Взаимно корреляционная функция. Представление сигнала с помощью ортогональных функций. Спектральные плотности корреляционных функций

Взаимная корреляция решает задачу о зависимости аномальных графиков, построенных по параллельным профилям или по наблюдениям, выполненных различными приборами, в разное время и пр. Меру зависимости выражает интеграл

R xy (t )= , (11.13)

где t ‑ сдвиг по графику второй функции.

Функция, вычисленная по дискретным значениям поля на двух соседних профилях, носит название взаимно корреляционной (ВКФ) и вычисляется по формуле

В(m) =

где Z i (x i) – значение поля на первом профиле в точке x i ; Z 2 (x i + m ) – значение поля на втором профиле в точке i+ m ; и – средние значения поля на соседних профилях.

В итоге взаимной корреляции может быть трассировано вытянутое вкось к профилям аномальное тело. Корреляция карт магнитных аномалий с различными геофизическими и геологическими картами часто производится визуально. Межпрофильная корреляция магнитного поля по профилям напоминает корреляционный способ выделения полезного сигнала на фоне помех, известного в сейсморазведке под названием метода регулированного направленного приема.

Разработке корреляционных методов интерпретации аномалий посвящено пособие "Атлас корреляционных функций гравитационных и магнитных аномалий тел правильной формы" (О.А. Одеков, Г.И. Каратаев, О.К. Басов, Б.А. Курбансахатов) /25/. В атласе приведены графики корреляционных функций для тел правильной формы, для которых теоретические кривые даны в атласе Д.С. Микова. Графикам предпослан текст по теории и практике корреляционных исследований, тщательно разработаны вопросы практического применения АКФ.

Автокорреляционные графики для аномалий Z (они же применимы и для аномалий Н ) приведены для трех уровней. Графики взаимной корреляции приведены для сочетания различного вида аномалий. В тексте суммированы предложения о целесообразности использования автокорреляционных графиков при обработке и интерпретации исходных магнитных аномалий.

Автокорреляция и взаимная корреляция являются новейшими методиками статистических исследований. Хотя в литературе недавних лет они почти не рассматривались, представленная информация о сущности и применении их имеет характер аннотаций. Думается, что при обработке большого объема полевых наблюдений эти методы найдут достойное место. О значимости проблемы применения корреляционных функций для интерпретации магнитных аномалий А.К.Маловичко писал: « данной проблеме в современной геофизической литературе уделяется очень много внимания, хотя в целом она представляется дискуссионной. При трактовке ее игнорируются возможности изучения функциональных полей, основанных на законе Кулона, на использовании хорошо известных формул» /25/.


Теории корреляций стыкуются при решении задач, связанных с изучением переходных процессов, с теорией трансформаций Фурье. Интегралы в корреляционных функциях являются интегралами типа свертки, поэтому развитие теории естественно рассматривается с применением спектральных представлений, частотных характеристик и энергетических спектров.

Задачи магниторазведки, решаемые корреляционными методами анализа, описаны в книге С.А. Серкерова /29/.

Множество непрерывных функций действительного переменного { U n (t ) } = { U 0 (t ) , U 1 (t ),.. . } называе т ся ортогональным на интервале [ t 0 , t 0 + T ] , если

При с = 1 множество {U n (t)} называется ортонормированным.

Для вычисления сигнала через коэффициенты разложения используется:


В силу условий ортогональности будем иметь

  1. Функция взаимной корреляции. Функция автокорреляции.

Корреляция – математическая операция, схожа со свёрткой, позволяет получить из двух сигналов третий. Бывает: автокорреляция (автокорреляционная функция), взаимная корреляция (взаимнокорреляционная функция, кросскорреляционная функция). Пример:

[Взаимная корреляционная функция]

[Автокорреляционная функция]

Корреляция - это техника обнаружения заранее известных сигналов на фоне шумов, ещё называют оптимальной фильтрацией. Хотя корреляция очень похожа на свёртку, но вычисляются они по-разному. Области применения их также различные (c(t)=a(t)*b(t) - свертка двух функций, d(t)=a(t)*b(-t) - взаимная корреляция).

Корреляция – это та же свёртка, только один из сигналов инвертируется слева направо. Автокорреляция (автокорреляционная функция) характеризует степень связи между сигналом и его сдвинутой на? копией. Взаимнокорреляционная функция характеризует степень связи между 2-мя разными сигналами.

Математическое ожидание и дисперсия являются важными характеристиками случайного процесса, но они не дают достаточного представления о том, какой характер будут иметь отдельные реализации случайного процесса. Это хороню видно из рис. 9.3, где показаны реализации двух случайных процессов, совершенно различных по своей структуре, хотя и имеющих

одинаковые значения математического ожидания и дисперсии. Штриховыми линиями на рис. 9.3 показаны значения для случайных процессов.

Процесс, изображенный на рис. 9.3, а, от одного сечения к другому протекает сравнительно плавно, а процесс на рис. 9.3, б обладает сильной изменчивостью от сечения к сечению Поэтому статистическая связь между сечениями в первом случае больше, чем во втором, однако ни по математическому ожиданию, ни по дисперсии этого установить нельзя.

Чтобы в какой-то мере охарактеризовать внутреннюю структуру случайного процесса, т. е. учесть связь между значениями случайного процесса в различные моменты времени или, иными словами, учесть степень изменчивости случайного процесса, необходимо ввести понятие о корреляционной (автокорреляционной) функции случайного процесса.

Корреляционной функцией случайного процесса называют неслучайную функцию двух аргументов которая для каждой пары произвольно выбранных значений аргументов (моментов времени) равна математическому ожиданию произведения двух случайных величин соответствующих сечений случайного процесса:

где - двумерная плотность вероятности; - центрированный случайный процесс; - математическое ожидание (среднее значение) случайного процесса.

Различные случайные процессы в зависимости от того, как изменяются их статистические характеристики с течением времени, делят на стационарные и нестационарные. Разделяют стационарность в узком смысле и стационарность в широком смысле.

Стационарным в узком смысле называют случайный процесс если его n-мерные функции распределения и плотности вероятности при любом не зависят от сдвига всех точек

Вдоль оси времени на одинаковую величину т. е.

Это означает, что два процесса имеют одинаковые статистические свойства для любого т. е. статистические характеристики стационарного случайного процесса неизменны во времени.

Стационарный случайный процесс - это своего рода аналог установившегося процесса в детерминированных системах. Любой переходный процесс не является стационарным.

Стационарным в широком смысле называют случайный процесс математическое ожидание которого постоянно:

а корреляционная функция зависит только от одной переменной - разности аргументов при этом корреляционную функцию обозначают

Процессы, стационарные в узком смысле, обязательно стационарны и в широком смысле; однако обратное утверждение, вообще говоря, неверно.

Понятие случайного процесса, стационарного в широком смысле, вводится тогда, когда в качестве статистических характеристик случайного процесса используются только математическое ожидание и корреляционная функция. Часть теории случайных процессов, которая описывает свойства случайного процесса через его математическое ожидание и корреляционную функцию, называют корреляционной теорией.

Для случайного процесса с нормальным законом распределения математическое ожидание и корреляционная функция полностью определяют его n-мерную плотность вероятности.

Поэтому для нормальных случайных процессов понятия стационарности в широком и узком смысле совпадают.

Теория стационарных процессов разработана наиболее полно и позволяет сравнительно просто производить расчеты для многих практических случаев. Поэтому допущение о стационарности иногда целесообразно делать также и для тех случаев, когда случайный процесс хотя и нестационарен но на рассматриваемом отрезке времени работы системы статистические характеристики сигналов не успевают сколько-нибудь существенно измениться. В дальнейшем, если не будет оговорено особо, будут рассматриваться случайные процессы, стационарные в широком смысле.

При изучении случайных процессов, стационарных в широком смысле, можно ограничиться рассмотрением только процессов с математическим ожиданием (средним значением), равным нулю, т. е. так как случайный процесс с ненулевым математическим ожиданием представляют как сумму процесса с нулевым математическим ожиданием и постоянной неслучайной (регулярной) величиной, равной математическому ожиданию этого процесса (см. далее § 9.6).

При выражение для корреляционной функции

В теории случайных процессов пользуются двумя понятиями средних значений. Первое понятие о среднем значении - это среднее значение по мнооюеству (или математическое ожидание), которое определяется на основе наблюдения над множеством реализацчй случайного процесса в один и тот же момент времени. Среднее значение по множеству принято обозначать волнистой чертой над выражением, описывающим случайную функцию:

В общем случае среднее значение по множеству является функцией времени

Другое понятие о среднем значении - это среднее значение по времени, которое определяется на основе наблюдения за отдельной реализацией случайного процесса на протяжении

достаточно длительного времени Т. Среднее значение по времени обозначают прямой чертой над соответствующим выражением случайной функции и определяют по формуле:

если этот предел существует.

Среднее значение по времени в общем случае различно для отдельных реализаций множества, определяющих случайный процесс. Вообще говоря, для одного и того же случайного процесса среднее по множеству и среднее по времени значения различны. Однако существует класс стационарных случайных процессов, называемых эргодическими, для которых среднее по множеству равно среднему по времени, т. е.

Корреляционная функция эргодического стационарного случайного процесса неограниченно убывает по модулю при

Однако надо иметь в виду, что не всякий стационарный случайный процесс является эргодическим, например случайный процесс каждая реализация которого постоянна во времени (рис. 9.4), является стационарным, но не эргодическим. В этом случае средние значения, определенные по одной реализации и в результате обработки множества реализаций, не совпадают. Один и тот же случайный процесс в общем случае может быть эргодическим по отношению к одним статистическим характеристикам и неэргодическим по отношению к другим. В дальнейшем будем считать, что по отношению ко всем статистическим характеристикам условия эргодичности выполняются.

Свойство эргодичности имеет очень большое практическое значение. Для определения статистических свойств некоторых объектов, если трудно осуществить одновременное наблюдение за ними в произвольно выбранный момент времени (например, при наличии одного опытного образца), его можно заменить длительным наблюдением за одним объектом. Иными словами, отдельная реализация эргодического случайного

процесса на бесконечном промежутке времени полностью определяет весь случайный процесс с его бесконечными реализациями. Собственно говоря, этот факт лежит в основе описанного ниже метода экспериментального определения корреляционной функции стационарного случайного процесса по одной реализации.

Как видно из (9.25), корреляционная функция представляет собой среднее значение по множеству. Для эргодических случайных процессов корреляционную функцию можно определить как среднее по времени от произведения , т. е.

где - любая реализация случайного процесса; х - среднее значение по времени, определяемое по (9.28).

Если среднее значение случайного процесса равно нулю то

Основываясь на свойстве эргодичности, можно дисперсию [см. (9.19)] определить как среднее по времени от квадрата центрированного случайного процесса, т. е.

Сравнивая выражения (9.30) и (9.32) при можно установить очень важную связь между дисперсией и корреляционной функцией - дисперсия стационарного случайного процесса равна начальному значению корреляционной функции:

Из (9.33) видно, что дисперсия стационарного случайного процесса постоянна, а следовательно, постоянно и среднее квадратическое отклонение:

Статистические свойства связи двух случайных процессов можно характеризовать взаимной корреляционной функцией которая для каждой пары произвольно выбранных значений аргументов равна

Для эргодических случайных процессов вместо (9.35) можно записать

где - любые реализации стационарных случайных процессов соответственно.

Взаимная корреляционная функция характеризует взаимную статистическую связь двух случайных процессов в разные моменты времени, отстоящие друг от друга на промежуток времени . Значение характеризует эту связь в один и тот же момент времени.

Из (9.36) следует, что

Если случайные процессы статистически не связаны друг с другом и имеют равные нулю средние значения, то их взаимная корреляционная функция для всех равна нулю. Однако обратный вывод о том, что если взаимная корреляционная функция равна нулю, то процессы независимы, можно сделать лишь в отдельных случаях (в частности, для процессов с нормальным законом распределения), общей же силы обратный закон не имеет.

Заметим, что корреляционные функции могут вычисляться и для неслучайных (регулярных) функций времени. Однако когда говорят о корреляционной функции регулярной функции то под этим понимают просто результат формального

применения к регулярной функции операции, выражаемой интегралом:

Приведем некоторые основные свойства корреляционных функций

1. Начальное значение корреляционной функции [см. (9.33)] равно дисперсии случайного процесса:

2. Значение корреляционной функции при любом не может превышать ее начального значения, т. е.

Чтобы доказать это, рассмотрим очевидное неравенство из которого следует

Находим средние значения по времени от обеих частей последнего неравенства:

Таким образом, получим неравенство

3. Корреляционная функция есть четная функция , т. е.

Это вытекает из самого определения корреляционной функции. Действительно,

поэтому на графике корреляционная функция всегда симметрична относительно оси ординат.

4. Корреляционная функция суммы случайных процессов определяется выражением

где - взаимные корреляционные функции

Действительно,

5. Корреляционная функция постоянной величины равна квадрату этой постоянной величины (рис. 9.5, а), что вытекает из самого определения корреляционной функции:

6. Корреляционная функция периодической функции, например представляет собой косинусоиду (рис. 9-5, 5), т. е.

имеющую ту же частоту что и и не зависящую от сдвига фазы

Чтобы доказать это, заметим, что при нахождении корреляционных функций периодических функций можно использовать следующее равенство:

где - период функции

Последнее равенство получается после замены интеграла с пределами от -Т до Т при Т со суммой отдельных интегралов с пределами от до , где и использования периодичности подынтегральных функций.

Тогда, учитывая сказанное выше, получим т.

7. Корреляционная функция временной функции, разлагаемой в ряд Фурье:

Рис. 9.5 (см. скан)

имеет на основании изложенного выше следующий вид:

8. Типичная корреляционная функция стационарного случайного процесса имеет вид, представленный на рис. 9.6. Ее можно аппроксимировать следующим аналитическим выражением:

С ростом связь между ослабевает и корреляционная функция становится меньше. На рис. 9.5, б, в приведены, например, две корреляционные функции и две соответствующие им реализации случайного процесса. Легко заметить, что корреляционная функция, соответствующая случайному процессу с более тонкой структурой, убывает быстрее Другими словами, чем более высокие частоты присутствуют в случайном процессе, тем быстрее убывает соответствующая ему корреляционная функция.

Иногда встречаются корреляционные функции, которые могут быть аппроксимированы аналитическим выражением

где - дисперсия; - параметр затухания; - резонансная частота.

Корреляционные функции подобного вида имеют, например, случайные процессы типа турбулентности атмосферы, фединга радиолокационного сигнала, углового мерцания цели и т. п. Выражения (9.45) и (9.46) часто используются для аппроксимации корреляционных функций, полученных в результате обработки экспериментальных данных.

9. Корреляционная функция Стационарного случайного процесса, на которой наложена периодическая составляющая с частотой также будет содержать периодическую составляющую той же частоты.

Это обстоятельство можно использовать как один из способов обнаружения «скрытой периодичности» в случайных процессах, которая может не обнаруживаться при первом взгляде на отдельные записи реализации случайного процесса.

Примерный вид корреляционной функции процесса содержащего в своем составе кроме случайной также и периодическую составляющую, показан на рис. 9.7, где обозначена корреляционная функция, соответствующая случайной составляющей. Чтобы выявить скрытую периодическую составляющую (такая задача возникает, например, при выделении малого полезного сигнала на фоне большой помехи), лучше всего определить корреляционную функцию для больших значений когда случайный сигнал уже сравнительно слабо коррелирован и случайная составляющая слабо сказывается на виде корреляционной функции.

Взаимная корреляционная функция (ВКФ) разных сигналов (cross-correlation function, CCF) описывает как степень сходства формы двух сигналов, так и их взаимное расположение друг относительно друга по координате (независимой переменной). Обобщая формулу (6.1.1) автокорреляционной функции на два различных сигнала s(t) и u(t), получаем следующее скалярное произведение сигналов:

B su () =s(t) u(t+) dt. (6.2.1)

Взаимная корреляция сигналов характеризует определенную корреляцию явлений и физических процессов, отображаемых данными сигналами, и может служить мерой “устойчивости” данной взаимосвязи при раздельной обработке сигналов в различных устройствах. Для конечных по энергии сигналов ВКФ также конечна, при этом:

|B su ()|  ||s(t)||||u(t)||,

что следует из неравенства Коши-Буняковского и независимости норм сигналов от сдвига по координатам.

При замене переменной t = t- в формуле (6.2.1), получаем:

B su () =s(t-) u(t) dt = u(t) s(t-) dt = B us (-).

Отсюда следует, что для ВКФ не выполняется условие четности, B su ()  B su (-), и значения ВКФ не обязаны иметь максимум при  = 0.

Рис. 6.2.1. Сигналы и ВКФ.

Это можно наглядно видеть на рис. 6.2.1, где заданы два одинаковых сигнала с центрами на точках 0.5 и 1.5. Вычисление по формуле (6.2.1) с постепенным увеличением значений  означает последовательные сдвиги сигнала s2(t) влево по оси времени (для каждого значения s1(t) для подынтегрального умножения берутся значения s2(t+)). При =0 сигналы ортогональны и значение B 12 ()=0. Максимум В 12 () будет наблюдаться при сдвиге сигнала s2(t) влево на значение =1, при котором происходит полное совмещение сигналов s1(t) и s2(t+).

Одни и те же значения ВКФ по формулам (6.2.1) и (6.2.1") наблюдаются при одном и том же взаимном положении сигналов: при сдвиге на интервал  сигнала u(t) относительно s(t) вправо по оси ординат и сигнала s(t) относительно сигнала u(t) влево, т.е. B su () = B us (-

Рис. 6.2.2. Взаимноковариационные функции сигналов.

На рис. 6.2.2 приведены примеры ВКФ для прямоугольного сигнала s(t) и двух одинаковых треугольных сигналов u(t) и v(t). Все сигналы имеют одинаковую длительность Т, при этом сигнал v(t) сдвинут вперед на интервал Т/2.

Сигналы s(t) и u(t) одинаковы по временному расположению и площадь "перекрытия" сигналов максимальна при =0, что и фиксируется функцией B su . Вместе с тем функция B su резко асимметрична, так как при асимметричной форме сигнала u(t) для симметричной формы s(t) (относительно центра сигналов) площадь "перекрытия" сигналов изменяется по разному в зависимости от направления сдвига (знака  при увеличения значения  от нуля). При смещении исходного положения сигнала u(t) влево по оси ординат (на опережение сигнала s(t) - сигнал v(t)) форма ВКФ остается без изменения и сдвигается вправо на такое же значение величины сдвига – функция B sv на рис. 6.2.2. Если поменять местами выражения функций в (6.2.1), то новая функция B vs будет зеркально повернутой относительно =0 функцией B sv .

С учетом этих особенностей полное ВКФ вычисляется, как правило, отдельно для положительных и отрицательных запаздываний:

B su () =s(t) u(t+) dt. B us () =u(t) s(t+) dt. (6.2.1")

Взаимная корреляция зашумленных сигналов . Для двух зашумленных сигналов u(t) = s1(t)+q1(t) и v(t) = s2(t)+q2(t), применяя методику вывода формул (6.1.13) с заменой копии сигнала s(t) на сигнал s2(t), нетрудно вывести формулу взаимной корреляции в следующем виде:

B uv () = B s1s2 () + B s1q2 () + B q1s2 () + B q1q2 (). (6.2.2)

Последние три члена в правой части (6.2.2) затухают до нуля при увеличении . При больших интервалах задания сигналов выражение может быть записано в следующей форме:

B uv () = B s 1 s 2 () +
+
+
. (6.2.3)

При нулевых средних значениях шумов и статистической независимости от сигналов имеет место:

B uv () → B s 1 s 2 ().

ВКФ дискретных сигналов. Все свойства ВКФ аналоговых сигналов действительны и для ВКФ дискретных сигналов, при этом для них действительны и особенности дискретных сигналов, изложенные выше для дискретных АКФ (формулы 6.1.9-6.1.12). В частности, при t = const =1 для сигналов x(k) и y(k) с числом отсчетов К:

B xy (n) =
x k y k-n . (6.2.4)

При нормировании в единицах мощности:

B xy (n) = x k y k-n 
. (6.2.5)

Оценка периодических сигналов в шуме . Зашумленный сигнал можно оценить по взаимной корреляции с "эталонным" сигналом методом проб и ошибок с настройкой функции взаимной корреляции до максимального значения.

Для сигнала u(k)=s(k)+q(k) при статистической независимости шума и → 0 функция взаимной корреляции (6.2.2) с шаблоном сигнала p(k) при q2(k)=0 принимает вид:

B up (k) = B sp (k) + B qp (k) = B sp (k) + .

А поскольку → 0 при увеличении N, тоB up (k) → B sp (k). Очевидно, что функция B up (k) будет иметь максимум, когда p(k) = s(k). Меняя форму шаблона p(k) и добиваясь максимизации функции B up (k), можно получить оценку s(k) в виде оптимальной формы p(k).

Функция взаимных корреляционных коэффициентов (ВКФ) является количественным показателем степени сходства сигналов s(t) и u(t). Аналогично функции автокорреляционных коэффициентов, она вычисляется через центрированные значения функций (для вычисления взаимной ковариации достаточно центрировать только одну из функций), и нормируется на произведение значений стандартов функций s(t) и v(t):

 su () = C su ()/ s  v . (6.2.6)

Интервал изменения значений корреляционных коэффициентов при сдвигах  может изменяться от –1 (полная обратная корреляция) до 1 (полное сходство или стопроцентная корреляция). При сдвигах , на которых наблюдаются нулевые значения  su (), сигналы независимы друг от друга (некоррелированны). Коэффициент взаимной корреляции позволяет устанавливать наличие связи между сигналами вне зависимости от физических свойств сигналов и их величины.

При вычислении ВКФ зашумленных дискретных сигналов ограниченной длины с использованием формулы (6.2.4) имеется вероятность появления значений  su (n)| > 1.

Для периодических сигналов понятие ВКФ обычно не применяется, за исключением сигналов с одинаковым периодом, например, сигналов входа и выхода при изучении характеристик систем.

В системах передачи информации очень часто возникает необходимость в сигналах со специально выбранными свойствами. При этом выбор сигналов диктуется не технической простотой их генерирования и преобразования, а возможностью оптимального решения поставленной задачи. К таким задачам обычно относят синхронизацию, распознавание, измерения, повышение скрытности и помехозащищённости и т.п.

Точность решения этих задач определяется степенью отличия друг от друга сигнала s(t) и его «копии» s(t-x), смещенной во времени .

Для количественной оценки степени различия сигналов s(t) и s(t- т) применяют автокорреляционную функцию (АКФ) В(т) сигнала s(t). Ее определяют как скалярное произведение сигнала и его задержанной копии:

Если s(t) носит импульсный характер, то этот интеграл заведомо существует.

Основные свойства автокорреляционной функции:

1. - при т =0 АКФ равна энергии сигнала.

2. - т.е. АКФ является чётной функцией.

3. - при любом т модуль АКФ не превосходит энергии сигнала.

В качестве примера рассмотрим вид АКФ прямоугольного видеоимпульса с амплитудой U и длительностью т н (рис. 1.13).


Рис. 1.13. АКФ прямоугольного импульса На рис. 1.13 затененные области показывают наложение сигналов, при котором произведение s(t)s(t-i) отлично от нуля. Это будет при |т|

Таким образом, АКФ является симметричной кривой с центральным максимумом, который всегда положителен. В зависимости от вида сигнала s(t) АКФ убывает монотонно или колебательно.

АКФ сигнала тесно связана с распределением его энергии по спектру частот соотношением

Можно оценивать корреляционные свойства сигналов, исходя из распределения энергии по спектру. Чем шире полоса частот сигнала, тем уже по времени АКФ. Сигнал с узкой АКФ лучше с точки зрения возможности точного измерения момента совпадения двух одинаковых по форме сигналов x(t-ij) и x(t-x) при изменении задержки ij. При проектировании современных систем радиосвязи сигнал выбирают широкополосным.

В принципе можно решать задачу синтеза сигнала с заданными корреляционными свойствами. Примером сигналов с наилучшей структурой АКФ могут служить дискретные сигналы (коды) Баркера, комплементарные коды и другие сложные сигналы. Корреляционные свойства этих сигналов оптимальны применительно к решению задачи обнаружения сигнала и измерения его параметров в радиолокации, в радиосвязи и других областях.

Два сигнала x(t) и y(t) могут отличаться как по своей форме, так и взаимным расположением на оси времени. Для оценки этих различий применяют взаимно корреляционную функцию (ВКФ) В ху (х). ВКФ двух вещественных сигналов x(t) и y(t) определяется как скалярное произведение вида

Свойства взаимно корреляционной функции сигналов с ограниченной энергией:

1. В ху (0) не обязательно является максимальным значением

2. - энергии сигналов хиу.

3. При перемене порядка индексации в обозначении ВКФ и соблюдении формы записи, указанной в выражении (31), происходит инверсия графика ВКФ относительно оси ординат х = О

4. (как и для АКФ)

АКФ является частным случаем ВКФ.

Корреляционная функция сигнала с неограниченной энергией.

Для таких сигналов определение АКФ по формуле (1.31) невозможно в силу бесконечности их энергии. К таким сигналам можно отнести периодические сигналы. Энергетическую оценку моделей таких сигналов проводят вводя среднюю удельную мощность

где Т - произвольный временной интервал.

Для периодических сигналов, энергия которых бесконечно велика по определению, усреднение удобно проводить по периоду Т

Для гармонического сигнала x(t) = Ucoscoot средняя удельная мощность Р = U 2 /2. Применяя формулу (33) к периодическому сигналу x ncp (t), представленному в видеряда Фурье

и принимая во внимание условие ортогональности

и

для средней мощности Р такого сигнала получим

Полная средняя мощность периодического сигнала равна сумме средних мощностей составляющих сигнал гармоник, включая, естественно, мощность постоянной составляющей (нулевой гармоники).

Для непрерывного и периодического сигнала АКФ определяется по формуле

с усреднением по бесконечному интервалу Т.

Для гармонического сигнала АКФ имеет вид

В отличие от АКФ и ВКФ финитных сигналов, АКФ периодической функции сама является периодической функцией и имеет размерность мощности. Значения аргумента т, для которых В(т) = 0, Определяют временные сдвиги сигнала и его копии, при которых корреляция отсутствует. Значение В(0) периодического сигнала численно равно мощности сигнала; для гармонического сигнала В(0) = U 2 /2.