Основы гидродинамики. Основы гидродинамики Что такое гидродинамика

Гидродинамика - раздел гидравлики, в котором изучаются законы движения жидкости и ее взаимодействие с неподвижными и подвижными поверхностями.

Если отдельные частицы абсолютно твердого тела жестко связаны между собой, то в движущейся жидкой среде такие связи отсутствуют. Движение жидкости состоит из чрезвычайно сложного перемещения отдельных молекул.

3.1. Основные понятия о движении жидкости

Живым сечением ω (м²) называют площадь поперечного сечения потока, перпендикулярную к направлению течения. Например, живое сечение трубы - круг (рис.3.1, б); живое сечение клапана - кольцо с изменяющимся внутренним диаметром (рис.3.1, б).

Рис. 3.1. Живые сечения: а - трубы, б - клапана

Смоченный периметр χ ("хи") - часть периметра живого сечения, ограниченное твердыми стенками (рис.3.2, выделен утолщенной линией).

Рис. 3.2. Смоченный периметр

Для круглой трубы

если угол в радианах, или

Расход потока Q - объем жидкости V , протекающей за единицу времени t через живое сечение ω.

Средняя скорость потока υ - скорость движения жидкости, определяющаяся отношением расхода жидкости Q к площади живого сечения ω

Поскольку скорость движения различных частиц жидкости отличается друг от друга, поэтому скорость движения и усредняется. В круглой трубе, например, скорость на оси трубы максимальна, тогда как у стенок трубы она равна нулю.

Гидравлический радиус потока R - отношение живого сечения к смоченному периметру

Течение жидкости может быть установившимся и неустановившимся. Установившимся движением называется такое движение жидкости, при котором в данной точке русла давление и скорость не изменяются во времени

υ = f(x, y, z)

P = φ f(x, y, z)

Движение, при котором скорость и давление изменяются не только от координат пространства, но и от времени, называется неустановившимся или нестационарным

υ = f 1 (x, y, z, t)

P = φ f 1 (x, y, z, t)

Линия тока (применяется при неустановившемся движении) это кривая, в каждой точке которой вектор скорости в данный момент времени направлены по касательной.

Трубка тока - трубчатая поверхность, образуемая линиями тока с бесконечно малым поперечным сечением. Часть потока, заключенная внутри трубки тока называется элементарной струйкой .

Рис. 3.3. Линия тока и струйка

Течение жидкости может быть напорным и безнапорным. Напорное течение наблюдается в закрытых руслах без свободной поверхности. Напорное течение наблюдается в трубопроводах с повышенным (пониженным давлением). Безнапорное - течение со свободной поверхностью, которое наблюдается в открытых руслах (реки, открытые каналы, лотки и т.п.). В данном курсе будет рассматриваться только напорное течение.

Рис. 3.4. Труба с переменным диаметром при постоянном расходе

Из закона сохранения вещества и постоянства расхода вытекает уравнение неразрывности течений. Представим трубу с переменным живым сечением (рис.3.4). Расход жидкости через трубу в любом ее сечении постоянен, т.е. Q 1 =Q 2 = const , откуда

ω 1 υ 1 = ω 2 υ 2

Таким образом, если течение в трубе является сплошным и неразрывным, то уравнение неразрывности примет вид:

3.2. Уравнение Бернулли для идеальной жидкости

Уравнение Даниила Бернулли, полученное в 1738 г., является фундаментальным уравнением гидродинамики. Оно дает связь между давлением P , средней скоростью υ и пьезометрической высотой z в различных сечениях потока и выражает закон сохранения энергии движущейся жидкости. С помощью этого уравнения решается большой круг задач.

Рассмотрим трубопровод переменного диаметра, расположенный в пространстве под углом β (рис.3.5).

Рис.3.5. Схема к выводу уравнения Бернулли для идеальной жидкости

Выберем произвольно на рассматриваемом участке трубопровода два сечения: сечение 1-1 и сечение 2-2 . Вверх по трубопроводу от первого сечения ко второму движется жидкость, расход которой равен Q .

Для измерения давления жидкости применяют пьезометры - тонкостенные стеклянные трубки, в которых жидкость поднимается на высоту . В каждом сечении установлены пьезометры, в которых уровень жидкости поднимается на разные высоты.

Кроме пьезометров в каждом сечении 1-1 и 2-2 установлена трубка, загнутый конец которой направлен навстречу потоку жидкости, которая называется трубка Пито . Жидкость в трубках Пито также поднимается на разные уровни, если отсчитывать их от пьезометрической линии .

Пьезометрическую линию можно построить следующим образом. Если между сечением 1-1 и 2-2 поставить несколько таких же пьезометров и через показания уровней жидкости в них провести кривую, то мы получим ломаную линию (рис.3.5).

Однако высота уровней в трубках Пито относительно произвольной горизонтальной прямой 0-0 , называемой плоскостью сравнения , будет одинакова.

Если через показания уровней жидкости в трубках Пито провести линию, то она будет горизонтальна, и будет отражать уровень полной энергии трубопровода .

Для двух произвольных сечений 1-1 и 2-2 потока идеальной жидкости уравнение Бернулли имеет следующий вид:

Так как сечения 1-1 и 2-2 взяты произвольно, то полученное уравнение можно переписать иначе:

С энергетической точки зрения каждый член уравнения представляет собой определенные виды энергии:

z1 и z2 - удельные энергии положения, характеризующие потенциальную энергию в сечениях 1-1 и 2-2 ;
- удельные энергии давления, характеризующие потенциальную энергию давления в тех же сечениях;
- удельные кинетические энергии в тех же сечениях.

Следовательно, согласно уравнению Бернулли, полная удельная энергия идеальной жидкости в любом сечении постоянна .

Уравнение Бернулли можно истолковать и чисто геометрически. Дело в том, что каждый член уравнения имеет линейную размерность. Глядя на рис.3.5, можно заметить, что z1 и z2 - геометрические высоты сечений 1-1 и 2-2 над плоскостью сравнения; - пьезометрические высоты; - скоростные высоты в указанных сечениях.

В этом случае уравнение Бернулли можно прочитать так: сумма геометрической, пьезометрической и скоростной высоты для идеальной жидкости есть величина постоянная .

3.3. Уравнение Бернулли для реальной жидкости

Уравнение Бернулли для потока реальной жидкости несколько отличается от уравнения

Дело в том, что при движении реальной вязкой жидкости возникают силы трения, на преодоление которых жидкость затрачивает энергию. В результате полная удельная энергия жидкости в сечении 1-1 будет больше полной удельной энергии в сечении 2-2 на величину потерянной энергии (рис.3.6).

Рис.3.6. Схема к выводу уравнения Бернулли для реальной жидкости

Потерянная энергия или потерянный напор обозначаются и имеют также линейную размерность.

Уравнение Бернулли для реальной жидкости будет иметь вид:

Из рис.3.6 видно, что по мере движения жидкости от сечения 1-1 до сечения 2-2 потерянный напор все время увеличивается (потерянный напор выделен вертикальной штриховкой). Таким образом, уровень первоначальной энергии, которой обладает жидкость в первом сечении, для второго сечения будет складываться из четырех составляющих: геометрической высоты, пьезометрической высоты, скоростной высоты и потерянного напора между сечениями 1-1 и 2-2 .

Кроме этого в уравнении появились еще два коэффициента α 1 и α 2 , которые называются коэффициентами Кориолиса и зависят от режима течения жидкости (α = 2 для ламинарного режима, α = 1 для турбулентного режима).

Раздел механики сплошных сред, в котором изучаются закономерности движения жидкости и её взаимодействие с погружёнными в неё телами. Поскольку, однако, при относительно небольших скоростях движения воздух можно считать несжимаемой жидкостью,… … Энциклопедия техники

- (от греч. hydor вода и динамика), раздел гидроаэромеханики, в к ром изучается движение несжимаемых жидкостей и их вз ствие с тв. телами. Г. исторически наиболее ранний и сильно развитый раздел механики жидкостей и газов, поэтому иногда Г. не… … Физическая энциклопедия

- (от гидро... и динамика) раздел гидромеханики, изучает движение жидкостей и воздействие их на обтекаемые ими твердые тела. Теоретические методы гидродинамики основаны на решении точных или приближенных уравнений, описывающих физические явления в… … Большой Энциклопедический словарь

ГИДРОДИНАМИКА, в физике раздел МЕХАНИКИ, который изучает движение текучих сред (жидкостей и газов). Имеет большое значение в промышленности, особенно химической, нефтяной и гидротехнике. Изучает свойства жидкостей, такие как молекулярное… … Научно-технический энциклопедический словарь

ГИДРОДИНАМИКА, гидродинамики, мн. нет, жен. (от греч. hydor вода и dynamis сила) (мех.). Часть механики, изучающая законы равновесия движущихся жидкостей. Расчет водных турбин основывается на законах гидромеханики. Толковый словарь Ушакова. Д.Н.… … Толковый словарь Ушакова

Сущ., кол во синонимов: 4 аэрогидродинамика (1) гидравлика (2) динамика (18) … Словарь синонимов

Часть гидромеханики, наука о движении несжимаемых жидкостей под действием внешних сил и о механическом воздействии между жидкостью и соприкасающимися с нею телами при их относительном движении. При изучении той или иной задачи Г. применяет… … Геологическая энциклопедия

Раздел гидромеханики, изучающий законы движения несжимаемых жидкостей и взаимодействия их с твердыми телами. Гидродинамические исследования широко применяются при проектировании кораблей, подводных лодок и т. д. EdwART. Толковый Военно морской… … Морской словарь

гидродинамика - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN hydrodynamics … Справочник технического переводчика

ГИДРОДИНАМИКА - раздел (см.), изучающий законы движения несжимаемой жидкости и её взаимодействие с твёрдыми телами. Гидродинамические исследования широко применяются при проектировании кораблей, подводных лодок, судов на подводных крыльях и т.д … Большая политехническая энциклопедия

Книги

  • Гидродинамика, или записки о силах и движениях жидкостей , Д. Бернулли. В 1738 вышла в свет знаменитая работа Даниила Бернулли "Гидродинамика, или Записки о силах и движениях жидкостей (Hydrodynamica, sive de viribus et motibus fluidorum commentarii)", в которой…

В механике жидкости такому понятию, как «гидродинамика», придается достаточно широкий смысл. Гидродинамика жидкости, в свою очередь, рассматривает несколько направлений для изучения.

Так, основными из направлений являются следующие:

  • гидродинамика идеальной жидкости;
  • гидродинамика жидкости в критическом состоянии;
  • гидродинамика вязкой жидкости.

Гидродинамика идеальной жидкости

Идеальная жидкость в гидродинамике представляет собой воображаемую несжимаемую жидкость, в которой вязкость будет отсутствовать. Также в ней не будет наблюдаться присутствие теплопроводности и внутреннего трения. В связи с отсутствием в идеальной жидкости внутреннего трения, в нем также не будут фиксироваться касательные напряжения между двумя соседствующими слоями жидкости.

Моделью идеальной жидкости можно воспользоваться в физике в случае теоретического рассмотрения задач, в которых вязкость не будет являться определяющим фактором, что позволяет ею пренебречь. Подобная идеализация, в частности, может быть допустимой во многих случаях течения, которые рассматривает гидроаэромеханика, где при этом дается качественное описание реальных течений жидкостей, достаточно удаленных от поверхностей раздела с неподвижной средой.

Уравнения Эйлера-Лагранжа (полученные Л.Эйлером и Ж.Лагранжем в 1750 г.) представлены в физике в формате основных формул вариационного исчисления, посредством привлечения которых ведется поиск стационарных точек и экстремумов функционалов. В частности, подобные уравнения известны своим широким использованием в рассмотрении задач оптимизации, и также (в совокупности с принципом наименьшего действия) применяются с целью вычисления траекторий в механике.

В теоретической физике уравнения Лагранжа представлены в виде классических уравнений движения в контексте их получения из написанного явно выражения для действия (что называется лагранжиана).

Рисунок 2. Уравнение Эйлера-Лагранжа. Автор24 - интернет-биржа студенческих работ

Применение таких уравнений с целью определения экстремума функционала в некотором смысле подобно задействованию теоремы дифференциального исчисления, согласно утверждениям которой, лишь в точке обращения первой производной в ноль гладкая функция обретает способность иметь экстремум (при векторном аргументе к нулевому значению приравнивается нулю градиент функции, иными словами - производная по векторному аргументу). Соответственно, это представляет прямое обобщение рассматриваемой формулы на случай функционалов (функций бесконечно мерного аргумента).

Гидродинамика жидкости в критическом состоянии

Рисунок 3. Следствия из уравнения Бернулли. Автор24 - интернет-биржа студенческих работ

Замечание 1

В случае исследования околокритического состояния среды, ее течению будет уделяться значительно меньше внимания в сравнении с акцентом на физические свойства, несмотря на невозможность обладать свойством неподвижности для реальной жидкой субстанции.

Провокаторами перемещения отдельных частей относительно друг друга выступают:

  • температурные неоднородности;
  • перепады давления.

В случае описания динамики вблизи критической точки, оказывается несовершенными традиционные гидродинамические модели, сориентированные на обычные среды. Это обусловлено порождением новых законов движения новыми физическими свойствами.

Выделяются также динамические критические явления, обнаруживаемые в условиях перемещения массы и переноса тепла. В частности, процесс рассасывания (или релаксации) температурных неоднородностей, обусловленный механизмом теплопроводности, будет происходить крайне медленно. Так, если, например, в околокритической жидкости будет изменена температура хотя бы на сотые доли градуса, на установление прежних условий уйдут многие часы, а, возможно, даже и несколько суток.

В качестве еще одной значимой особенности околокритических жидкостей можно назвать их удивительную подвижность, которую можно объяснить за счет высокой гравитационной чувствительности. Так, в экспериментах, осуществляемых в условиях космического полета, удалось выявить способность к инициированию весьма заметных конвективных движений даже у остаточных неоднородностей теплового поля.

В ходе движения околокритических жидкостей начинают возникать эффекты разновременных масштабов, зачастую описываемые различными моделями, что позволило сформировать (с развитием представлений о моделировании в данной области) целую последовательность усложняющихся моделей, обладающих так называемой иерархической структурой. Так, в данной структуре могут рассматриваться:

  • модели конвекции несжимаемой жидкости, учитывая разность плотностей только в архимедовой силе (модель Обербека-Буссинеска, наиболее всего она распространена для простых жидких и газовых сред);
  • полные гидродинамические модели (с включением нестационарных уравнений динамики и теплопереноса и учетом свойства сжимаемости и переменных теплофизических свойств среды) в совокупности с уравнением состояния, предполагающим присутствие критической точки).

В настоящее время, таким образом, можно говорить о возможности активного развития нового направления в механике сплошных сред, таком, как гидродинамика околокритических жидкостей.

Гидродинамика вязкой жидкости

Определение 1

Вязкость (или внутреннее трение) является свойством реальных жидкостей, выраженным в оказании их сопротивления перемещениям одной части жидкости относительно другой. В момент перемещения одних слоев реальной жидкости относительно других будут возникать силы внутреннего трения, направленные к поверхности таких слоев по касательной.

Действие подобных сил выражается в том, что со стороны движущегося быстрее слоя на то слой, который движется медленнее, оказывает непосредственное воздействие ускоряющая сила. Наряду с тем, со стороны более медленно движущегося слоя в отношении быстродвижущегося окажет свое воздействие тормозящая сила.

Идеальная жидкость (жидкость, исключающая свойство трения) представляет собой абстракцию. Вязкость (в большей или меньшей степени) присуща всем реальным жидкостям. Проявление вязкости выражено в том, что возникшее в жидкости или газе движение (после устранения вызвавших его причин и их последствий) постепенно прекращает свою работу.

Гидродинамика

Раздел механики сплошных сред, в котором изучаются закономерности движения жидкости и её взаимодействие с погружёнными в неё телами. Поскольку, однако, при относительно небольших скоростях движения воздух можно считать несжимаемой жидкостью, законы и методы Г. широко используются для аэродинамических расчётов летательных аппаратов при малых дозвуковых скоростях полёта. Большинство капельных жидкостей, например, вода, обладают слабой сжимаемостью, и во многих важных случаях их плотность (ρ) можно считать постоянной. Однако сжимаемостью среды нельзя пренебрегать в задачах взрыва, удара и других случаях, когда возникают большие ускорения частиц жидкости и от источника возмущений распространяются упругие волны.
Фундаментальные уравнения Г. выражают собой сохранения законы массы (импульса и энергии). Если предположить, что движущаяся среда является ньютоновской жидкостью и для анализа её движения применить метод Эйлера, то течение жидкости будет описываться неразрывности уравнением, Навье - Стокса уравнениями и энергии уравнением. Для идеальной несжимаемой жидкости уравнения Навье - Стокса переходят в Эйлера уравнения, а уравнение энергии выпадает из рассмотрения, поскольку динамика течения несжимаемой жидкости не зависит от тепловых процессов. В этом случае движение жидкости описывается уравнением неразрывности и уравнениями Эйлера, которые удобно записать в форме Громеки - Ламба (по имени русский учёного И. С. Громеки и английского учёного Г. Ламба.
Для практических приложений важны интегралы уравнений Эйлера, которые имеют место в двух случаях:
а) установившееся движение при наличии потенциала массовых сил (F = -gradΠ); тогда вдоль линии тока будет выполняться Бернулли уравнение, правая часть которого постоянна вдоль каждой линии тока, но, вообще говоря, меняется при переходе от одной линии тока к другой.Если жидкость вытекает из пространства, где она покоится, то постоянная Бернулли H одинакова для всех линий тока;
б) безвихревое течение: ((ω) = rotV = 0. В этом случае V = grad(φ), где (φ) - потенциал скорости, и массовые силы обладают потенциалом. Тогда для всего поля течения справедлив интеграл (уравнение) Коши - Лагранжа д(φ)/дt + V2/2 + p/(ρ) + П = H(t). В обоих случаях указанные интегралы позволяют определить поле давлений при известном поле скоростей.
Интегрирование уравнения Коши - Лагранжа в интервале времени (Δ)t(→)0 в случае ударного возбуждения течения приводит к соотношению, связывающему приращение потенциала скорости с импульсом давления pi.
Всякое движение первоначально покоящейся жидкости, вызванное силами веса или нормальными давлениями, приложенными к её границам, потенциально. Для реальных жидкостей, обладающих вязкостью, условие (ω) = 0 выполняется лишь приближённо: вблизи обтекаемых твёрдых границ существенно сказывается вязкость и образуется пограничный слой, где (ω ≠)0. Несмотря на это, теория потенциальных течений позволяет решать ряд важных прикладных задач.
Поле потенциального течения описывается потенциалом скорости (φ), который удовлетворяет уравнению Лапласа
divV = (Δφ) = 0.
Доказано, что при заданных граничных условиях на поверхностях, ограничивающих область движения жидкости, его решение единственно. В силу линейности уравнения Лапласа справедлив принцип суперпозиции решений и, следовательно, для сложных течений решение можно представить как сумму более простых течений (см. Источников и стоков метод). Так, при продольном обтекании однородным потоком отрезка с распределёнными по нему источниками и стоками с равной нулю суммарной интенсивностью образуются замкнутые поверхности тока, которые можно рассматривать как поверхности тел вращения, например, корпуса летательного аппарата.
При движении тела в реальной жидкости всегда возникают гидродинамические силы из-за его взаимодействия с жидкостью. Одна часть суммарной силы обусловлена присоединёнными массами и пропорциональна скорости изменения связанного с телом импульса примерно так же, как в идеальной жидкости. Другая часть суммарной силы связана с образованием следа аэродинамического за телом, который формируется в течение всей истории движения. След влияет на поле течения вблизи тела, поэтому численное значение присоединённой массы может не совпадать с его значением для аналогичного движения в идеальной жидкости. След за телом может быть ламинарным или турбулентным, может образовываться свободными границами, например, за глиссером.
Аналитические решения нелинейных задач, связанных с пространственным движением тел в жидкости при наличии следа, удаётся получить лишь в некоторых частных случаях.
Плоскопараллельные течения исследуются методами теории функций комплексного переменного; эффективно решение некоторых задач гидродинамики методами вычислительной математики. Приближенные теории получаются путём рациональной схематизации картины течения, применения теорем сохранения, использования свойств свободных поверхностей и вихревых течений, а также некоторых частных решений. Они разъясняют суть дела и удобны для предварительных расчётов. Например, при быстром погружении в воду клина с углом полураствора (β)к возникает существенное движение свободных границ в области брызговых струй. Для оценки сил важно оценить эффективную смоченную ширину клина, которая значительно превышает соответствующую величину при статическом погружении острия на ту же глубину h. Приближенная теория для симметричной задачи показывает, что отношение динамической смоченной ширины 2a к статической близко к (π)/2 и приводит к следующим результатам: a = 0,5(π)hctg(β), где (β) = (π)/2-(β)к, удельная присоединённая масса m* = 0,5(πρ)a2/((β)) (f((β)) (≈) 1-(8 + (π))tg(β)/(π)2 для (β) < 30(°)), B = m*dh/dt - вертикальный компонент удельного импульса, F = d(m*dh/dt)/dt -сила давления клина на жидкость.
При установившемся глиссировании килеватой пластинки со скоростью V(∞) течение в поперечной плоскости непосредственно за транцем весьма близко к течению, возбуждённому погружающимся клином. Поэтому приращение вертикального компонента импульса сообщаемого жидкости в единицу времени, близко к BV(∞) = m*V(∞)dh/dt. Импульс жидкости направлен вниз; реакция, действующая на тело, есть подъёмная сила Y. Для малых углов атаки (α) dh/dt = (α)V(∞), и Y = m*(h)V2(∞α).
За телом, движущимся в неограниченной жидкости с постоянной скоростью V(∞) и обладающим подъёмной силой Y, образуется вихревая пелена, которая далеко за телом сворачивается в 2 вихря с циркуляцией скорости Γ и расстоянием l между ними, которые замыкаются начальным вихрем. Вследствие взаимодействия эта пара вихрей наклонена к направлению движения на угол (α), определяемый соотношением sin(α) = Γ/(2(π)/V(∞)). Из теорем о вихрях следует, что импульс сил B, который нужно приложить к жидкости для возбуждения замкнутой вихревой нити с циркуляцией Γ и площадью диафрагмы S, ограниченной этой вихревой нитью, равен (ρ)ΓS и направлен перпендикулярно плоскости диафрагмы. В рассматриваемом случае Γ = const, скорость приращения диафрагмы dS/dt = lV(∞)/cos(α), вектор гидродинамической силы R = dB/dt и, следовательно, Y = (ρ)/ΓV(∞) и индуктивное сопротивление Xинд = (ρ)/ΓV(∞)tg(α)инд, причем (α)инд = (α).
Как в случае глиссирования, так и для любых несущих систем сопротивление определяется кинетической энергией жидкости, приходящейся на единицу длины оставляемого телом следа. Общий вывод состоит в том, что при сходе с тела свободных границ всю совокупность действующих сил можно приближённо разделить на 2 части, одна из которых определяется производными по времени от «связанных» импульсов, а вторая потоками «стекающих» импульсов.
При больших скоростях движения в потенциальном потоке могут возникать очень малые положительные и даже отрицательные давления. Жидкости, встречающиеся в природе и применяемые в технике, в большинстве случаев не способны воспринимать растягивающие усилия отрицательного давления), и обычно давление в потоке не может принимать значения меньше некоторого pd. В точках потока жидкости, в которых давление p = pd, происходит нарушение сплошности течения и образуются области (каверны), заполненные парами жидкости или выделившимися газами. Это явлен называется кавитацией. Возможным нижним пределом pd является давление насыщенных паров жидкости, зависящее от температуры жидкости.
При обтекании тел максимум скорости и минимум давления имеют место на поверхности тела и наступление кавитации определяется условием
Cpmin = 2(p(∞)-pd)(ρ)V2(∞) = (σ),
где (σ) - число кавитации, Cpmin - минимальное значение коэффициента давления.
При развитой кавитации позади тела образуется каверна с резко выраженными границами, которые можно рассматривать как свободные поверхности и которые образованы частицами жидкости, сошедшими с обтекаемого контура в точках схода струй. Явления, происходящие в области смыкания струй, ограничивающих каверну, еще не вполне изучены; опыт показывает, что кавитационное течение имеет нестационарный характер, особенно сильно выраженный в области смыкания.
Если (σ) > 0, то давление в набегающем потоке и в бесконечности за телом больше, чем давление внутри каверны, и поэтому каверна не может простираться до бесконечности. При уменьшении σ размеры каверны возрастают и область замыкания удаляется от тела. При (σ) = 0 предельное кавитационное течение совпадает с обтеканием тел со срывом струй по схеме Кирхгофа (см. Струйных течений теория).
Для построения стационарного струйного течения используются различные идеализированные схемы, например, такая: свободные поверхности, сходящие с поверхности тела и направленные выпуклостью к внешнему потоку, при смыкании образуют струю, стекающую внутрь каверны (при математическом описании уходит на второй лист римановой поверхности). Решение такой задачи проводится методом, аналогичным методу Гельмгольца - Кирхгофа: В частности, для плоской пластины ширины l, установленной перпендикулярно набегающему потоку, коэффициент сопротивления cx, вычисляется по формуле
cx = cx0(1 + (σ)),
где cx0 = 2(π)/((π) + 4) - коэффициент сопротивления пластины, обтекаемой по схеме Кирхгофа. Для. пространственных (осесимметричных) каверн справедлив приближённый принцип независимости расширения, выражаемый уравнением
d2S/dt2 (≈) -K(p(∞)-pк)/(ρ),
где S(t) - площадь поперечного сечения каверны в неподвижной плоскости, перпендикулярной к траектории центра кавитатора p(∞)(t) -давление в рассматриваемой точке траектории, которое было бы до образования каверны; pк - давление в каверне. Константа К пропорциональна коэффициенту сопротивления кавитатора; для тупых тел К Гидродинамика 3.
С явлением кавитации приходится встречаться во многих технических устройствах. Начальная стадия кавитации наблюдается при заполнении имеющейся в потоке области пониженного давления пузырьками газа или пара, которые, схлопываясь, вызывают эрозию, вибрации и характерный шум. Пузырьковая кавитация возникает на гребных винтах, в насосах, трубопроводах и других устройствах, где из-за повышеной скорости давление понижается и приближается к давлению парообразования. Развитая кавитация с образованием каверны с низким давлением внутри имеет место, например, за реданами гидросамолётов, если подток воздуха в зареданное пространство оказывается стеснённым. Такие каверзы приводят к автоколебаниям, так называемым барсу. Срыв каверн на подводных крыльях и на лопастях гребных винтов приводит к снижению подъёмной силы крыла и «упора» винта.
Экспериментальная Г. помимо традиционных гидроканалов (опытовых бассейнов) располагает широким ассортиментом специальных установок, предназначенных для изучения быстропротекающих нестационарных процессов. Применяются скоростная киносъёмка, визуализация течений и другие методы. Обычно на одной модели нельзя удовлетворить всем требованиям подобия (см. Подобия законы), поэтому широко применяется «частичное» и «перекрёстное» моделирование. Моделирование и сравнение с теоретическими результатами является основой современных гидродинамических исследований.

Авиация: Энциклопедия. - М.: Большая Российская Энциклопедия .Главный редактор Г.П. Свищев .1994 .

ГИДРОДИНАМИКА - раздел гидромеханики , в к-ром изучается движение несжимаемых жидкостей и их взаимодействие с твёрдыми телами или поверхностями раздела с др. жидкостью (газом). Осн. физ. свойствами жидкостей, лежащими в основе построения теоретич. моделей, являются непрерывность, или сплошность, лёгкая подвижность, или текучесть , и вязкость .Большинство капельных жидкостей оказывает значит. сопротивление сжатию и считается практически несжимаемыми.

Методы Г. позволяют рассчитывать скорость, давление и др. параметры жидкости в любой точке занятого жидкостью пространства в любой момент времени. Это даёт возможность определить силы давления и трения, действующие на движущееся в жидкости тело или на стенки канала (русла), являющиеся границами для потока жидкости. Методы Г. пригодны и для газов при скоростях, малых по сравнению со скоростью звука, когда газы ещё можно считать несжимаемыми.

В теоретич. Г. для описания движения несжимаемой (=const) жидкости пользуются неразрывности уравнением

и Навье - Стокса уравнениями

где - вектор скорости, - вектор внешних массовых сил, действующих на весь объём жидкости, t - время, - плотность, р - давление, v - коэф. ки-нематич. вязкости. Ур-ние (2) приведено для случая постоянного коэф. вязкости. Искомые параметры v и р являются в общем случае ф-циями четырёх независимых переменных - координат х, у, z и времени t . Для решения этих ур-ний необходимо задать начальные и граничные условия. Нач. условиями служит задание в нач. момент времени (обычно при t =0) области, занятой жидкостью, и состояния движения. Граничные условия зависят от вида границ. Если граница области - неподвижная твёрдая стенка, то частицы жидкости к ней "прилипают" вследствие вязкости и граничным условием является обращение в нуль всех составляющих скорости на стенке: v=0 . B идеальной жидкости, не обладающей вязкостью, это условие заменяется условием "непротекания" (в нуль обращается только нормальная к стенке составляющая скорости: v n =0). В случае подвижной стенки скорость перемещения любой точки поверхности и скорость частицы жидкости, прилегающей в этой точке, должны быть одинаковы (в идеальной жидкости должны быть одинаковы проекции этих скоростей на нормаль к поверхности). На свободной поверхности жидкости, граничащей с пустотой или с воздухом (газом), должно выполняться граничное условие р(х,у,z,t)=const=p a , где р а - давление в окружающем пространстве. Поверхность, удовлетворяющая этому условию, в ряде задач Г. моделирует поверхность раздела жидкости с газом или паром.

Решения систем ур-ний (1) и (2) получены лишь при различных упрощающих предположениях. В отсутствие вязкости (модель идеальной жидкости, в к-рой v =0) они сводятся к Эйлера уравнениям Г. При описании течений жидкости с малой вязкостью (напр., воды) можно упростить ур-ния Г., пользуясь гипотезой о пограничном слое . К упрощению ур-нии Г. приводит также уменьшение числа независимых переменных до трёх - х, у, z или х, у, t , двух - х, у или х, t и одной - х . Если движение жидкости не зависит от времени t , оно наз. установившимся или стационарным. При стационарном движении .

Наиб. развиты методы решения ур-ний идеальной жидкости. Если внешние массовые силы обладают потенциалом: , то при стационарном течении ур-ние (2) после интегрирования даёт интеграл Бернулли (см. Бернулли уравнение )в виде

где Г - величина, сохраняющая пост. значение на данной линии тока. Если массовые силы - это силы тяжести, то U=gz (g - ускорение свободного падения) и ур-ние (3) можно свести к виду

Успешно решены также мн. задачи о вихревых и волновых движениях идеальной жидкости (о вихревых нитях, слоях, вихревых цепочках, системах вихрей, о волнах на поверхности раздела двух жидкостей, о капиллярных волнах и др.). Развитие вычислит. методов Г. с использованием ЭВМ позволило решить также ряд задач о движении вязкой жидкости, т. е. получить в нек-рых случаях решения полной системы ур-ний (1) и (2) без упрощающих предположений. В случае турбулентного течения , характеризуемого интенсивным перемешиванием отдельных элементарных объёмов жидкости и связанным с этим переносом массы, импульса и теплоты, пользуются моделью "осреднённого" по времени движения, что позволяет правильно описать осн. черты турбулентного течения жидкости и получить важные практич. результаты.

Наряду с теоретич. методами изучения задач Г. применяется лаб. гидродинамич. эксперимент на моделях, основанный на подобия теории . Для этого используют как спец. гидродинамич. моделирующие установки (гидротрубы, гидроканалы, гидролотки), так и аэродинамические трубы малых скоростей, ибо при малых скоростях рабочее тело (воздух) можно считать несжимаемой жидкостью.

Разделами Г. как составной части гидроаэромеханики являются теория движения тел в жидкости, теория фильтрации , теория волновых движений жидкости (в т. ч. теория приливов), теория кавитации , теория глиссирования. Движение неньютоновских жидкостей (не подчиняющихся закону трения Ньютона) рассматривается в реологии . Движение эл--проводных жидкостей в присутствии магн. полей изучает магнитная гидродинамика .Методы Г. позволяют успешно решать задачи гидравлики, гидрологии, русловых потоков, гидротехники, метеорологии, расчёта гидротурбин, насосов, трубопроводов и др.

С. JI. Вишневецкий .