные моменты относительно двух различных центров. При добавочный член также равен нулю, и мы получаем

Приведение к равнодействующей

Пусть теперь главный вектор не равен нулю, а главный момент равен нулю: . В силу основной теоремы статики имеем

то есть система сил оказывается эквивалентной одной силе - главному вектору. Следовательно, в этом случае исходная система сил приводится к равнодействующей, и эта равнодействующая совпадает с главным вектором, приложенным в центре приведения: .

Система сил приводится к равнодействующей и в том случае, когда главный вектор и главный момент оба не равны нулю, но взаимно перпендикулярны: . Доказательство осуществляется при помощи следующей последовательности действий.

Через центр приведения О проводим плоскость, перпендикулярную главному моменту (рис. 50, а). На рисунке эта плоскость совмещена с плоскостью чертежа, в ней же расположен главный вектор . В этой плоскости строим пару с моментом , причем силы пары выберем равными по модулю главному вектору ; тогда плечо пары будет равно . Далее переместим пару в ее плоскости таким образом, чтобы одна из сил пары оказалась приложенной в центре приведения О противоположно главному ; вторая сила пары будет приложена в точке С, отстоящей от центра О в нужную сторону, определяемую направлением , на расстоянии ОС, равном плечу пары h (рис. 50, б). Отбрасывая теперь уравновешенные силы R и - , приложенные в точке О, приходим к одной силе , приложенной в точке С (рис. 50, в). Она и будет служить равнодействующей данной системы сил .

Видно, что равйодействующая по-прежнему равна главному вектору , однако отличается от главного вектора своей точкой приложения. Если главный вектор приложен в центре приведения О, то равнодействующая - в точке С, положение которой требует специального определения. Геометрический способ нахождения точки С виден из проделанного выше построения.

Для момента равнодействующей относительно центра приведения О можно написать (см. рис. 50):

или, опуская промежуточные значения:

Если спроектировать это векторное равенство на какую-либо ось , проходящую через точку О, получаем соответствующее равенство в проекциях:

Вспоминая, что проекция момента силы относительно точки на ось, проходящую через эту точку, является моментом силы относительно оси, перепишем этой равенство так:

Полученные равенства выражают теорему Вариньона в ее общем виде (в лекции 2 теорема была сформулирована только для сходящихся сил): если система сил имеет равнодействующую, то момент этой равнодействующей (относительно точки, относительно оси) равен сумме моментов всех заданных сил - составляющих (относительно той же точки, той же оси). Понятно, что в случае точки суммирование моментов векторное, в случае оси - алгебраическое.

Приведение к динаме

Динамой или динамическим винтом называется совокупность пары сил и силы, направленной перпендикулярно плоскости действия пары. Можно показать, что в общем случае приведения, когда и не перпендикулярен , исходная система сил эквивалентна некоторой динаме.


Случаи приведения к простейшему виду

Приведение к паре

Пусть в результате приведения сил к центру О оказалось, что главный вектор равен нулю, а главный момент отличен от нуля: . Тогда в силу основной теоремы статики можем написать

Это означает, что исходная система сил в этом случае эквивалентна паре сил с моментом .

Момент пары не зависит от того, какая точка выбрана в качестве центра моментов при вычислении момента пары. Следовательно, в данном случае главный момент не должен зависеть от выбора центра приведения. Но именно к этому выводу и приводит соотношение

связывающее главные моменты относительно двух различных центров. При добавочный член также равен нулю, и мы получаем

Приведение к равнодействующей

Пусть теперь главный вектор не равен нулю, а главный момент равен нулю: . В силу основной теоремы статики имеем

то есть система сил оказывается эквивалентной одной силе - главному вектору. Следовательно, в этом случае исходная система сил приводится к равнодействующей, и эта равнодействующая совпадает с главным вектором, приложенным в центре приведения: .

Система сил приводится к равнодействующей и в том случае, когда главный вектор и главный момент оба не равны нулю, но взаимно перпендикулярны: . Доказательство осуществляется при помощи следующей последовательности действий.

Через центр приведения О проводим плоскость, перпендикулярную главному моменту (рис. 50, а). На рисунке эта плоскость совмещена с плоскостью чертежа, в ней же расположен главный вектор . В этой плоскости строим пару с моментом , причем силы пары выберем равными по модулю главному вектору ; тогда плечо пары будет равно . Далее переместим пару в ее плоскости таким образом, чтобы одна из сил пары оказалась приложенной в центре приведения О противоположно главному ; вторая сила пары будет приложена в точке С, отстоящей от центра О в нужную сторону, определяемую направлением , на расстоянии ОС, равном плечу пары h (рис. 50, б). Отбрасывая теперь уравновешенные силы R и - , приложенные в точке О, приходим к одной силе , приложенной в точке С (рис. 50, в). Она и будет служить равнодействующей данной системы сил .

Видно, что равйодействующая по-прежнему равна главному вектору , однако отличается от главного вектора своей точкой приложения. Если главный вектор приложен в центре приведения О, то равнодействующая - в точке С, положение которой требует специального определения. Геометрический способ нахождения точки С виден из проделанного выше построения.

Для момента равнодействующей относительно центра приведения О можно написать (см. рис. 50):

или, опуская промежуточные значения:

Если спроектировать это векторное равенство на какую-либо ось , проходящую через точку О, получаем соответствующее равенство в проекциях:

Вспоминая, что проекция момента силы относительно точки на ось, проходящую через эту точку, является моментом силы относительно оси, перепишем этой равенство так:

Полученные равенства выражают теорему Вариньона в ее общем виде (в лекции 2 теорема была сформулирована только для сходящихся сил): если система сил имеет равнодействующую, то момент этой равнодействующей (относительно точки, относительно оси) равен сумме моментов всех заданных сил - составляющих (относительно той же точки, той же оси). Понятно, что в случае точки суммирование моментов векторное, в случае оси - алгебраическое.

Приведение к динаме

Динамой или динамическим винтом называется совокупность пары сил и силы, направленной перпендикулярно плоскости действия пары. Можно показать, что в общем случае приведения, когда и не перпендикулярен , исходная система сил эквивалентна некоторой динаме.