Виды современных сварочных аппаратов. Современные технологии сварки и их применение

Одно из важнейших ремесел для человека. С помощью сварочных технологий нам удается создавать по-настоящему удивительные вещи: от простейших бытовых приборов до космических ракет. В этой статье мы расскажем, как происходит сварка, какие существуют виды сварки и их краткая характеристика.

Что такое сварка? Каковы основы сварки? Эти вопросы задаю многие начинающие умельцы. По сути своей, сварка - это процесс соединения разных металлов. Соединение (его также называют ) формируется на межатомном уровне с помощью нагрева или механической деформации.

Теория сварки металлов очень обширна и невозможно в рамках одной статьи описать все нюансы. Также как невозможно описать все способы сварки металлов, поскольку на данный момент способов около сотни. Но мы постараемся кратко классифицировать методы сварки, чтобы новички не запутались.

Итак, на данный момент возможна термическая, термомеханическая и полностью механическая сварка деталей из металла или других материалов (например, или стекла). При выборе способа сварки учитывается каждый нюанс: толщина деталей, их состав, условия работы и прочее. От этого зависит технология сварки металла.

Термическая сварка - это процесс соединения деталей только с помощью высоких температур. Металл плавится, образуется надежное . К термическим методам относится, например, и (о них мы поговорим позже).

Термомеханическая сварка - это процесс соединения деталей с помощью высоких температур и механического воздействия, например, давления. К такому типу принадлежит . Деталь нагревается не так сильно, как в случае обычной термической сварки, а для формирования шва используется механическая нагрузка, а не плавление металла как такового.

Механическая сварка - процесс соединения деталей без применения высоких температур и вообще тепловой энергии. Здесь ключевой элемент - механическое воздействие. К такому типу относится , ультразвуковая сварка или соединение деталей трением.

Также существует классификация способов сварки по техническим признакам. Используя такую классификацию можно довольно кратко описать все имеющиеся типы сварки. Они делятся на:

  • Сварку в защитной среде (для защиты может использоваться , инертный газ, активный газ, вакуум, защита может быть комбинированной и состоять из нескольких материалов сразу).
  • Сварку прерывистую и непрерывную.
  • Сварку ручную, механизированную, полуавтоматическую, автоматическую, роботизированную.

Если вы ранее не сталкивались со сваркой и все перечисленное выше кажется чем-то запутанным и непонятным, то не беспокойтесь. Далее мы расскажем, какие самые популярные методы сварки используются в домашних и промышленных условиях.

Вам будем дана характеристика основных видов сварки и некоторые особенности, которые нужно учесть. Кстати, многим видам сварки мы посвящали отдельные статьи, которые вы можете прочесть, открыв рубрику « » на нашем сайте.

Ручная дуговая сварка с применением неплавящихся электродов

Способ разных металлов с применением неплавящихся электродов - один из самых популярных методов как среди домашних умельцев, так и среди профессионалов своего дела. Ручная дуговая сварка - это вообще один из древнейших способов сварки. Благодаря большому для дуговой сварки такой метод стал доступен широкому кругу сварщиков.

Электрод - это стержень, выполняющий роль проводника тока. Он может быть изготовлен из различных материалов и иметь специальное покрытие.

Технология дуговой сварки крайне проста: детали подгоняют друг к другу, затем электродом постукивают или чиркают о поверхность металла, зажигая сварочную . В качестве основного оборудования используют сварочные инверторы.

Для сварки инвертором выбирают неплавящиеся электроды, сделанные из , вольфрама или . Во время сварки электрод нагревается до высокой температуры, плавя металл и образуя сварочную ванну, в которой как раз и формируется шов. Такой метод используют для сварки цветных металлов.

Ручная дуговая сварка с применением плавящихся электродов

Виды сварки плавлением металла не заканчиваются на применении неплавящихся стержней. Для работы также можно использовать плавящиеся электроды. Технология сварки металла с использованием плавящихся стержней такая же, что и при работе с неплавящимися материалами.

Отличие лишь в составе самого электрода: плавящиеся стержни обычно изготавливаются из легкоплавких металлов. Такие стержни также пригодны для сварки в домашних условиях. Здесь шов образуется не только за счет расплавленного металла детали, но и за счет расплавленного электрода.

Дуговая сварка с использованием защитного газа

Способ дуговой сварки разных металлов с использованием защитного газа выполняется с помощью плавящихся и неплавящихся электродов. Технология сварки такая же, как и при классической ручной дуговой сварке. Но здесь для дополнительной защиты сварочной ванны в зону сварки подается специальный защитный газ, поставляемый в баллонах.

Дело в том, что сварочная ванна легко подвержена негативному влиянию кислорода и под его воздействием шов может окислиться и получиться некачественным. Газ как раз и помогает избежать этих проблем. При его подаче в сварочную зону образуется плотное газовое облако, не дающее кислороду проникнуть в сварочную ванну.

Автоматическая и полуавтоматическая сварка с использованием флюса или газа

Автоматическая и с применением флюса или - это уже более продвинутый способ соединения металлов. Здесь часть работ механизирована, например, подача электрода в сварочную зону. Это значит, что сварщик подает стержень не с помощью рук, а с помощью специального механизма.

Автоматическая сварка подразумевает механизированную подачу и дальнейшее движение электрода, а полуавтоматическая подразумевает только механизированную подачу. Дальнейшее движение электрода сварщик осуществляет вручную.

Здесь защита сварочной ванны от кислорода просто обязательна, поэтому используется газ (по аналогии с дуговой сваркой с применением газов) или специальный . Флюс может быть жидким, пастообразным или кристаллическим. С помощью флюса можно значительно улучшить качество шва.

Прочие методы соединения металлов

Помимо традиционных способов сварки в современной промышленности применяются методы, позволяющие соединить уникальные металлы. Зачастую такие металлы обладают ярко выраженными химическими или тугоплавкими свойствами, отчего привычные способы сварки не подходят для их соединения. Конечно, такие металлы не используются в домашней сварке, но они широко применяются для создания ответственных деталей на крупном производстве.

Мы расскажем про виды сварки плавлением, когда суть сварки заключается в подаче большого количества тепла на маленький участок сварки. К таким методам относится лазерная сварка и плазменная сварка.


металлов выполняется с помощью автоматического и полуавтоматического оборудования. Такой процесс сварки может быть полностью роботизирован и не требует присутствия человека. Здесь деталь нагревается, а затем и плавится под воздействием тепла, исходящего от лазерного луча и направленного в определенную точку.

Тепло концентрируется строго в одной точке, позволяя сваривать очень мелкие детали размером менее одного миллиметра. Также с помощью призмы лазер можно расщепить и направиться в разные стороны, чтобы сварить несколько деталей сразу.

Металлов выполняется с применением ионизированного газа, называемого плазмой. Газ струёй подается в сварочную зону, образовывая плазму. Она работает в связке с вольфрамовым электродом и газ нагревается за счет электрической дуги.

Сам ионизированный газ обладает свойством проводника тока, поэтому в случае плазменной сварки именно плазма является ключевым элементом в рабочем процессе. Также плазма активно защищает сварочную ванну от негативного влияния кислорода. Такой метод сварки используется при работе с металлами, толщиной до 9 миллиметров.

Технологический процесс сварки

Мало знать способы сварки, нужно еще понимать, какие необходимы документы на сварку и из каких этапов состоит сварочный процесс. Конечно, это справедливо только в отношении профессиональных сварщиков, выполняющих работу в цеху или на производстве. Вам это не нужно, если вы собираетесь варить забор на даче, но дополнительные знания тоже не помешают.

Итак, вот наше краткое описание технологического процесса сварки:

  1. Разработка чертежа
  2. Составление технологической карты
  3. Подготовка рабочего места сварщика и подготовка металла
  4. Непосредственно сварка
  5. Очистка металла
  6. Контроль качества

Сам по себе техпроцесс - это полное описание этапов сварки. Технический процесс разрабатывается после того, как будут готовы чертежи будущей металлоконструкции. Чертеж делают, опираясь на (ГОСТы, например), при этом во главу ставят качество будущей конструкции и разумную экономию.

Технологический процесс сварки оформляется на специально разработанных для этого бланках. Стандартный бланк для описания техпроцесса называется «технологическая карта». В технологической карте и описываются все этапы производства. Если производство серийное или крупномасштабное, то изложение может быть довольно подробным, с описанием каждого нюанса.

В технологическую карту заносят тип металла, из которого изготовлены детали, способы сварки металлов, используемые для соединения этих деталей, применяемое для этих целей сварочное или иное оборудование, типы присадочных материалов, электродов, газов или флюсов, используемых в работе. Также указывается последовательность формирования швов, их размеры и прочие характеристики.

Также в технологической карте указывают , их диаметр, скорость их подачи, скорость сварки, количество слоев у шва, рекомендуемые (параметр полярности и величины сварочного тока), указывают марку флюса. Перед самой сваркой детали тщательно подготавливают, очищая их от коррозии, загрязнений и масла. Поверхность металла обезжиривают с помощью растворителя. Если у детали есть значительные видимые дефекты (например, трещины), то она не допускается к сварке.

После сварки предстоит контроль сварочных швов. Этой теме мы посвятили , но здесь кратко расскажем об основных методах контроля. Прежде всего, применяется визуальный контроль, когда сварщик может сам определить наличие дефектов у сварочного соединения. Специалистами проводится дополнительный контроль с помощью специальных приборов (это может быть магнитный контроль, радиационный или ультразвуковой).

Конечно, не все дефекты считаются плохими. Для каждых сварочных работ составляется перечень с дефектами, которые допустимы и не сильно повлияют на качество готового изделия. Контролером может быть сварщик или отдельный специалист. Его имя обязательно указывается в документах, он является ответственным лицом на этапе контроля.

Вместо заключения

В этой статье мы рассказали самое основное. Конечно, мы не сможем перечислить и описать все виды сварочных работ в рамках одной этой статьи, но на нашем сайте вы можете найти материалы, где мы рассказываем все о сварке и объясняем основы сварки различных металлов.

Каждый монтажный процесс требует правильного подхода. Проще говоря, технология должна соблюдаться обязательно, иначе окончательное изделие, если и окажется на вид приемлемым, и его конструкционные качества будут не на высоте. Сварочные работы, технологии которых разнообразны, должны отвечать всем предписанным действиям, так как изделия из металла отличаются повышенной прочностью и безопасностью в эксплуатации.

Для правильной сварки металла необходимо подходить к этому ответственно и со знанием дела.

Прежде чем применить особенности сварки по выбранной технологии, нужно понять свойства стали, особенности сопутствующих электродов и назначение изделия. Обработка, технология металлов и сварка идут рука об руку и не могут находиться вне зависимости друг от друга.

Применяемые в сварке материалы

Не весь металл сваривается одинаково. Состав стал разниться и влиять на качество и технологию прокладки шва. Общие требования к сварке любого материала должны отвечать таким качествам, как:

  • стойкость шва к образованию трещин;
  • выдержка стали околошовной зоны;
  • определение стойкости металла при переходе в состояние хрупкости;
  • проверка на износоустойчивость, коррозию и механические свойства свариваемого материала.

Требования стойкости шва к образованию трещин.

При помощи таких требований и выбирается образец стали. К нему применяется особая технология сваривания, которая будет иной для других металлов. Нельзя забывать, что и аппараты, с помощью которых будет вестись работа, тоже технологически различны.

Для того чтобы изделие хорошо функционировало в любых температурах, в сварке применяют легированные и холодостойкие стали. Ранее технология сваривания таких металлов применялась только с никельсодержащими составами. Теперь же при развитии прогресса в сварке рекомендована работа с меньшим содержанием никеля и низким количеством углерода. Это дает преимущества в виде отсутствия трещин при закалке, использования изделия в агрессивных средах и хорошей свариваемости практически без дефектов.

Жаропрочные стали применяют в сварке в комбинировании с легированными. Прежде всего, это даст экономию обоим видам металла, особенно если применить хромированные компоненты. Стали такого качества прочны и обладают свойствами, работающими как на охлаждение, так и на перегрев.

Сварка алюминия активно используется в разных видах промышленности, но лишь как самостоятельное легкое покрытие. Взаимодействие со сталью плохое, и технологии пока нет. Поэтому прочность такого металла зависит лишь от его свойств, а чистый алюминий - легкий и хрупкий материал.

Классификация видов стали для сварки.

Углеродистые стали - самые распространенные в промышленных и производственных масштабах материалы для сваривания. Особенности заключаются в подверженности плавке. Низко- и среднеуглеродистые без труда поддаются любой технологии, стали же с высоким содержанием углерода считаются тугоплавкими, но и для них созданы решения.

Влияние примесей на технологию сваривания. Некоторые из них могут ухудшать качества и свойства основного металла, другие же, наоборот, улучшать. К примесям можно отнести кислород, висмут, фосфор, серу и другие. Из них хорошими свойствами, придающими качество шву, можно выделить фосфор, мышьяк (швы плотные), а вредными элементами считается большое количество кислорода, висмута и серы (швы пористые и хрупкие).

Влияние металлов на технологию сваривания огромно. От комплексных показателей качества зависит эксплуатация изделия - долгосрочная и безопасная. Критерии оценки стали придумали еще при Петре Первом, и до сих пор используют в модернизированном виде. Прежде чем допустить сталь на сваривание, она проходит множество испытаний на изгиб, кручение, твердость, растяжение. Проверку проходят и свойства на выдавливание и осадку. Для того чтобы понять, как будет реагировать сталь на ту или иную технологию сварки и последующую обработку, необходимо знать ее структуру, чтобы применить к ней наиболее подходящую.

Сварка высоколегированных сталей

Схема особенностей сварки высоколегированных сталей.

Технология включает в себя несколько процессов: определение свойств металла к растрескиванию, коррозии, изменение структуры стали во время сварки и охлаждения готового шва. Процесс сварки такого металла должен идти быстро. Более эффективной является дуговая, нежели газовая. Электроды должны быть выбраны с содержанием аустенситных сталей, благодаря которым шов будет более технологичным.

По окончании сварки изделие или шов нужно охладить. Но технология еще не закончена: шов требует определенной обработки. Помимо отбивания шлака, нужно удалить оксидный слой, если желаемое изделие должно обладать такими же качествами, как и основной металл. Сделать это можно с помощью термообработки и травления швов. Более эффективен второй вариант. Изделие или область шва погружают в раствор с определенными компонентами, и в результате оксид должен раствориться. Швы шлифуют, полируют и получают поверхность, соответствующую стандартам.

Лазерное сваривание металла

Схема лазерной пайки и сварки.

Технология сварки заключается в высокоточной работе, не требующей последующих обработок. Однако из-за стоимости лазера эта технология пока применима лишь в ответственных конструкциях. Требования к внешнему виду достаточно высоки. Такая технология предусматривает большую точность стыков свариваемой конструкции и соответствующую обработку краев. Сначала металлические элементы подвергают тщательному очищению от окалины, ржавчины, режут трещины, убирают оксидный слой. Могут использоваться токарные станки для идеальности кромок. Применяются растворы для обезжиривания, словом, металл для такой технологии подготавливается тщательно.

Соединение сварки только стыковое. Нахлесточные к углеродистым сталям не применяют из-за особой концентрированности электрического напряжения при лазерной технологии. В качестве защитного газа применяют гелий и аргон. Лазерной технологии подвергают как легкие, так и особо прочные металлы.

Схема горячей сварки.

А если выполняется технология горячей сварки? При таком выбранном варианте заготовку изделия подвергают предварительному нагреву. Затем применяются сварка и последующее за этим медленное остывание. Это обычный способ обработки изделий, уже бывших в употреблении. Дефекты нужно срезать и создать вокруг места сваривания форму из песка во избежание вытекания расплавленного металла.

Разогрев происходит в печах или косвенной дугой, если изделие невозможно транспортировать. Преимущества находятся на стороне дуговой сварки угольными электродами. Охлаждение должно происходить медленно, не менее 3 суток. Для этого шов покрывается слоем древесного угля и обкладывается со всех сторон асбестовыми листами. Ток может быть любым - постоянным или переменным.

Технология сваривания чугуна

Методы сваривания любых видов чугуна (серые, белые или половинчатые) сложны, так как это самый капризный металл из всех. Особенности его заключаются в сильной текучести металла под действием дуги. Он образовывает трещины в технологических швах из-за высокой скорости охлаждения. Преимущественно технология сварки чугуна применяется при ремонтных работах или исправлении неподходящих отливок.

В качестве швов главную роль играет выбор электродов.

Основные способы сварки чугуна.

Меньше всего разрушат углеродистый слой металла медно-никелевые. Однако и здесь есть свои условия: шов должен быть мелким, а глубина - маленькой. Подводный камень в выборе таких электродов все же есть: сплавы меди и никеля обладают большой усадкой, что может привести к образованию горячих трещин.

Распространена технология сваривания чугуна с помощью стальных шпилек, которые предварительно вворачивают в тяжелые и громоздкие изделия. Их обваривают вместе с чугуном, низкими токами, для того чтобы уменьшить проявления белого чугуна: он еще более хрупок, при остывании.

Технология сварки алюминия

Выбор ее ограничен из-за свойств самого металла. Имеющий низкую температуру плавки, он обладает высокой текучестью при работе. Прочность такого металла тоже мала, поэтому предотвращающие меры должны быть приняты еще на этапе подготовки. Капризные особенности можно предотвратить с помощью закрытой дуги, высоких концентрированных температур и применения керамического флюса. Они способствуют улучшению качества шва при любом виде сваривания.

Схема аргоно-дуговой сварки алюминия.

При работе с плавкой алюминия следует учитывать и состав окружающей атмосферы: если влажность повышена, то швы будут пористыми, а соответственно, некачественными. К тому же, если не соблюсти определенную «сухость» в работе, металлу грозит коррозия.

Технология сварки металлов с алюминием вредна для рабочих, находящихся в зоне превышения концентрации газов и некоторой степени радиации. Поэтому недопустима работа одного человека: всегда должен быть наблюдающий со стороны, готовый прибегнуть к оказанию срочной помощи, если напарнику от паров станет плохо.

Если приходится работать в условиях низких атмосферных температур, то организаторы сварочных работ должны позаботиться о сооружениях, прикрывающих места производства технологических процессов. Оболочки или тепляки должны создать внутри необходимую температуру, соответствующую проводимой технологии. Иначе качество сварки сойдет на нет. При сильном переохлаждении металла швы будут усеяны многочисленными трещинами, что, естественно, не способствует правильности. Должно быть и обеспечение подогревом в связи использования технологий по горячей сварке.

Ремонтные технологии: нюансы

Классификация сварки металлов.

Способы такой сварки различны: дуговая ручная, автоматическая, шлаковая, механизированная, кислородная. Обширность применения такого рода технологий востребована, прежде всего, в машиностроении, строительстве и жилищно-коммунальном хозяйстве. Выбор определенной технологии зависит от повреждения и его доступности. Предварительно металл подготавливают и определяют его характеристику. Затем убирают повреждения: с трещин снимается кромка, дыры вырезаются и зачищаются.

Технология сварки трещин идет в два этапа: сначала с лицевой стороны, затем с обратной. Заплаты делаются внахлест, угловыми сварками. Кроме того, нельзя забыть о придании выпуклой формы ввариваемого металла. Это нужно, для того что усадка произошла без повреждений. Швы доводятся до гладкого состояния путем их шлифовки.

Детали непростой формы должны вариться вручную. Должно быть визуальное наблюдение за процессом. В этом случае металл будет более качественно использован: окажется меньше шлака. Но все зависит от мастерства сварщика. Повреждения толстостенных металлов завариваются нескольким технологиями: многослойными швами, двумя дугами, «горкой». Такие способы хороши для вертикальных положений.

Технологии сварки бронзы и латуни

Схема автоматической сварки бронзы под флюсом.

Бронза - металл капризный. В сочетании с алюминиевыми наплавками сварке не поддается. Чистую, без примесей, возможно заварить по технологии, применимой к меди - вольфрамовым электродом, с присадками из фосфористых элементов. Сварка должна идти в краткий срок без допущения сильного нагревания основной поверхности. Должны применяться стремительное охлаждение и затвердевание. Подойдут и угольные электроды, но на высоте металлический с литым бронзовым стержнем. Нельзя допустить и сильного потека металлов, поэтому процесс ведется только в нижнем положении. Швы, полученные в результате сварки, непрочны и составляют лишь 75% от всей прочности изделия. Это говорит о том, что технология сваривания бронзы применима в ремонтных или второстепенных областях.

Латунь - это медь и цинк, которые при нагревании взаимодействуют. Технология не самая легкая, так как из-за испарения цинка образуется новый элемент - окись цинка, он, в свою очередь, сильно ядовит. Поэтому при соблюдении технологии сварки металлов предполагается работа с вытяжными устройствами или в респираторе. Сам процесс сварки латуни с присадками, уменьшающими испарение цинка, идет хорошо, удовлетворяет требования и качество шва, отделяемый шлак удаляется быстро. Латунь подвержена многим видам сварки, но из-за ее текучести работа может выполняться лишь в нижнем положении.

Технология сваривания мартенситно-стареющих металлов

Микроструктура типичных мартенситно-стареющих сталей.

Благодаря надежности разработанных технологий упрочнения сталей такие виды металлов могут свариваться любым видом сварки и с применением различных электродов. Сравнительно недавно к такой стали с успехом применяется лазерная сварка, которая показывает лучшие результаты стойкости к растрескиванию или коррозии.

Также широкое применение получила точечная контактная сварка при работе со стареющими металлами. Она хороша в промышленных масштабах, а для штучных изделий подойдут технологии сварного взрыва или трения. Но это требует определенных условий в техническом оборудовании.

Для того чтобы сварка такими сталями была успешной, требуется точное соблюдение технологий, присущих именно ей: все материалы и сопутствующие элементы должны быть идеально чистыми, их обезжиривают и промывают. Если требуется подгонка стыков, то делать это нужно качественно, иначе возможно возникновение горячих трещин. Их ликвидация довольно проблематична. Технология предусматривает переход в процессе сварки металлов от одной формы к другой: это способствует устранению дефектов в виде трещин.

Технологии, предусматривающие сварку тугоплавких металлов, включают в себя цирконий, ниобий, ванадий, тантал. А также хром, молибден, вольфрам.

В качестве очищающего средства металлов перед сваркой используют абразивный камень.

Перед тем как приступить к сварочному процессу, необходимо подготовить поверхности, стыки и торцы изделий. Может применяться абразивный камень в качестве очищающего средства, но только в том случае, если конфигурация детали несложная и не имеет изгибов, выпуклостей или вогнутостей. В противном же случае используются особые электрические ножницы. Но так как от этого поверхность может пойти трещинами, то рекомендовано обрабатывание торцов и кромок на фрезерных станках. В качестве очистки поверхности применяются травление и вакуумный отжиг.

В вопросе выбора электродов применима проволока такого же состава, что и основной металл. Режимы сварки могут разниться, от этого идут разное формирование шва, его структура и механическая прочность самого изделия. К примеру, увеличение тока приведет к увеличению пластичности металлов, однако плохо скажется на формовке шва.

Прогрессивные технологии, такие, как плазменная сварка, вакуумная или лазерная, помогут справиться со всеми видами стали, но потребуют большого профессионализма в работе. Они используются в промышленных масштабах: ракетостроение, применение точных приборов измерения.

Технология сваривания разнородных металлов

Таблица для сварки разнородных металлов.

Промышленность преуспевает в создании альтернативных изделий с применением сварки металлов. Что это значит? На смену тяжелым и дорогим изделиям приходят другие, выработанные с применением технологии совместимости разных структур. Таким образом, они становятся экономичнее, легче, улучшаются конструкционные качества.

Некоторые технологии сварки ведутся с применением какого-либо промежуточного металла, в том случае, если свойства одного и другого вместе не сойдутся никак. Тогда «прослойка» будет прекрасным барьером в предотвращении хрупкости и возникновении коррозии. Естественно, такой металл должен быть совместим и с одним, и с другим материалом.

Прекрасными способами в некоторых случаях станут пайка металлов, технология давления и плавления. Они не могут подходить ко всем без исключения материалам, однако призваны своим взаимодействием схватить поверхности конструкций. В этом случае технология окажется ничуть не хуже прямого сваривания однородных металлов.

Технология сваривания свинца

Технология сварки свинца.

Свинец получил большое применение в атомной и химической промышленности благодаря собственным свойствам. Им отделывают внутренние поверхности сосудов и колб для химических реагентов, так как его малое взаимодействие с активными веществами позволяет транспортировать их без опасения утечки.

Подготовка к свариванию свинца ведется тщательным образом: края металла зачищают до блеска, и ширина чистой поверхности должна составить не менее 3 см от кромки. В качестве дополнительной очистки применяют протравление раствором уксусной кислоты или промывание хлористым углеродом, чтобы исключить малейшую возможность проникновения грязи под сварочный шов. Чистка происходит либо непосредственно перед сваркой, так как металл притянет к себе налет очень быстро, либо два раза.

Свинцовая сварка может проходить и в вертикальных положениях из-за легкости плавления, и в горизонтальных из-за жидкотекучести металла. Также сварка идет с применением присадочной проволоки, которая закладывается прямо встык.

Схема вариантов сварки свинца.

Типы применяемой к свинцу сварки различны: газовая, дуговая, импульсная и холодная. Зависят они от толщины сварных металлов. Лучшие швы получаются при применении флюсов, в два-три шовных прохода. Первый будет идти без присадочной проволоки, за счет того что края изделия сами плавятся. Второй - с присадкой и увеличением сварочной ванны. Третий нужен, если толщина свинца превышает 20 мм, значит, считается трудоемкой.

Сварка свинца осуществляется без подогрева и перерыва. Если вдруг случайно произошел обрыв электрической дуги, то нужно по-новому зачистить место присоединения и лишь потом начинать сварку. Для того чтобы сделать шов гладким, его допустимо проковать.

http://moyasvarka.ru/youtu.be/NnaJTrs2qQA

Перечень вышеуказанных технологий далеко не полный и не раскрытый в плане конкретных цифр и указаний марок сталей и электродов. Производственные таблицы с определенными величинами даны в обучающей литературе. Технология металлов и сварка - понятия, неотделимые друг от друга, и поэтому без изучения свойств одного невозможен процесс другого. Чтобы стать профессионалом в области сварочного дела, требуется получить знания и по металловедению, чтобы знать реакцию популярных и редких для сваривания металлов на ту или иную технологию.

moyasvarka.ru

Правила и технологии сварки металлов

  • 24-10-2014
  • Электродуговая сварка металлов и электроконтактная
    • Работа электрической дуги
    • Защита расплавленного металла и сплавление электрическим контактом
  • Технология электродуговой сварки металлов
    • Электроды для сваривания: виды и выбор
    • Характеристики дуговой сварки: определение и значение
  • Как выполняется дуговая сварка: технология
    • Начало сварки: последовательность розжига дуги
    • Перемещение электрода и сварная ванна
  • Технология контактной, шовной и газовой сварки металлов
  • Оборудование: выбор сварочного аппарата и средств защиты

Сварка - метод соединения деталей из однородного материала: пластика с пластиком, металла с металлом. При сваривании контактирующие поверхности расплавляются или плотно сжимаются. В зоне контакта происходит сплавление двух материалов в один. В результате образуется прочное плотное соединение двух поверхностей.


Сварка - это соединение деталей, сделанных из одинакового материала, для получение единой конструкции.

Сварка металлов расплавлением используется для качественного герметичного соединения ответственных деталей: элементы трубопровода, корпус автомобиля (автобуса, самолета), стенки металлического гаража и ворота, опоры спортивного турника, соединение арматуры внутри бетонной стены и многое другое. Какие виды сварки используют современные сварочные технологии? Как правильно выполняется сваривание металла?

Виды сваривания металлических поверхностей

Сварка металлов может осуществляться с расплавлением контактных поверхностей или с их сжатием. При этом процессы сваривания называются:

  • сваривание плавлением (или расплавлением);
  • сваривание пластическим деформированием.

Классификация основных видов сварки.

Соединение деформированием может выполняться с применением подогрева или без него. Деформирование поверхностей без подогрева называется холодной сваркой. При плотном сжатии атомы различных материалов оказываются на близком расстоянии и образуют межатомные связи. Происходит соединение поверхностей.

При сваривании плавлением соединяемые поверхности локально нагреваются и расплавляются. Часто используется третий (присадочный) материал, который плавится и заполняет зазор между двумя металлами. При этом в жидком расплаве образуются межатомные связи между основным материалом и присадкой (расплавленным электродом). После остывания и затвердевания образуется сплошное сварное соединение.

Местный нагрев деталей для сваривания может осуществляться электрическим током или горящим газом. Соответственно, по способу локального нагрева сварка делится на два вида:

  • электрическая (в том числе электрошлаковая, электролучевая, лазерная);
  • газовая.

Наименования определяются используемым источником тепла. Электричество может работать как напрямую, так и косвенно. При прямом использовании электроэнергия нагревает металл и присадочный электрод благодаря прохождению по ним тока или возникновению дуги. В косвенном использовании работает различная энергия, полученная от воздействия электричества: энергия расплавленного шлака, через который проходит ток, энергия электронов в электрическом поле, луч лазера, возникающий при подаче электричества.

Классификация видов электрической сварки.

Сварка металлических поверхностей может выполняться в ручном или автоматическом режиме. Некоторые виды сварных соединений возможны только с применением автоматики (например, электрошлаковая или шовная), другие доступны для выполнения ручными сварочными устройствами.

Электрическая сварка представлена двумя методами:

  • электродуговой;
  • электроконтактный.

Разберем подробнее, как происходит соединение поверхностей при дуговом и контактном способе сваривания.

Вернуться к оглавлению

Вернуться к оглавлению

Данный вид сваривания использует для нагрева теплоту электрической дуги. Дуга, образующаяся между металлическими поверхностями, представляет собой плазму. Взаимодействие металлических поверхностей с плазмой вызывает их нагрев и расплавление.

Принцип работы электродуговой сварки.

Электродуговая сварка может выполняться с использованием плавящегося электрода или неплавящегося его вида (графитового, угольного, вольфрамового). Плавящийся электрод одновременно является возбудителем электродуги и поставщиком присадочного металла. При неплавящемся электроде для возбуждения дуги используется стержень, который не расплавляется. Присадочный материал вводят в зону сваривания отдельно. При горении дуги происходит плавление присадки и кромки деталей, образовавшаяся жидкая ванночка после затвердевания образует шов.

В некоторых технологических процессах соединение поверхностей происходит без подачи присадочного материала, только перемешиванием двух основных металлов. Так производят сваривание вольфрамовым электродом.

Если электрическая дуга горит не свободно, а сжимается плазмотроном, при этом через нее продувается плазма ионизированного газа, то такой вид сваривания называется плазменным. Температура и мощность плазменной сварки выше, поскольку при сжатии дуги достигается более высокая температура ее горения, что позволяет выполнять сварку тугоплавких металлов (ниобий, молибден, тантал). Плазмообразующий газ является также защитной средой для соединяемых металлов.

Вернуться к оглавлению

Схема электроконтактной сварки.

Если при горении дуги металлические поверхности защищают от окисления газом или вакуумом, то такое соединение называют сваркой в защитной среде. Защита необходима для сварки химически активных металлов (цирконий, алюминий), ответственных деталей из легированных сплавов. Возможна защита сварки другими веществами: флюсом, шлаком, порошковой проволокой. Соответственно, используемые методы сварки получили наименования: сваривание под флюсом, электрошлаковая сварка, вакуумная. Все это - разновидности электродугового метода, использующие различную защитную среду для предупреждения окисления расплава, изменения его химического состава и потери свойств сварного соединения.

Электроконтактная сварка использует тепло, выделяемое в месте соприкосновения двух свариваемых поверхностей. Так выполняется точечное сваривание: детали с усилием прижимают друг к другу до соприкосновения в нескольких точках. Точки соприкосновения будут являться местами максимального сопротивления и наибольшего разогрева поверхности. За счет этого нагрева и происходит оплавление и соединение металлических элементов в точках соприкосновения.

Вернуться к оглавлению

Принцип подключения и работы электродуговой сварки.

Технология сварки металла с использованием электрической дуги состоит в последовательности действий по организации работы сварочного аппарата и непосредственном выполнении сварки.

Подготовка состоит в установке сварочного инвертора, выборе электродов и выполнении необходимого скоса кромки (подготовке поверхностей).

После установки сварочного аппарата в месте сварки контактный провод с помощью «крокодила» (конструкция присоединяющей клеммы) крепят на одной из контактных металлических поверхностей. Включают сварочный аппарат и выставляют регулятором тока его силу. Сила тока регламентируется размером электрода и толщиной свариваемых деталей. Для электрода диаметром 3 мм сила тока должна соответствовать 80-100 А.

Если поверхность металла окрашена или окислена с образованием слоя ржавчины, его необходимо поцарапать металлической щеткой для обеспечения полноценного контакта в соединении.

Определяется вид соединения контактных поверхностей:

  • стыковое;
  • внахлест;
  • угловое;
  • тавровое;
  • торцевое.

Типы сварных соединений и швов.

Рассмотрим подробнее особенности сваривания различных типов соединений. Стыковое соединение часто требует предварительной подготовки кромок свариваемых поверхностей: по их краям выполняются скосы. V-образные скосы делают по краям листов толщиной от 5 до 15 мм, Х-образные скосы - на листах толщиной больше 15 мм. Снятие V-образной кромки при стыке поверхностей позволяет получить углубление, по которому выполняется сварка. Х-образные кромки предполагают наличие углубления и выполнение сварных швов с двух сторон соединения.

Угловые и тавровые соединения тоже могут выполняться со скосом кромок (с разделкой поверхности) или без скосов и разделки (в зависимости от толщины сварного сечения).

Тавровое и угловое соединения позволяют соединять детали различной толщины. При этом положение электрода должно быть более вертикальным к той поверхности, у которой больше толщина.

Вернуться к оглавлению

Электрод для сварки представляет собой металлический стержень, покрытый обмазкой. Состав обмазочного покрытия предназначен для защиты металла сварного шва от выгорания при окислении. Флюс вытесняет из расплавленного металла кислород, чем препятствует окислению, и выделяет защитный газ, чем также предупреждает окисление. В состав обмазки входят следующие компоненты:

Схема электрода для сварки: 1 - стержень; 2 - участок перехода; 3 - покрытие; 4 - контактный торец без покрытия; L - длина электрода; D - диаметр покрытия; d - номинальный диаметр стержня; l - длина зачищенного от покрытия конца

  • стабилизаторы зажигания и горения (калий, натрий, кальций);
  • шлакообразующая защита (шпат, кремнезем);
  • газообразующие (древесная мука и крахмал);
  • рафинирующие соединения (для вывода и связывания серы и фосфора, вредных для сваривания металла примесей);
  • легирующие элементы (если шву необходимы особые свойства);
  • связующие (жидкое стекло).

Выпускаемые промышленностью электроды имеют диаметр от 2,5 до 12 мм, для ручной сварки наибольшее применение получили 3-миллиметровые электроды.

Выбор диаметра электрода определяется толщиной свариваемых поверхностей, требуемой глубиной проплавления. Существуют таблицы, приводящие рекомендованные значения диаметров электродов в зависимости от толщины проплавляемых поверхностей. Надо знать, что небольшое уменьшение диаметра электрода возможно, при этом увеличивается время выполнения процесса. Электрод меньшего диаметра дает возможность лучше контролировать процесс, что важно для начинающего сварщика. Более тонкий электрод можно передвигать медленнее, что важно в процессе обучения.

Вернуться к оглавлению

Перед началом сварки определяются оптимальные характеристики процесса сваривания:

Таблица выбора силы тока для сварки.

  1. Сила тока (регулируется на сварочном аппарате). Сила тока определяется диаметром электрода и материалом его покрытия, расположением шва (вертикально или горизонтально), толщиной материала. Чем толще материал, тем большая сила тока потребуется для его прогрева проплавления. Недостаточная сила тока не расплавляет сечение шва полностью, в результате присутствуют непровары. Слишком большой ток приведет к излишне быстрому расплавлению электрода, когда основной металл еще будет не расплавлен. Рекомендуемое значение тока указывается на упаковке электродов.
  2. Свойства тока (полярность и род). В большинстве сварочных приборов используется прямой ток, он преобразуется из тока встроенным в аппарат выпрямителем. При постоянном токе поток электронов двигается в одном (заданном полярностью) направлении. Полярность при сварке определяет направление движения потока электронов. Существующие полярности выражаются в подключении электрода и детали:
  • прямая - деталь к «+», а электрод к «-»;
  • обратная - деталь к «-», электрод к «+».Благодаря движению электронов от «минуса» к «плюсу» на положительном полюсе «+» выделяется больше тепла, чем на отрицательном «-». Поэтому положительный полюс располагают на элементе, требующим более значительного прогрева: чугун, сталь толщиной 5 мм и более. Таким образом, прямая полярность обеспечивает глубокое проплавление. При соединении тонкостенных деталей и листов применяется обратная полярность.
  1. Напряжение дуги (или длина сварочной дуги) - это расстояние, выдерживаемое между концом электрода и поверхностью металла. Для электрода диаметром 3 мм рекомендуемая длина дуги составляет 3,5 мм.

Вернуться к оглавлению

Вернуться к оглавлению

Способы розжига сварочной дуги.

Для возникновения дуги новый электрод вставляют в зажим и обстукивают о твердую поверхность для удаления обмазки на его рабочем конце. Под шлаком находится металлическая присадка, сам шлак служит изоляцией и закрывает присадку от розжига. После этого электродный стержень приближают к металлической поверхности на минимально возможное расстояние, 3-5 мм, не допуская прикосновения. При этом электрод держат под углом к поверхности свариваемого металла. Технология сварки металлов электродом регламентирует угол наклона электрода в размере 60-70ºC. Визуально такой угол воспринимается как почти вертикальный, с небольшим уклоном.

Для розжига дуги электродом чиркают о поверхность металла наподобие зажигания спички о коробок с серой.

Если электрод слишком приблизить к свариваемой поверхности металла, возникнет прилипание и короткое замыкание. У тех, кто начинает варить, электрод прилипает часто. По мере приобретения навыка правильного расположения электрода над металлом, поддержки оптимального расстояния прилипания происходить не должно. Прилипший электрод можно оторвать, наклонив его в другую сторону или выключив сварочный аппарат.

Если электрод прилипает слишком часто, возможно, что сила тока недостаточно велика, ее необходимо увеличить.

При оптимальной правильной удаленности электрода от места сварки (около 3 мм), происходит образование дуги с температурой порядка 5000-6000ºC. После возгорания дуги электрод можно слегка приподнять от рабочей поверхности, на несколько миллиметров.

Вернуться к оглавлению

Схема сварочной ванны.

При плавлении электрода и основного материала образуется сварная ванна (лужица расплавленного металла).

Электрод и дуга вместе со сварной ванной (зоной расплавленного металла) плавно перемещаются вдоль линии соединения. Скорость перемещения электрода определяется скоростью расплавления металла и изменения его цвета. Быстрое передвижение электрода осуществляется при работе с тонкими листами, быстро нагревающимися и легко образующими сварную ванну. Замедленное перемещение электрода применяется на толстых массивных соединениях.

Форма перемещения электрода (прямо, зигзагом, петлями) определяется шириной сварного шва и глубиной проплавления. Электрод может перемещаться прямолинейно (ровно) при небольшой сварочной ширине. Он может двигаться петлями, зигзагом, если необходимо проварить достаточную ширину и глубину соединения. Варианты движения электрода приведены на Рисунке 1.

Рисунок 1. Способы движения электрода.

Выпуклость шва после застывания сварной ванны определяется положением электрода во время сварки. Если электрод расположен почти вертикально, шов будет ровным, а проплавление - глубоким. Более наклонное расположение электрода формирует выпуклую поверхность сварного соединения и уменьшение глубины проплавления. Слишком большой наклон электрода располагает дугу в направлении шва, делая процесс сваривания плохоуправляемым.

Для качественного соединения расплавленная ванна должна иметь тонкие края, быть достаточно жидкой и послушно перемещаться за электродом.

Ванна в светофильтре (сквозь темное стекло) выглядит как оранжевая поверхность с рябью. Появление оранжевого цвета ванны (капли жидкого расплава) может расцениваться в качестве индикатора для дальнейшего перемещения электрода. То есть если появился оранжевый цвет, то сдвигаем электрод дальше на несколько миллиметров.

Схема устройства и основных показателей сварочной ванны.

В месте окончания проплавления необходимо увеличить размер сварной ванны. Для этого электрод должен удерживаться над данной точкой на несколько секунд дольше.

Если происходит сквозное проплавление материала, необходимо уменьшить величину тока и взять другой электрод (меньшего диаметра). Прожженным дырам дают остыть, сколачивают с них шлак и после этого заваривают.

После сварки необходимо постучать молотком по сварному шву. Это позволит удалить с него окалину и визуально проверить сварное соединение на отсутствие несплошностей или непроваров.

Вернуться к оглавлению

Технология сварки металла по контактам имеет некоторые особенности. Ток подключают к свариваемым деталям, после чего их сближают до соприкосновения. Вдоль поверхности стыка возникают контактные точки, в них за несколько секунд происходит разогрев металла до начала его плавления. После этого ток выключают и стыковые поверхности придавливают друг к другу, обеспечивая плотный контакт точкам расплавления.

Технология шовной сварки.

При шовной сварке работает сварочный автомат. Данный вид сваривания позволяет получить ровный сплошной шов на длинных листовых поверхностях. В аппарате для шовной сварки электроды представляют собой вращающиеся ролики. Между ними пропускаются соединяемые металлические листы.

Газовая сварка использует для образования тепла окисление горючего газа с высокой теплотворной способностью, например, ацетилена, пропана или бутана. Газ и кислород перемешивается внутри горелки, из которой выходит пламя.

Электрошлаковая сварка является видом сваривания в защитной среде. В данной технологической операции шлак является защитным материалом, ограждающим расплавленный металл от контакта с воздухом. Этот вид сварки осуществляется в автоматическом режиме.

Вернуться к оглавлению

Для защиты глаз от ожога при сварке необходимо использовать маску со светофильтром.

Для выполнения сваривания необходим электрический ток большой величины, поступающий на электрод. Современный прибор, обеспечивающий постоянное поступление тока к месту сварки, называется инвертором. Более старые модели сварочных аппаратов имели громоздкие размеры и значительный вес, новые инверторы легко переносятся, не вызывают просаживания сети (это состояние выражается в потере напряжения и мигании лампочек во всем многоквартирном доме или по всей улице частного сектора). Во многих современных инверторах установлена защита от короткого замыкания. При залипании электрода инверторный аппарат автоматически выключается.

Защитный инвентарь: маска со светофильтром (темным стеклом). Светофильтр оберегает глаза от ожога. Без него можно получить ожоги роговицы различной степени: от легких, когда в глазах сохраняется ощущение присутствия песка, до тяжелых, когда восстановить зрение невозможно.

Качество защиты светофильтра определяется номером. Чем толще электрод и больше сварочный ток, тем более мощный светофильтр необходим для защиты зрения.

Освоение тонкостей работы со сварочным аппаратом, выдерживание правильного расстояния дуги, наклона электрода формирует мастерство сварщика. Профессионализм определяется умением управлять процессом, получать качественное соединение поверхностей.

http://moiinstrumenty.ru/youtu.be/KxvvWzqY26A

Современные сварочные инверторы дают возможность овладеть искусством сварщика самостоятельно и выполнять сварочные работы собственноручно.

moiinstrumenty.ru

Куда движется сварка: новые технологии и перспективы развития

Еще в 1802 году русский ученый Василий Владимирович Петров совершил открытие. Он обнаружил: при пропускании электрического тока через два угольных стержня между их концами возникает высокотемпературная электрическая дуга. Именно академик Петров не только изучил и составил описание данного явления, но также указал на возможность использования тепла подобной дуги для расплавления металлов.

Некоторое время это открытие оставалось лишь частью фундаментальной науки. Однако уже к концу девятнадцатого столетия сварка как метод стала неотъемлемым элементом многих технологических процессов. В России дуговую электросварку впервые применили на Куваевской мануфактуре и заводе Пономарева в Иваново-Вознесенске. В 1888 году этот способ был использован в мастерских Орловско-Витебской железной дороги для ремонта паровозных и вагонных колес, рам, решеток и так далее. В течение пяти лет данный способ распространился по всей России.

С тех пор сварочные технологии, конечно же, шагнули далеко вперед и проникли практически во все сферы индустрии. По оценкам экспертов: «Более половины валового национального продукта промышленно развитых стран создается с помощью сварки и родственных технологий. До 2/3 мирового потребления стального проката идет на производство сварных конструкций и сооружений. Во многих случаях сварка является единственно возможным или наиболее эффективным способом создания неразъемных соединений конструкционных материалов и получения ресурсосберегающих заготовок, максимально приближенных по геометрии к оптимальной форме готовой детали или конструкции».


Кстати, в настоящее время сварка используется для соединения отнюдь не только стальных конструкций. «Сегодня сварка применяется для неразъемного соединения широчайшей гаммы металлических, неметаллических и композиционных конструкционных материалов в условиях земной атмосферы, Мирового океана и космоса. Несмотря на непрерывно увеличивающееся применение в сварных конструкциях и изделиях легких сплавов, полимерных материалов и композитов, основным конструкционным материалом остается сталь. Именно поэтому мировой рынок сварочной техники и услуг возрастает пропорционально росту мирового потребления стали. К началу ХХI в. он оценивается примерно в 40 млрд долларов, из которых около 70% приходится на сварочные материалы и около 30% – на сварочное оборудование» (там же).

Принципиальный вопрос для отрасли технических газов: каким образом будет меняться рынок сварки и сварочного оборудования? Какие тенденции возьмут верх?

Специалисты полагают (хотя следует учитывать, что это лишь прогноз): в обозримой перспективе основными способами соединения останутся контактная и дуговая сварка. Одновременно ожидается заметный рост применения лазерных технологий. Хотя они по-прежнему будут оставаться «в меньшинстве», но их доля возрастет до 6%, а возможно и до 8%.

А вот прогноз для газовых резки и сварки, скорее, негативный. По оценкам экспертов, доля соответствующего оборудования будет снижаться. Однако не катастрофически: она останется значительной. Так что создание нового оборудования для сварки и резки останется одной из главных задач конструкторов отрасли.

Если говорить о сварочных технологиях, стоит упомянуть еще об одном направлении: о создании инструментов и методов, позволяющих контролировать качество сварки без ее разрушения, причем как в заводских условиях, так и «в поле». В частности, речь идет о портативной аппаратуре ультразвукового контроля.

Значимое направление перспективного развития сварочных технологий напрямую пересекается с наукой о материалах. Необходимо создавать сложные композиционные материалы, а также высокопрочные стали. Все более широкое применение находят сейчас сплавы, содержащие в себе такие металлы, как литий, скандий, циркон. Ведутся работы по созданию хорошо свариваемых титановых сплавов. Наконец, продолжаются активные исследования по созданию специальных материалов на основе полимеров. Это, по оценкам ученых, должно повысить характеристики жесткости и прочности.

Если же говорить о более «приземленных» вещах, то одной из наиболее значимых тенденций в сварочном деле является происходящий буквально на глазах переход на компьютерное моделирование соответствующих процессов. Там, где прежде требовался целый аппаратный комплекс, сегодня достаточно одного устройства, оснащенного нужной «периферией».


Автоматизация позволяет использовать принципиально новые методы электрической сварки. Они строятся на быстром изменении тока, сочетании его высоких и низких импульсов и т.д. Все это позволяет сваривать сложные материалы, уменьшать время необходимой работы, повышать качество работы. Кроме того, снижаются требования к квалификации сварщика: нормальный рядовой профессионал с такой аппаратурой способен делать то, для чего прежде требовался поистине уникальный специалист.

Учитывая сферу интересов нашего журнала, имеет смысл отдельно остановиться и на новинках, напрямую связанных с газовой сваркой и резкой. Даже краткий обзор показывает: здесь за последнее время появилось немало интересного.

Так, одним из интересных направлений работы является создание портативных аппаратов: легких и компактных. Сегодня производители уже предлагают полностью готовые к использованию комплекты (включая систему автоматической подачи проволоки) весом менее 10 килограммов, их достаточно лишь подсоединить к газовому баллону.

К тому же такой аппарат оснащается цифровой системой управления. При помощи дисплея и кнопок настройки не только профессионал, но даже «любитель» (т.е. человек, занимающийся соответствующими работами лишь время от времени) выставляет исходные показатели: например, вид газа и диаметр проволоки. Далее аппарат настраивается сам. Это делает его исключительно простым в управлении, а значит удобным для широчайшего круга потребителей.

Еще одно направление – совершенствование газовых горелок. Казалось бы, что может быть более примитивным? Однако горелки современных конструкций способны, например, в течение длительной работы при высочайших температурах давать ровное пламя: без факелов и хлопков. Это исключительно важно при высококачественной сварке. Применение подобных горелок позволяет не прерывать работу, а значит, ощутимо повышает производительность труда сварщика.

Совершенствуются, кстати, и газовые горелки, используемые на больших производствах для обработки крупногабаритных деталей. Такие многосопловые агрегаты применяются, например, чтобы гнуть и сваривать трубы большого диаметра. При этом линейные горелки могут создавать ширину пламени вплоть до нескольких метров.

Наконец, направлением, о котором стоит упомянуть, является появление переносных аппаратов для резки металла, подразумевающих применение не газообразного, а жидкого топлива. Аппарат имеет небольшой бак (на 1,5 литра горючего), а также подсоединяется к обычной электрической сети.

В стволе подобного аппарата находится нагревательный элемент. Благодаря этому к соплу горелки подходит уже не жидкость, а газ. Затем он ионизируется и используется для резки металла в виде плазменного факела.

Данный подход имеет несколько немаловажных достоинств. Во-первых, жидкость, превращающаяся в газ, сама создает нужное высокое давление. Следовательно нет необходимости формировать его специальными средствами. А во-вторых, жидкое горючее способно создавать гораздо больше тепла. А значит, подобный аппарат имеет гораздо более высокую автономность.

Таким образом, даже беглый обзор показывает: рынок сварки продолжает развиваться. И места на нем хватит самым разным технологиям. Но все же за него придется бороться.

www.gas-technology.ru

Современные сварочные технологии -фантастика или реальная выгода!?

Главным фактором, обеспечивающим конкурентоспособность продукции с точки зрения ее стоимости и качества, является уровень технологий производства. А технологическое развитие всегда связано с приобретением современного оборудования и автоматизацией производственных процессов.

Современные технологии автоматизации сварочного производства позволяют применять автоматические процессы сварки в единичном и мелкосерийном производстве. Способов и оборудования для автоматизации сварки деталей трубопровода существует великое множество. Корпусные элементы в основной своей массе свариваются в среде защитных газов плавящимся электродом. Автоматические установки могут быть укомплектованы современными сварочными роботами, что позволяет сваривать изделия сложной формы и большим количеством сварных стыков в конструкции. Особое внимание необходимо уделить современным технологиям автоматизации сварки крупногабаритных, толстостенных корпусных изделий шаровых кранов, шиберных задвижек, а также трубопроводных элементов. Одной из используемых чаще является технология сварки под слоем флюса.

Решение вопросов Качественного соединения

Первый наземный трубопровод с применением механизированной полуавтоматической сварки в среде СО2 был проложен в США в 1961 году. К этому времени были разработаны пять механизированных систем для сварки в среде защитных газов плавящимся электродом.

В 70–80х годах сварочные системы MIG/MAG (плавящимся электродом в среде защитных газов) сварки получили дальнейшее развитие, становясь более распространенными и надежными. Скорость прокладки трубопровода зависит от скорости сварки корневого прохода стыка. Поэтому установка сварочных головок на центрирующих устройствах, располагаемых внутри трубы, была следующим шагом вперед. С самого начала возможность установки двух сварочных горелок на одной сварочной головке была продемонстрирована в Советском Союзе еще в 1961 году. Эта система успешно использовалась, например, компанией Serimer-Dasa с девяностых годов. Позднее было обнаружено, что обе проволоки могут быть расположены ближе друг к другу, используя единую газовую защиту и оставаясь электрически изолированными друг от друга. Дальнейшие разработки позволили заменить две горелки системы, на двойные (тандемные) горелки. Такой процесс получил название «Dual-Tandem process». Это позволило еще больше увеличить производительность сварки. Однако высокое суммарное тепловложение может повлиять на механические качества сварного шва, особенно для труб, выполненных из высокопрочной стали (например, Х80 и выше). Производители в настоящее время работают над оптимальным легированием сварочных проволок, используемых для сварки труб из таких сталей. Создание промышленного способа автоматической сварки под флюсом и внедрение его в производство в нашей стране неразрывно связано с именем академика Е. О. Патона. В результате многолетней упорной работы коллектива Института электросварки им. Е. О. Патона создана технология сварки под флюсом, разработаны составы и методы изготовления флюсов, созданы оригинальные конструкции автоматов.

В середине XX века стало известно, что применение флюса помогает решить ряд задач получения качественного сварного соединения. Он должен был не только изолировать жидкий металл ванны от воздуха, но и обеспечить введение в строго определенном количестве дополнительных легирующих элементов в металлшва, связать и перевести в шлак вредные примеси (серу и фосфор). Флюс, а после расплавления шлак, должен быстро и активно взаимодействовать с жидким металлом ванны и каплями электродного металла и также быстро покидать металлическую ванну, как только необходимые металлургические реакции будут завершены. Шлак после охлаждения должен легко отделяться от шва. В настоящее время многие специализированные предприятия изготавливают детали трубопровода методом центробежного электрошлакового литья. Этот метод литья и технические процессы на его основе, разработанные в Институте Электросварки им. Е.О. Патона, обеспечивают высокое качество литого металла за счет его рафинирования в процессе электрошлаковой плавки и применение специальных технологических приемов для получения направленной кристаллизации при отливке. Все свойства, при этом, не уступают кованным и превосходят их по показателям пластичности и ударной вязкости, при одинаковой прочности. Сварку под флюсом широко используют при изготовлении сварно-литых, сварно-кованых и сварно-штампованных конструкций, а также при соединении деталей трубопровода. Изделия, создаваемые с применением этого способа сварки, работают во всем диапазоне естественных климатических темпера тур, при сверхвысоких температурах и в условиях глубокого холода, в агрессивных средах и при давлениях значительно отличающихся от атмосферного.

Повышение производительности за счет автоматизации

Рис. 2. Автоматическая сварка плавящимся электродом Сварка под флюсом (Рис. 3) (в ГОСТ 9087-81 приведены различные марки сварочных флюсов и требования к ним) является самым распространенным способом механизированной дуговой сварки плавящимся электродом. При сварке под флюсом применяется электродная проволока 1 большой длины, свернутая на кассету или в бухту. Ее подача в зону дуги по мере плавления, а также перемещение вдоль свариваемых кромок механизированы и осуществляются сварочным автоматом, имеющим специальные устройства – бункер 2 для внесения в зону сварки флюса и отсоса 11 не расплавившейся его части 10 со шва для возврата в бункер. Перед началом процесса засыпают флюс вдоль свариваемых кромок деталей крепежа в виде валика толщиной 50–60 мм. Возникающая при включении автомата дуга 3 горит между концом электрода и изделием. Под действием тепла дуги плавятся электродная проволока 1, основной металл 4 и часть флюса 5. Дуга горит в закрытой полости 6 (газовом пузыре), ограниченной в верхней части оболочкой шлака, а в нижней – сварочной ванной 7. Полость заполнена парами металлов, флюса и газами. Возникающее статическое давление поддерживает флюсовый свод, который предотвращает разбрызгивание жидкого металла и нарушения в формировании шва. Расплавленный шлак обладает меньшей плотностью, чем у жидкого металла, поэтому всплывает на поверхность жидкого металла сварочной ванны и покрывает его плотным слоем. По мере поступательного движения электрода происходит затвердевание металлической и шлаковой ванн с образованием сварного шва 9, закрытого твердой шлаковой коркой 8. После сварки шлаковая корка удаляется с поверхности труб. Хороший контакт шлака и металлической поверхности, наличие изолированного от внешней среды пространства обеспечивают благоприятные условия для защиты, металлургической и тепловой обработки ванны и тем самым способствуют получению швов с высокими механическими свойствами. Весьма перспективным является применение ленты вместо электродной проволоки. Электродные ленты имеют обычно толщину до 2 мм и ширину до 40 мм. Горящая дуга перемещается поперек ленты, равномерно ее расплавляя. Изменяя формы ленты, можно существенно влиять на форму шва, изменяя его ширину и глубину проплавления в зависимости от качества и типа соединительного трубопровода. Сварку под флюсом осуществляют на постоянном и переменном токах. В данном случае роль сварщика, работающего со сварочным автоматом, сводится к настройке рабочих параметров режима, наблюдению за процессом и корректировке его с помощью пульта управления. Дуга, находящаяся под флюсом, невидима тем самым, исключая возможность визуального наблюдения за ходом процесса. В то же время это обеспечивает практическое отсутствие таких неблагоприятных факторов воздействия на сварщика, как излучение, сварочные аэрозоли и брызги
Влияние параметров режима сварки на форму шва
Увеличение значений параметров режима
Сварочного тока до 1500 А
от 22–24 до 32–34 от 34–36 до 50
Угла наклона электрода к вертикали:
Смещения электрода против вращения трубы: при наружной сварке при сварке изнутри
Смещения электрода по вращению трубы: при наружной сварке при сварке изнутри
при неизменной силе тока при неизменной подаче
1. Влияние каждого из параметров режима сварки оценивали при условии неизменности остальных параметров. 2. Условные обозначения: 0 - не меняется; + - незначительно увеличивается; - - незначительно уменьшается; + + - увеличивается; - - - уменьшается;

Интенсивно увеличивается; - - - - интенсивно уменьшается.

Способ автоматической сварки под слоем флюса применяют при изготовлении в заводских условиях узлов, секций и других сборочных единиц трубопроводов из всех марок сталей. Его используют также при укрупнении сборочных единиц в монтажные блоки на строительно-монтажной площадке. Сваркой под флюсом сваривают поворотные вертикальные стыки труб и деталей трубопроводов диаметром 219 мм и более при толщине стенки не менее 7 мм. При автоматической сварке под флюсом стальных трубопроводов выполняют общие требования к сборке и сварке конструкций. Принимая во внимание специфические условия процесса сварки под флюсом, а также конструктивные особенности трубопроводов, сварку труб и трубных деталей рекомендуется проводить по предварительно наложенному варочному шву (корневому слою), т.е. применять комбинированный способ сварки. Специфические условия сварки кольцевых стыков трубных секций определяют существенные отличия технологии и техники выполнения автоматической сварки под флюсом в трассовых условиях от заводской сварки. Наиболее характерная особенность сварки на трубосварочных базах - необходимость сварки под флюсом поворотных стыков труб по разделке кромок, предназначенной для ручной дуговой сварки. При таких разделках кромок корневой слой шва необходимо выполнять ручной дуговой сваркой. Последующие слои шва сваривают под флюсом. По второму варианту разделка кромок с помощью специальных станков обрабатывается с целью увеличения притупления, что дает возможность применить двустороннюю автоматическую сварку под флюсом. Форма и размеры шва существенно зависят от основных параметров режима сварки. Качественная оценка влияния параметров режима на размеры и форму шва при сварке труб приведена в таблице 1. Хочется подвести итоги, обозначив все явные преимущества и недостатки автоматизированного вида приварки фланцев и деталей трубопровода. Преимуществами автоматической сварки перед ручной являются:
  • Облегчение труда сварщика.
  • Повышение производительности в 5–10 раз, а при сварке на больших токах (форсированные режимы) в 10–20 раз.
  • Высокое качество и хорошее формирование швов; швы имеют большую прочность, пластичность и ударную вязкость.
  • Угар и разбрызгивание металла составляет всего 1–3% от массы электродной проволоки. Сравните с 5% потерь при ручной сварке открытой дугой.
  • Возможность сваривать металл значительной толщины (до 20 мм) без разделки кромок.
  • Малый расход сварочной проволоки и электроэнергий и низкая общая стоимость сварки.
При этом приоритетной областью применения автоматической сварки под слоем флюса считаются:
  • Изготовление металлических конструкции с большой протяженностью сварных швов прямолинейных или круговых с большой точностью подгонки деталей.
  • Сварка конструкции из металла большой толщины.
  • Производство ответственных конструкций, предназначенных для работы в условиях глубокого холода, высоких давлений, действий агрессивных жидкостей и газов.
  • Массовое и крупносерийное производство однотипных изделий.
  • Соединение деталей с толщиной от 2 до 100 мм проволокой диаметром от 1,6 до 6 мм, при сварочном токе от 150 до 2000А и напряжении на дуге от 25 до 46В.
При всем удобстве и современности, автоматическая сварка под флюсом имеет и ряд существенных недостатков, а именно:
  • Нельзя вести сварку в горизонтальном, вертикальном и потолочном положениях в пространстве.
  • Сварка неэффективна при коротких швах.
  • Практически нельзя сваривать разнотолщинные и тонкие (менее 1,5 мм) заготовки.
Применение современного автоматизированного или традиционного ручного способа сварки каждый решает для себя сам, будь то частный сварщик, либо крупное предприятие. Хочется добавить лишь то, что серьезное предприятие, ориентированное на выпуск высококачественной продукции, обеспечение конкурентоспособной производительности и безопасности своих людей в настоящее время все больше использует автоматизированную сварку под слоем флюса. В ближайшем будущем сохранять свои лидирующие позиции на рынке сможет тот, у кого будет мобильное, эффективное, а главное, быстропереналаживаемое производство.

Статья в PDF http://www.s-ng.ru

Наличие в «инструментальном арсенале» сварочного аппарата, а у владельца этого полезного прибора – навыков работы с ним, снимет с повестки целый ряд проблем, которые в обязательном порядке возникают при ведении домашнего хозяйства. Не придется по каждому поводу, даже незначительному, приглашать мастера. Многие вопросы в ходе строительства, ремонта, обустройства территории, обслуживании техники решаются на месте, не откладываясь в «долгий ящик». А постепенно нарабатываемый опыт выполнения сварочных работ раскрывает перед владельцем очень широкие перспективы. Они заключаются, кроме всего прочего, и в возможности самостоятельного изготовления довольно сложных конструкций прикладного или декоративного плана, приобретение которых в готовом виде обошлось бы в круглую сумму.

Возникает закономерный вопрос – а какой сварочный аппарат лучше для дома приобрести, чтобы покупка стала действительно полезной? Ну а прибор - не вызвал быстрого разочарования из-за ограниченности своих возможностей, недолговечности, неудобства в работе и т.п . В двух словах на это не ответишь, так как сварочное оборудование – довольно «многоликая» группа. Поэтому есть смысл кратко познакомиться с основными технологиями сварки, доступными на бытовом уровне, и соответствующими аппаратами различных типов. Оценив их возможности, достоинства и недостатки, будет намного проще сделать правильный выбор.

Рассмотрение построим следующим образом. Сначала - общие понятия об электросварке и единые критерии оценки сварочных аппаратов. Затем, по разделам – информация о распространённых технологиях электросварки (ММА, TIG и MIG/MAG). В каждом разделе по видам технологии будет рассказано о классификации аппаратов, с указанием их преимуществ и недостатков, и с приведением краткого обзора популярных моделей.

Прежде всего, несколько слов о том, на чем основан любой процесс электрической сварки металлов.

Специальное оборудование (сварочный аппарат) вырабатывает сварочный ток (постоянный или переменный ) с необходимыми показателями силы тока. По силовым кабелям он подается к месту проведения работ. Один кабель подключается к заготовке, второй – к рабочему инструменту сварщика (держателю электродов, горелке).

Сила сварочного тока такова, что при сближении заготовки и электрода на определённое расстояние между ними возникает электрическая дуга. Сама по себе дуга – это область устойчивого разряда, которая характеризуется локальным выделением очень большого количества тепла. Такого нагрева должно быть достаточно, чтобы вызвать плавление металла на выбранном участке соединения заготовок.

Одновременно в эту область осуществляется подача присадочного материала – металлического прута. Происходит взаимная диффузия расплавленного металла заготовок и присадки. После снятия (перемещения) сварочной дуги следует этап кристаллизации металла, в результате чего образуется сварной шов – по сути, монолитный участок, соединяющий заготовки, и не уступающий по прочности основному металлу, а нередко – даже превосходящий его по этим параметрам.

Общая схема для большинства типов электрической сварки единая, но вот технология розжига дуги, введения в область сварки присадочного материала и создания необходимых условий для качественного монолитного соединения может различаться. Об этом поговорит чуть ниже.

Какой бы сварочный аппарат ни выбирался , необходимо оценивать его по ряду общих критериев, важных для любого типа оборудования.

  • Напряжение питания. Большинство аппаратов, подходящих для домашнего использования, рассчитаны на обычную однофазную электрическую сеть 220 В 50 Гц. Более мощное оборудование может потребовать подключения к трехфазной сети. Но высокие эксплуатационные показатели такой техники в домашний условиях чаще всего остаются невостребованными.
  • Диапазон сварочного тока. Это параметр напрямую влияет на эксплуатационные возможности аппарата – понятно, что чем толще свариваемые заготовки, тем большее количество выделенного тепла потребуется для их полноценного проплавления.

Необходимо заранее представлять, с какими работами предстоит сталкиваться оборудованию. Нет смысла приобретать аппарат со слишком высокими показателями сварочного тока, если они попросту останутся невостребованными – это напрасно потраченные деньги. В настоящее время представленные в продаже модели, как правило, имеют верхнюю границу не ниже 120 ампер. А этого уже вполне достаточно для вполне серьезных сварочных операций с металлом толщиной 3÷4 мм. А если брать еще и с запасом, то показателей в 160-180 А будет хватать с лихвой.

  • Допустимый диапазон входных напряжений. Также очень важная характеристика, особенно для тех населённые пунктов (дачных поселков ), где нестабильность напряжения в сети является чуть ли не нормой. Современные сварочные аппараты, особенно инверторного типа , способны без потери качества сварки выдерживать перепады, доходящие до ±20÷25% и даже более.
  • Потребляемая мощность при работе на максимальных значениях сварочного тока. Этот параметр важен с тех позиций, что подключение аппарата должно проводиться к линиям питания (имеются в виду и сами розетки, и удлинители), обладающим соответствующими возможностями.
  • Важным эксплуатационным показателем работы любого сварочного оборудования является продолжительность включения (ПВ) или продолжительность нагрузки (ПН). Кстати, об этом неопытные пользователи нередко забывают. Дело в том, что редко какое оборудование способно на длительную безостановочную работу – обязательно требуются паузы. Чем выше класс аппарата – тем эти паузы могут быть меньше. Этот показатель должен указываться в перечне паспортных характеристик, и выражается он обычно в процентах к общей продолжительности работы включенного оборудования.

Для сварочных аппаратов бытового класса ПВ может составлять всего 40%. Это, в свою очередь, означает, что, например, из 10 минут работы только 4 минуты может отводиться непосредственно на сам сварочный процесс, а 6 минут необходимо отдать на паузы.

Продолжительность включения может быть установлена общей или зависеть от величины сварочного тока (далеко не всегда аппарат используется на пределе своих возможностей) и от температуры окружающего воздуха (это влияет на эффективность охлаждения электронной «начинки»). Показатели указываются в паспорте, а также могут быть вынесены табличкой на шильдик прибора.

  • Современные сварочные аппараты могут обладать некоторыми полезными функциями. Их специфика зависит от типа оборудования, и о них будет рассказано ниже.
  • Современный сварочный аппарат должен иметь систему охлаждения – встроенный вентилятор, работающий постоянно или включающийся по мере необходимости. Обычно предусматриваются и необходимые ступени защиты – от перегрева или короткого замыкания.
  • Безусловно, при выборе сварочного оборудования всегда принимается в расчет стоимость аппарата, его оснащённость необходимыми комплектующими и их качество.
  • Немаловажным критерием является авторитет компании–производителя , гарантийные обязательства, возможность получения сервисного обслуживания в регионе проживания.

Это были общие критерии, справедливые для любых типов сварочных аппаратов. Теперь же перейдем к рассмотрению особенностей оборудования, в котором реализованы различные технологии электросварки.

Ручная дуговая электросварка (ММА)

Общие понятия о технологии ММА

Как правило, все новички начинают осваивать секреты сварки именно с такой технологии, поэтому есть смысл рассмотреть ее первой.

ММА – это аббревиатура от полного названия «Mаnual Metаl Arс », что в буквальном переводе с английского как раз и обозначает ручную сварку металла. В технической литературе часто встречается и русскоязычный термин РДС – «ручная дуговая сварка».

Характерная особенность такой технологии – использование штучных электродов с покрытием, которые и участвуют в создании сварочной дуги, и сами по себе являются присадочным материалом.

Примерная схема сварочного процесса ММА показана на рисунке ниже:

К металлической заготовке (поз.1) через клемму-зажим подсоединен один контакт сварочного аппарата. Второй контакт коммутируется через держатель на металлическую сердцевину электрода (поз. 2). Между ними зажигается электрическая дуга (поз. 3), которая вызывает плавление металла и заготовки, и электрода с формированием сварочной ванны (поз. 4 ).

Электроды имеют специальное покрытие – обмазку (поз. 5). Ее состав может различаться в зависимости от свариваемого металла и типа выполняемых работ. При плавлении обмазки, во-первых, образуется газовое облако (поз.6), создающее оптимальные условия для качественного формирования сварочной ванны. Во-вторых, жидкий расплав обмазки создает поверхностный слой шлаков (поз. 7), которые предохраняют жидкий металл от преждевременного контакта с кислородом воздуха, что способствует правильной его кристаллизации. После ухода сварочной дуги застывший слой шлаков (поз. 8) остается на поверхности, и убирается скалыванием после окончания сварочных работ. А под ним уже остается металлический сварной шов (поз. 9), монолитно соединяющий исходные заготовки.

Такая технология является наиболее распространенной в строительстве и в условиях домашнего хозяйства. Это обусловлено целым рядом весьма значимых ее преимуществ :

  • Оборудование для ММА – наиболее простое, не требующее специальных дополнительных устройств и комплектующих. Все управление, как правило, заключается только в выставлении необходимого значения силы сварочного тока. А состав оборудования (если не принимать в расчет снаряжения самого мастера и расходные электроды) – сам аппарат с кабелем подключения к сети, и два изолированных сварочных провода нужного сечения – с зажимом массы и с держателем электродов.

  • Простота устройства предопределяет и высокую мобильность такого оборудования. Работы могут выполняться в любых, даже весьма стесненных условиях и на высоте – все зависит только от возможности установки аппарата и длины сварочных проводов.
  • ММА-сварка позволяет выполнять любые типы швов в разных пространственных положениях.
  • В зависимости от выбранных электродов, такая технология позволяет осуществлять сварку различных металлов.
  • Такой технологии проще всего научиться «с нуля». Именно с нее и начинают освоение азов сварочного мастерства.

Есть у ММА-технологии и свои недостатки :

  • Большие сложности представляет сварка заготовок малой толщины (менее1 ,5 мм). Даже при использовании самых тонких электродов начальное формирование сварочной ванны часто приводит к сквозному прожигу металла.
  • Длина электрода в ходе сварочного процесса постоянно уменьшается. Это вынуждает мастера непрерывно контролировать его положение относительно заготовок, чтобы поддерживать оптимальную дугу.
  • При масштабных работах делать паузы для замены сгоревшего электрода на новый приходится довольно часто. Что, кстати, влияет и на производительность работы – по этому показателю ММА-технология существенно проигрывает другим.
  • Прослеживается максимальная зависимость качества сварного шва от опыта мастера.

Несмотря на недостатки, ручная дуговая сварка пока что остается наиболее востребованной. И обычно, когда речь идет об оборудовании бытового класса, подразумеваются именно ММА-аппараты .

Сварочный ток может быть постоянным или переменным.

  • Постоянный характеризуется более стабильными показателями дуги и сварочной ванны. Такое оборудование значительно облегчает освоение основ сварочного дела. Некоторые типы металлов (например, нержавеющая сталь) свариваются исключительно постоянным током.
  • Переменный ток требует более высокого опыта работы, но в ряде случаев, при сварке определенных металлов (например, алюминия) является единственно возможным.

В настоящее время выпускается несколько типов аппаратов, работающих по технологии ММА – это сварочные трансформаторы, выпрямители и инверторы.

Сварочные трансформаторы ММА

Этот тип оборудования можно отнести к наиболее простому по устройству. По сути – это понижающий трансформатор с первичной и вторичной обмотками. За счёт уменьшения напряжения резко возрастают показатели силы тока, что и используется для розжига сварочной дуги.

Обмотки трансформатора изготавливаются из медных проводов или шин большого сечения, способных выдержать большие нагрузки. Это, в принципе, и предопределяет то, что такие приборы всегда весьма массивны.

Изменение силы сварочного тока чаще осуществляться механически. Это может быть изменение взаимного расположения первичной и вторичной обмотки относительно друг друга (с общим неподвижным ферромагнитным сердечником ). Или же перемещение одной из подвижных частей этого магнитопровода (сердечника).

На выходе сварочный трансформатор выдает переменный ток.

К достоинствам такого оборудования можно отнести следующее:

  • Простота устройства аппарата предопределяет его долговечность и несложность в эксплуатации и обслуживании .
  • Такие приборы обычно обладают высокими показателями мощности сварочной дуги.
  • Стоимость сварочных ММА-трансформаторов невелика, и это оставляет их очень востребованными среди потребителей, несмотря на наличие в продаже более удобного для эксплуатаций оборудования.

Но нельзя забывать и о целой череде недостатков таких приборов:

  • Для сварки переменным током применяются только специально предназначенные для этих целей электроды – это должно быть оговорено в их характеристиках.
  • Сварочная дуга от переменного тока не отличается стабильностью – ее сложнее разжечь и удерживать в оптимальном положении. У неопытных мастеров это приводит к очень частому залипанию электрода. Качественная работа потребует хороших навыков.
  • При сварке отмечается сильное разбрызгивание металла из сварочной ванны.
  • Чистота получаемого шва – несравнимо ниже, чем у аппаратов постоянного тока.

  • ММА-трансформаторы весьма зависимы от уровня входного напряжения. А сами, в свою очередь, способны весьма чувствительно локально «просаживать» сеть.
  • Тяжеловесность таких сварочных аппаратов значительно снижает удобство работы с ними, особенно в труднодоступных местах или при необходимости частых перемещений. Многие приборы, вследствие этой особенности, оснащаются колесами для местного перемещения.

Краткий обзор моделей сварочных ММА-трансформаторов

  • «Калибр СВА -160А »

Недорогой, достаточно надежный трансформатор для ручной дуговой сварки. Бренд – российский, сборка осуществляется в Китае.

— Тип – трансформатор сварочный ММА.

— Выходной сварочный ток – переменный, от 55 до 160 А.

— Регулировка тока – плавная.

— Мощность максимальная – до 7,2 кВт .

— Световая индикация работы и перегрева.

— Встроенный вентилятор охлаждения непрерывного действия.

— Габариты аппарата — 485×270×310 мм, масса – 15,2 кг . Имеется ручка для переноски.

(аппарат, сварочные провода с зажимом и держателем, щетка-молоток , защитный щиток) – 2400 руб.

К достоинствам аппарата можно отнести невысокую стоимость, небольшие габариты. Из недостатков пользователи отмечают слишком быстрый нагрев до допустимого предела и довольно длительный срок охлаждения.

  • «Зубр ЗСТ -180»

Сварочный трансформатор с весьма неплохими эксплуатационными характеристиками. Разработка российских специалистов (ЗОА «Зубр ОВК », г. Мытищи Московской обл.), сборка преимущественно осуществляется в Китае.

Основные характеристики трансформатора:

Диапазон сварочного переменного тока – от 60 до 180 А. Плавная регулировка с индикацией.

— Максимальная мощность – 9,6 кВт .

— Напряжение холостого хода – 48 В.

— Диаметр электродов – от 2 до 4 мм.

— Продолжительность нагрузки: 10% на токе свыше 160 А , 30% — при 115 А , 60% — при 80 А и неограниченно при минимальном токе в 60 А.

— Принудительное охлаждение – встроенный вентилятор постоянного действия.

— Тепловая защита.

— Масса аппарата – 21.5 кг. В комплект входят два колеса для облегчения перемещения по рабочей площадке.

3000 руб.

К достоинствам аппарата относят возможность подключения как к однофазной, так и к трехфазной сети питания. К числу высказанных претензий можно отнести то, что сварку с электродом 4 мм трансформатор почти что не тянет. Впрочем, для бытовых условий эксплуатации это, как правило, несущественно.

  • « Fubag TR 200 »

Компактный сварочный трансформатор германской разработки но опять же – китайской сборки.

Основные характеристики модели:

— Диапазон сварочного тока – от 55 до 160 А.

— Невысокий показатель потребляемой мощности – 2,73 нВт .

— Диаметр электродов – от 2 до 3,2 мм.

— ПВ на максимальном сварочном токе – 6%.

— Светодиодная индикация работы и перегрева.

— Плавная регулировка сварочного тока.

— Встроенная система охлаждения непрерывного действия. Защита от перегрева.

— Габариты — 500×230×340 мм при массе 16.5 кг. Имеется ручка для переноски.

— Примерная стоимость в базовой комплектации – 2900 руб.

К достоинствам модели пользователи отнесли неплохую стабилизацию дуги, надежность аппарата при его невысокой стоимости. Из недостатков отмечаются малая продолжительность непрерывной работы и несъемные сварочные провода. При случайном их повреждении для замены приходится вскрывать корпус аппарата.

Сварочные ММА-выпрямители

Развитие полупроводниковых технологий позволило избавиться от многочисленных недостатков, присущих сварке на переменном токе. Это было изначально воплощено в сварочных аппаратах выпрямительного типа.

По сути – это такой же трансформатор, но после понижения напряжения и увеличения силы тока производится еще и его выпрямление, то есть преобразование в постоянный. Устройство блока выпрямления может быть различным (обычные диодные мосты или тиристорные управляемые вентильные узлы). Существуют различия и в управлении силой выходного сварочного тока – оно может быть электромеханическим или электронным.

Но какая бы схема ни применялась, сварочные выпрямители получают ряд существенных преимуществ перед трансформаторами:

  • Сварочная дуга отличается гораздо большей стабильность, за счет отсутствия нулевых значений тока. Ее легче разжечь и удерживать в ходе выполнения работ.
  • Разбрызгивание металла при сварке – значительно ниже. Это сокращает работы по очистке сваренных деталей от шлака и застывших капель металла.
  • Дуга постоянного тока обеспечивает более глубокий однородный провар металла, без образования пузырей и каверн. Шов получается при это намного аккуратнее и надежнее .

  • Работа на постоянном токе открывает гораздо более широкий спектр возможностей. В том числе это – сварка нержавейки, легированных сплавов, некоторых цветных металлов. Практически отсутствуют ограничения по использованию различных типов электродов.
  • КПД выпрямителей значительно выше, чем и трансформаторов той же мощности.

К недостаткам ММА-выпрямителей можно отнести следующее:

  • Они весьма зависимы, даже в большей степени, чем трансформаторы, от уровня входного напряжения питания.
  • Стоимость ММА-выпрямителей – в несколько раз выше, чем трансформаторов со сходными характеристиками.
  • Габариты и масса ММА-выпрямителей ничуть не меньше, чем трансформаторов.

Обзор нескольких популярных моделей ММА-выпрямителей

  • Сварочный выпрямитель «ВД -160 УЗ»

Аппарат со средними показателями сварочного тока, достаточными для бытового применения.

Основные характеристики модели

— Диапазон сварочного постоянного тока – от 40 до 160 А. Плавная регулировка.

— Напряжение холостого хода – не более 80 В , номинальное рабочее – не менее 28 В.

— Режим работы (величина ПВ) – 40% для всего диапазона.

— Потребляемая мощность – 4,4 кВА .

— Габариты – 400×290×460 мм при массе 35 кг.

— Примерная стоимость в базовой комплектации – 16500 руб.

Отмечается высокая надежность выпрямителя. Но - очевидна явно высокая стоимость при не самых выдающихся эксплуатационных показателях.

  • Сварочный выпрямитель « Selma ВД-131»

Надежный сварочный аппарат выпрямительного типа , позволяющий работать в режимах постоянного и переменного тока.

Основные характеристики сварочного выпрямителя:

— Диапазон сварочного тока: 38÷180 А переменный ток (АС) и 38÷130 постоянный (DC).

— Плавная электромеханическая регулировка тока.

— Напряжение холостого хода – не более 70 В , номинальное – не менее 27 В.

— Диаметры электродов – от 2 до 4 мм.

— ПВ при полной нагрузке – не менее 20%.

— Потребляемая мощность – до 12.5 кВА .

— Встроенная система охлаждения и защиты от перегрева.

— Габариты - 360×360×930 мм, масса 60 кг. Вертикальное расположение прибора. Предусмотрен колесный ход и ручка для транспортировки в пределах рабочего помещения.

— Примерная стоимость в базовой комплектации – 25000 руб.

Отмечаются очень стабильное зажигание и горение сварочной дуги. Большим плюсом является универсальность работы – на постоянном и переменном токе. Недостатки – большая массивность, весьма высокая стоимость, скорее всего – неоправданная для подобных приборов бытового предназначения.

Сварочные ММА-инверторы.

Как видно, сварочные выпрямители – это довольно громоздкие, тяжелые приборы, к то му же с соврешенно неоправданной высокой стоимостью . Это предопределило весьма невысокую их популярность среди владельцев домов. Иное дело – сварочные инверторы, появление которых, можно сказать, произвело определенную революцию в технологиях дуговой ручной сварки.

Полупроводниковая схема таких аппаратов обеспечивает целый каскад преобразований тока питания, частотных и амплитудных. Вдаваться особо в подробности этого процесса не будем, тем более что существует несколько действенных схем подобных трансформаций. Но в итоге всегда получаются очень устойчивые показатели постоянного сварочного тока, которые контролируются специальным микропроцессорным модулем управления. Это позволяет не только регулировать ток с высочайшей точностью, но и придавать сварочному оборудованию ряд полезных опций, значительно упрощающих работу, позволяющих выполнять необходимые операции даже начинающим мастерам.

  • « Бичом» начинающего сварщика часто является залипание электрода. Пока не выработается устойчивый навык удержания требуемого зазора между электродом и свариваемой деталью, касания кончиком электрода избежать трудно. А это в обычных условиях вызывает «прилипание», на которое приходится тут же реагировать приложением силы. В противном случае возникнет длительное короткое замыкание, влекущее срабатывание системы тепловой защиты, а при ее отсутствии или неисправности – даже перегорание обмоток трансформатора.

Во многом проблема решается на тех аппаратах, в которых реализована опция «Аrc Fоrce ». Если просвет между электродом и металлической поверхностью становится слишком маленьким, электронное управление автоматически прибавит значение сварочного тока. В результате этого происходит быстрое оплавление и электрода, и свариваемого металла под ним, что нормализует требуемый зазор.

Если же прямого контакта электрода с поверхностью все равно избежать не удалось, то должна сработать опция «АntiStick» . Сила сварочного тока при этом автоматически резко снижается, что предотвращает залипание . И оторвать электрод от поверхности не составит труда, не прекращая при этом сварочного процесса.

  • Очень полезной является и функция «Нot Stаrt » - она значительно облегчает розжиг сварочной дуги в начале работы. Для этого в момент инициации дуги автоматика импульсно повышает силу тока, нормализуя ее после успешного розжига.
  • Важным достоинством ММА-инверторов является то, что они не столь «капризны» в отношении перепадов входного напряжения электрической сети. Согласитесь, для дачных поселков с их традиционными проблемами энергоснабжения – чрезвычайно важное качество. Кроме того, и сами аппараты такого типа совершенно не перегружают сеть. То есть выполнение сварочных работ не будет сопровождаться просаживаниемм напряжения, которое нервирует и домочадцев, и, зачастую , соседей по улице.
  • Высокая стабилизация сварочного тока ММА-инвертора (причём – даже при скачках входного сетевого напряжения) сводит разбрызгивание металла к минимуму. Швы в итоге получаются очень аккуратными и однородными.
  • Огромным преимуществом ММА-инверторов перед трансформаторами и выпрямителями является их компактность и небольшой вес. Даже при работе в ограниченном пространстве для такого прибора отыщется место. А при выполнении сварочных операций на высоте или иных сложных условиях инвертор вполне можно подвесить на крючке или даже через плечо на ремне.

К недостаткам сварочных ММА-инверторов можно отнести сложность схемы. При выходе из строя приходиться обращаться в специализированные мастерские. Браться за самостоятельный ремонт такого оборудования – не следует.

Кстати, в связи с этим можно упомянуть еще один нюанс выбора. В продаже встречаются аппараты, электронная «начинка» которых собрана на одной плате или же имеет модульное исполнение. Первые, безусловно, дешевле, но при возможности выбора все же предпочтение разумнее отдать аппарату с модульными платами. Такая техника гораздо проще и в диагностике, и в ремонте.

Еще не столь давно одним из недостатков ММА-инверторов традиционно называлась их высокая стоимость. Постепенно это уходит в прошлое. Цены на такие аппараты снижаются по мере расширения ассортимента моделей, и эта тенденция пока что весьма устойчива. Так что стоимость уже стала постепенно приближаться к приборам трансформаторного типа , при том, что удобство и эффективность работы – просто несопоставимы.

Краткий обзор моделей сварочных ММА-инверторов

  • «Бизон-160 ПН »

Сварочный инвертор бытового класса, позволяющий выполнить широкий спектр работ.

«Бизон-160ПН» — компактный сварочный аппарат по очень привлекательной цене

Основные характеристики модели:

— Диапазон сварочного тока – от 30 до 160 А.

— Напряжение питания – 200 В , но прибор способен устойчиво работать при падениях до 140 В и скачках до 250 В.

— Максимальная потребляемая мощность – 4.5 кВт .

— Напряжение холостого хода – не более 65 В.

— Положительность включения (ПВ) на максимальной нагрузке – 35%.

— Эффективная встроенная система охлаждения.

— Габариты – 220×146×96 мм, масса 2.8 кг.

— Примерная стоимость – 3700 руб.

— Гарантия производителя – 1 год.

Отмеченные достоинства – удобство в эксплуатации, стабильная работа даже при низком напряжении в сети. Компактность, небольшой вес позволяют успешно выполнять сварку с подвешенным на плечо аппаратом. Сколь-нибудь значимых нареканий, тем более – на фоне такой цены, пользователями не отмечено. Условно можно отнести к таковым отсутствие дополнительных функций, о которых говорилось выше.

  • «QUATTRO ELEMENTI A 140 Pico»

Сварочный ММА-инвертор известного итальянского производителя, Правда, сборка, как уж водится, преимущественно – китайская, но весьма качественная.

Основные характеристики инвертора:

— Диапазон регулировки сварочного тока – от 10 до 140 А.

— Диаметр используемых электродов – от 1,6 до 4 мм .

— Максимальная потребляемая мощность – 4.2 кВт .

— Отличный показатель ПВ на максимальном сварочном токе – 60%.

— Минимальное напряжение на входе – 160 В.

— Реализованы функции быстрого зажигания дуги «HotStart» , модуляции тока «ArcForce» и предупреждения залипания электрода «AntiStick» .

— Габариты – 170×230×260 мм, масса – 2,6 кг. В комплект входит ремень для переноски на плече, для которого на корпусе предусмотрена специальная скоба.

— Гарантия производителя – 1 год.

— Примерная стоимость в базовой комплектации – 3800 руб.

К достоинствам модели относят эффективную систему охлаждения, включающую два независимых вентилятора, надежную защиту от перегрева, отличную элементарную базу электроники от ведущих мировых производителей.

Многие пользователи отметили в недостатках слишком короткие сварочные провода. Впрочем, этот «минус» отмечается у очень многих сварочных аппаратов китайской сборки – «экономия» на кабельной части любого оборудования всегда отличала наших восточных друзей.

  • « Ресанта САИ 160»

Очень популярный сварочный инвертор известного латвийского бренда. Сборка, традиционно, в последнее время выполняется в Китае.

Основные характеристики:

— Диапазон установки сварочного тока – от 10 до 160 А.

— Диаметр электродов – от 1,6 до 4 мм.

— Положительность включения на максимальной нагрузке – 70%.

— Напряжение холостого хода – 80 В.

— Минимальное напряжение питания на входе – 140 В.

— Максимальная потребляемая мощность – 4,9 кВт .

— Функции «AntiStick» и «HotStart» .

— Габариты – 348×147×267 мм, масса – 3,8 кг.

— Гарантия производителя – 2 года.

— Примерная стоимость в базовой комплектации – 4000 руб.

Отмеченные достоинства модели – неприхотливость и надежность в работе, эффективная принудительная система охлаждения туннельного типа , высокое качество сборки и элементарной базы.
Недостатки все те же – короткие сварочные провода, тем более , не чисто медные, а из медно-алюминиевого композита. Неудобный штатный держатель электродов. После дополнительных затрат, связанных с заменой проводов на отечественные и держателя – на наиболее удобный «под себя», остальные недочеты можно не принимать в расчет на фоне супер-привлекательной стоимости инвертора.

Можно добавить еще , что заявленный нижний порог напряжения питания – все же слишком «оптимистичен». На практике стабильная работа отмечается при напряжении 160 в и выше, что, впрочем, также является очень неплохим показателем.

Особые технологии электросварки

В бытовых условиях ручная дуговая сварка занимает преобладающее положение. Однако, иногда имеет смысл приобрести и более технологичное оборудование. Так, например , уже упоминалось, что сваривать тонкие листы обычным обмазочным электродом – чрезвычайно сложно, а то и вовсе невозможно. Но это позволяет выполнить оборудование, работающее по технологии TIG и MIG/MAG.

Так как такие сварочные аппараты все же пока имеют более ограниченный спрос среди рядовых потребителей, слишком подробно останавливаться на нем не будем. Начинать освоение мастерства сварщика сразу с подобного оборудования – не вполне правильный путь. Но общие понятия все же иметь не помешает. Тем более, что многие аппараты обеих типов вполне способны работать и в стандартном режиме ММА . Так что тем потенциальным владельцам, которые думают на перспективу, подобное приобретение (при наличии необходимых свободных средств) будет только на пользу.

Электросварка по технологии TIG

Особенности технологии

Аббревиатура TIG получилась из полного названия технологии «Tungstеn Inеrt Gаs ». По сути, в этом определении уже кроется и сама особенность процесса.

Tungsten – это вольфрам в переводе на русский. Именно из этого тугоплавкого материала изготавливаются электроды, обеспечивающие создание и поддержание сварочной дуги. А сам сварочный процесс осуществляется в облаке защитного инертного газа (Inеrt Gаs ), который предохраняет расплавленный металл от воздействия кислорода, азота и водяного пара, содержащихся в воздухе. Так как очень часто в качестве инертного газа используется аргон, в устоявшейся терминологию такую технологию называют аргонно-дуговой сваркой. Хотя это определение и не вполне корректное – в качестве инертного газа могут применяться и другие, например, гелий, азот, углекислый газ или газовые смеси с тем или иным их содержанием.

Принцип выполнения сварки показан на схеме:

Как и в обычной сварке, к свариваемым заготовкам (поз. 1) подключается кабель массы. А в остальном – начинаются коренные отличия.

Основным рабочим инструментом мастера является сварочная горелка TIG (поз. 2). Она обычно имеет характерную изогнутую Г-образную форму, что обеспечивает ее удобство удержания в руке и точность выполнения операций. На самой грелке расположена клавиша пуска и могут быть другие органы управления, например, для регулировки интенсивности газового потока или точного выставления величины сварочного тока. Модели горелок и степень их сложности бывают различные.

В любом случае на конце газовой горелки имеется газовое сопло (поз. 3), как правило, изготовленное их жаропрочной керамики. По центру этого сопла внутри в цанговом зажиме установлен тугоплавкий вольфрамовый электрод (поз. 4), который подключен к силовому проводу (поз. 5), подающему сварочный ток. Электрод служит для розжига и подержания сварочной дуги (поз. 6). Сам он в процессе сварки, благодаря уникальным качествам вольфрама, практически не сгорает. Точнее, конечно, расходуется, но столь незначительно, что его называют несгораемым. (Стандартной пачки из 10 штук таких электродов хватит очень надолго). Диаметры электродов – от 2 до 4 мм, длина, как правило, стандартная – 175 мм.

В сопло горелки в ходе выполнения сварки непрерывно подается инертный газ (поз. 7). Благодаря этому вокруг сварочной ванны (поз. 8) всегда создается защитная атмосфера (поз. 9), благоприятная для образования монолитного сварного соединения того или иного металла. для выполнения шва в зону сварки подается вручную присадочный пруток (поз. 10), опять же, в зависимости от свариваемого металла. Так как область расплава защищено облаком инертного газа, никаких дополнительных флюсов и обмазок не требуется. Сварочный шов на выходе (поз. 11) получается «чистым», не закрытым слоем шлака.

Сварочная горелка, понятно, соединена с аппаратом не только силовым кабелем – здесь используется довольно сложный по конструкции рукав, совмещающий подачу сварочного тока, провода для передачи управляющих сигналов, канал для подачи инертного газа. Горелка нуждается в охлаждении, поэтому многие модели оснащаются системой газового или жидкостного охлаждения. На схеме показан канал подачи охлажденной жидкости (поз. 12) и отвода разогретой (поз. 13).

Естественно, если аппарат работает именно в режиме TIG, то это подразумевает подключение к нему и газобаллонного оборудования.

Достоинства сварки по технологии TIG:

  • Появляется возможность сваривания тонких листов металла – менее 1 мм.
  • Упрощается контроль за ходом сварочного процесса. Ванна не закрывается слоем шлаков, присадку модно подавать ровно столько, сколько это необходимо в конкретном месте. Сварочная горелка при этом располагается на одинаковом удалении от заготовки – нет необходимости постоянно контролировать уровень зазора.
  • Высокая универсальность технологии – сварке подаются многие металлы и сплавы, в том числе титан, алюминий и бронза
  • Отсутствие необходимости частой смены расходников значительно увеличивает производительность работы.
  • Процесс сварки практически не сопровождается разбрызгиванием, то есть швы получаются очень ровными и аккуратными, не требующими последующей зачистки.

К недостаткам можно отнести:

  • Более сложное оборудование, необходимость правильного использования баллонов с газом, их своевременной заправки.
  • Такая сварка предъявляет особые требования к квалификации работника.
  • В процессе работы заняты обе руки мастера. То есть в сложных положениях такая технология бывает или вовсе невозможна, или крайне затруднительна.
  • Стоимость подобного оборудования уже никак не получится назвать невысокой. То есть приобретение комплекта TIG должно быть оправданным.

Сами сварочные аппараты, по аналогии с ММА, могут быть выпрямительного или инверторного типа. Большинства приборов способны работать как с постоянным, так и переменным током. Как уже говорилось, многие модели оснащены режимом ММА-сварки и имеют соответствующий разъем для подключения обычного сварочного провода с держателем электродов.

Краткий обзор инверторов аргонно-дуговой сварки

Из разнообразия моделей выбрано две, наиболее доступных по цене и приближенных по параметрам к установкам для использования в условиях домашней мастерской.

  • «Ресанта САИ 180 АД»

Сварочный инверторный аппарат полупрофессионального класса, с функцией аргонно-дуговой варки. Бренд – Латвия, сборка – Китай.

Основные характеристики модели:

— Диапазон сварочного тока – от 10 до 180 А.

— Режимы работы – TIG и ММА.

Продолжительность включения при максимальной нагрузке – 70%.

— Розжиг горелки – контактный, система ее охлаждения – воздушная.

— Максимальная потребляемая мощность – 5,3 кВт .

— Габариты – 360×135×232 мм, масса – 8,1 кг.

— В комплект входит сам инвертор, ассы с зажимом (1.5 м ), провод с держателем электродов для ММА (2 м ), горелка TIG в сборе с комбинированным рукавом (2 м ). Предусмотрен ремень для переноски. Газобаллонное оборудование в комплект не входит.

18000 руб.

Среди отмеченных пользователями недостатков – нет режима работы на переменном токе, то есть отпадает возможность сварки алюминия. Есть проблемы с розжигом дуги и корректностью значения сварочного тока при сварке по аргонно-дуговой технологии.

  • «FUBAG INTIG 160 DC»

Качественный аппарат с неплохим набором функций для недорогого, по меркам этой категории, оборудования.

Основные характеристики модели:

— Диапазон регулировки сварочного тока – от 10 до 160 А , только постоянный (DC).

— Продолжительность включения при м аксиальной нагрузке – 60%.

— Режимы работы сварочной горелки – 2- х и 4-х тактный.

— Поджиг горелки – контактный.

— Охлаждение горелки – воздушное.

— Управляющий разъем — 5 РIN .

— Комплект поставки: инвертор, горелка TIG 175P с комбинированным рукавом длиной 4 м , шланг для подключения газового баллона – 4 м . Сам баллон в комплект не входит.

Габариты: 380×135×250 мм, масса 6,5 кг.

— Гарантия производителя – 2 года.

— Примерная стоимость комплекта – 22000 руб.

Достоинства модели:

— Удобная горелка с мягкой чувствительной клавишей управления.

— Предусмотрена возможность подключения к автономному источнику питания (генератору).

— При токах до 145 А ПВ не ограничена (100%).

— Система продувки газа до и после сварки.

— Система «HotStart» и модулирования сварочного тока.

Отмеченные недостатки:

— Нет режима сварки на переменном токе.

— Комплект не содержит заглушек, цанг и электродов для горелки. Приходится приобретать отдельно.

— Нет силового провода с держателем для ММА. Впрочем, некоторыми пользователями это расценивается чуть ли ни как достоинство – лучше приобрести качественный провод с удобным для себя держателем отдельно, чем переплачивать за заведомо короткий, по китайской традиции.

Полуавтоматическая сварка по технологии М IG / MAG

Отличия технологии полуавтоматической сварки

Эта технология в настоящее время считается одной из наиболее передовых и производительных. Аббревиатуры обозначают Metаl Inert Gаs – Metаl Active Gаs , то есть сварка металла в среде инертного или активного газа. Активные газы являются условием качественной сварки некоторых металлов и сплавов – особая среда требуется для полноценной кристаллизации материалов.

Внешне процесс сварки имеет сходство с ТIG , но имеется и коренное отличие.

Рабочий инструмент матера – тоже горелка, но уже имеющую и другую конфигурацию, и иное устройство.

На конце горелки установлено сопло (поз. 1) из жаропрочного металла. АА в центре имеется направляющий контактный наконечник–токосъемник (поз. 2), через который с установленной скоростью осуществляется непрерывная подача сварочной проволоки, которая становится и электродом для создания дуги, и присадочным материалом. Проволока может быть различной, как по диаметру, так и по составу и по технологии изготовления, и ее выбор зависит от особенностей свариваемого металла.

Одновременно в сопло подается требуемый инертный или активный газ (поз. 4), который создает оптимальную атмосферу в области сварочной ванны (поз. 5).

Естественно, и сама горелка, и комбинированный рукав устроены несколько сложнее, так как в них, помимо силовых и управляющих проводов и газового канала предусматривается еще и подача жесткой сварочной проволоки. Естественно, сварочный аппарат в таком случае должен быть оснащен еще и механизмом подачи проволоки.

На горелке также имеется клавиша управления, которая включает сварочный ток и подачу проволоки. При должном опыте работы с таким аппаратом сварочный процесс становится очень производительным. Кстати, отмечается, он является и довольно простым для освоения начинающими мастерами. Характерное отличие от ТIG еще и в том, что мастер управляется одной рукой, что особо важно при работе в сложных условиях и различных пространственных положениях сварочных швов.

Ну а по качеству сварки можно оставить в силе все те преимущества, о которых говорилось при рассмотрении технологии ТIG - защитная или ж активная газовая атмосфера делает свое дело.

Существенным недостатком полуавтоматической сварки можно считать сложность комплекта оборудования. Он включает в себя:

— Сам силовой агрегат, то есть источник сварочного тока (опять же, трансформаторного или инверторного типа) с необходимыми системами регулировки, управления и контроля.

— Газобаллонное оборудование с соединительным шлангом.

— Сварочную горелку с комбинированным многофункциональным рукавом.

— Механизм автоматической подачи сварочной проволоки из катушки . Причем , этот механизм может быть как встроенным, так и размещенным отдельно.

Большинство сварочных полуавтоматов имеют возможность работы и в обычном ММА-режиме .

Оборудование, после освоения навыков работы в этой технологии, очень удобно в эксплуатации. И многие мастера, в том числе кустари-надомники, предпочитает именно такую технологию, несмотря на необходимость дополнительной «возни» с газовыми баллонами. Без аппаратов такой сварки в настоящее время не обходится ни одна авторемонтная мастерская.

Для примера – взглянем на парочку относительно недорогих моделей, которые подойдут для небольшой личной мастерской.

Краткий обзор моделей аппаратов полуавтоматической МIG /MAG-сварки

  • «Сварог REAL MIG 200»

Относительно недорогой, компактный и удобный в эксплуатации сварочный полуавтомат. Российская разработка и производство.

Основные характеристики:

— Показатели сварочного тока: в режиме MIG - от 30 до 200, в режиме ММА - от 10 до 160 А.

— Допустимое минимальное напряжение на входе – 160 В.

— Максимальная потребляемая мощность – 5,4 кВт .

— Диаметр проволоки – 0,6÷1 мм.

— Диметр штучных электродов ММА – от 1,5 до 4 мм.

— Встроенный механизм протяжки проволоки, рассчитанный на еврокатушку D200с максимальной массой проволоки 5 кг.

— Скорость протяжки проволоки – от 1,5 до 14 м/мин.

— Система холостого прогона и дожигания проволоки.

— Возможность смены полярности сварки.

— Габариты: 502×225×375 мм, масса – 13 кг.

— Комплектация – инвертор, сварочная горелка с рукавом 3 метра, провод массы с зажимом, 3 метра, набор запчастей.

— Гарантия производителя – 5 лет

— Стоимость комплекта – 20500 руб.

Пользователи отмечают высокую надежность аппарата и отменное удобство в работе.

К недостаткам условно можно отнести невысоко качество кабеля заземления и отсутствие силового кабеля с держателем для ММА-сварки .

Высказываются нарекания на «усеченность » режима ММА, то есть неполное соответствие заявленным характеристикам. Впрочем, основное предназначение аппарата все же полуавтоматическая сварка, с чем он справляется целиком и полностью .

По совокупности отзывов – отличный аппарат для личной мастерской.

Цены на сварочный аппарат сварог REAL

Сварог REAL

  • «АТЛАНТ MIG 190К »

Еще один качественный надежный аппарат отечественной разработки и сборки.

Основные характеристики аппарата:

— Диапазон сварочного тока – от 20 до 190 А.

— ПВ на максимальной мощности – 60%.

— Диаметр сварочной проволоки – 0,6÷1 мм, встроенный механизм полдачи предусматривает установку еврокатушек D100 или D200 с максимальной массой проволоки 5 кг.

Минимальное напряжение на входе – 180 В.

— Максимальная потребляемая мощность – 6,5 кВт

— Диаметр электродов в режиме ММА – от 1,6 до 4 мм.

— Функции «HotStart» , «ArcForce» и «AntiStick» . Возможность точных настроек индуктивности, режима работы горелки, полярности. Предусмотрен режим сварки алюминия.

— Габариты — 450×235×325 мм, масса – 9 кг.

— В комплекте – инвертор, сварочная горелка с рукавом 3 м , оснащённым стандартным разъемом EURO, провод заземления (1.5 м ) с зажимом.

— Гарантия производителя – 5 лет.

— Примерная стоимость комплекта – 24000 руб.

Наряду с достоинствами, к которым относят качество сборки и надежность в работе, удобство настроек и довольно-таки компактные размеры, отмечается и ряд недостатков. В частности:

— отсутствие кнопки протяжки проволоки;

— слишком завышенное значение минимального тока – можно прожечь тонкий металлический лист.

— не слишком хорошее качество сварки в режиме ММА, залипание электродов (очень схожий недостаток для большинства полуавтоматов низшего ценового диапазона), отсутствие в комплекте кабеля с держателем.

Однако, позитивные отзывы все же преобладают. А многие пользователи и вовсе поставили лаконичное «нет» в опросной графе «недостатки».

Цены на сварочный аппарат АТЛАНТ

Сварочный аппарат АТЛАНТ

Итак, было рассмотрено широкое разнообразие сварочных аппаратов, которые могут подойти для домашней мастерской. По приведенной информации можно сделать закономерный вывод, что совсем начинающему сварщику лучше всего для старта приобрести недорогой инвертор ММА. Именно инвертор, так как с ним процесс обучения пойдет веселее, результаты быстрее начнут радовать, а стоимость современных инверторов - уже вполне сравнима с ценой простейших трансформаторов.

У многих домашних мастеров, испытавших радость успешных самостоятельных работ, сварка нередко переходит из необходимости в разряд хобби или даже источника дополнительного заработка. Вот тогда уже будет со временем целесообразно задуматься о приобретении более технологичного оборудования – аппарата для аргонно-дуговой сварки или добротного полуавтоматаМIG /MAG.

Цены на популярные сварочные аппараты

А дополнительной помощью в вопросах выбора подходящего сварочного аппарата может послужить и предлагаемый ниже видеоролик.

Видео: рекомендации по выбору качественного сварочного аппарата для дома

Сварка http://weldex.kiev.ua/ – это один из самых долговечных и надежных способов крепления. Этот способ получил широкое применение в быту и промышленности из-за своей прочности, быстроты и экономичности. Ведущий вид сварки – электрический. С помощью электрического тока и электрода создается неразъемное соединение деталей. Сварочное оборудование http://weldex.kiev.ua/ballony/uglekislotnye-ballony/ уже целый век служит человечеству.

С помощью современных технологий стало возможным соединение сталей различного уровня легирования, а также некоторые цветные сплавы. На качество и стоимость работ влияют методы и тип решаемых задач.

В настоящее время используется достаточно много видов сварки. Рассмотрим самые распространенные.

Электродуговая сварка

При электродуговой сварке между электродом и заготовкой горит электрическая дуга, которая служит источником теплоты. Есть разные виды дуговой сварки. Они отличаются материалом и числом электродов, а также способом включения заготовки и электродов в цепь электрического тока. Бывает электродуговая сварка плавящимся электродом и неплавящимся электродом, трехфазной дугой и косвенной дугой.

Питание дуги осуществляется переменным и постоянным током.

Ручная дуговая сварка

При такой сварке сварочные электроды подают вручную в дугу и двигают вдоль заготовки. Электроды при таком виде сварки представляют собой стержни с покрытием. Сам стержень − это сварочная проволока высокого качества. В зависимости от состава сварочную проволоку подразделяют на группы: легированная, высоколегированная и низкоуглеродистая. Ток при ручной сварке ограничен из-за того, что его повышение сверх оптимального значения может привести к перегреву стержня, угару и разбрызгиванию металла, отслаиванию покрытия.

Автоматическая дуговая сварка под флюсом

При дуговой сварке под флюсом используют флюс для защиты сварочной ванны и дуги от воздуха, а также применяют непокрытую электродную проволоку. Механизированными являются процессы по перемещению и подаче электродной проволоки, а автоматизированными – зажигание дуги и заварка кратера в конце шва. Выполняют дуговую сварку под флюсом сварочными автоматами, самоходными тракторами, которые перемещаются по изделию, или сварочными головками. Применяется это вид сварки при изготовлении резервуаров, котлов, мостовых балок, корпусных сосудов и других изделий.

Электрошлаковая сварка и приплав

При этом виде сварки электродный и основной металлы расплавляются теплотой, которая выделяется при прохождении электричества через шлаковую ванну. Свариваемые заготовки при выполнении электрошлаковой сварки располагают вертикально. Шлаковая ванна в отличие от электрической дуги является более распределенным источником теплоты. Преимущества электрошлаковой ванны: лучшая макроструктура шва, повышенная производительность, меньшие затраты на выполнение одного метра шва.

1. Физические основы сварки

Сварка - это технологический процесс получения неразъёмного соединения материалов за счёт образования атомной связи. Процесс создания сварного соединения протекает в две стадии.

На первой стадии необходимо сблизить поверхности свариваемых материалов на расстояние действия сил межатомного взаимодействия (около 3 А). Обычные металлы при комнатной температуре не соединяются при сжатии даже значительными усилиями. Соединению материалов мешает их твердость, при их сближении действительный контакт происходит лишь в немногих точках, как бы тщательно они не были обработаны. На процесс соединения сильно влияют загрязнения поверхности - окислы, жировые пленки и пр., а также слои абсорбированных примесных атомов. Ввиду указанных причин выполнить условие хорошего контакта в обычных условиях невозможно. Поэтому образование физического контакта между соединяемыми кромками по всей поверхности достигается либо за счёт расплавления материала, либо в результате пластических деформаций, возникающих в результате прикладываемого давления. На второй стадии осуществляется электронное взаимодействие между атомами соединяемых поверхностей. В результате поверхность раздела между деталями исчезает и образуется либо атомная металлическая связи (свариваются металлы), либо ковалентная или ионная связи (при сварке диэлектриков или полупроводников). Исходя из физической сущности процесса образования сварного соединения различают три класса сварки: сварка плавлением, сварка давлением и термомеханическая сварка (рис. 1.25).

Рис. 1.25.

К сварке плавлением относятся виды сварки, осуществляемой плавлением без приложенного давления. Основными источниками теплоты при сварке плавлением являются сварочная дуга, газовое пламя, лучевые источники энергии и «джоулево тепло». В этом случае расплавы соединяемых металлов объединяются в общую сварочную ванну, а при охлаждении происходит кристаллизация расплава в литой сварочный шов.

При термомеханической сварке используется тепловая энергия и давление. Объединение соединяемых частей в монолитное целое осуществляется за счет приложения механических нагрузок, а подогрев заготовок обеспечивает нужную пластичность материала.

К сварке давлением относятся операции, осуществляемые при приложении механической энергии в виде давления. В результате металл деформируется и начинает течь, подобно жидкости. Металл перемещается вдоль поверхности раздела, унося с собой загрязненный слой. Таким образом, в непосредственное соприкосновение вступают свежие слои материала, которые и вступают в химическое взаимодействие.

2. Основные виды сварки

Ручная электродуговая сварка. Электрическая дуговая сварка в настоящее время является важнейшим видом сварки металлов. Источником тепла в данном случае служит электрическая дуга между двумя электродами, одним из которых является свариваемые заготовки. Электрическая дуга является мощным разрядом в газовой среде. 

Процесс зажигания дуги состоит из трех стадий: короткое замыкание электрода на заготовку, отвод электрода на 3-5 мм и возникновение устойчивого дугового разряда. Короткое замыкание производится с целью разогрева электрода (катода) до температуры интенсивной экзо- эмиссии электронов.

На второй стадии эмитированные электродом электроны ускоряются в электрическом поле и вызывают ионизацию газового промежутка «катод-анод», что приводит к возникновению устойчивого дугового разряда. Электрическая дуга является концентрированным источником тепла с температурой до 6000 оС. Сварочные токи достигают 2-3 кА при напряжении дуги (10-50) В. Наиболее часто применяется дуговая сварка покрытым электродом. Это ручная дуговая сварка электродом, покрытым соответствующим составом, имеющим следующее назначение:

1. Газовая и шлаковая защита расплава от окружающей атмосферы.

2. Легирование материала шва необходимыми элементами.

В состав покрытий входят вещества: шлакообразующие - для защиты расплава оболочкой (окислы, полевые шпаты, мрамор, мел); образующие газы СО2, СН4, ССl4; легирующие - для улучшения свойств шва (феррованадий, феррохром, ферротитан, алюминий и др.); раскислители - для устранения окислов железа (Ti, Mn, Al, Si и др.) Пример реакции раскисления : Fe2O3+Al = Al2O3+Fe.

Рис. 1.26. : 1 - свариваемые детали, 2 - сварной шов, 3 - флюсовая корочка, 4 - газовая защита, 5 - электрод, 6 - покрытие электрода, 7 - сварная ванна

Рис. 1.26 иллюстрирует сварку покрытым электродом. По указанной выше схеме между деталями (1) и электродом (6) зажигается сварочная дуга. Обмазка (5) при расплавлении защищает сварочный шов от окисления, улучшает его свойства путем легирования. Под действием температуры дуги электрод и материал заготовки плавятся, образуя сварную ванну (7), которая в дальнейшем кристаллизуется в сварной шов (2), сверху последний покрывается флюсовой корочкой (3), предназначенной для защиты шва. Для получения качественного шва сварщик располагает электрод под углом (15-20)0 и перемещает его по мере расплавления вниз для сохранения постоянной длины дуги (3-5) мм и вдоль оси шва для заполнения разделки шва металлом. При этом обычно концом электрода совершают поперечные колебательные движения для получения валиков требуемой ширины.

Автоматическая сварка под флюсом.

Широко применяют автоматическую сварку плавящимся электродом под слоем флюса. Флюс насыпается на изделие слоем толщиной (50-60) мм, в результате чего дуга горит не в воздухе, а в газовом пузыре, находящемся под расплавленном при сварке флюсом и изолированным от непосредственного контакта с воздухом. Этого достаточно для устранения разбрызгивания жидкого металла и нарушения формы шва даже при больших токах. При сварке под слоем флюса обычно применяют силу тока до (1000-1200) А, что при открытой дуге невозможно. Таким образом, пари сварке под слоем флюса можно повысить сварочный ток в 4-8 раз по сравнению со сваркой открытой дугой, сохранив при этом хорошее качество сварки при высокой производительности. При сварке под флюсом металл шва образуется за счет расплавления основного металла (около2/3) и лишь примерно 1/3 за счет электродного металла. Дуга под слоем флюса более устойчива, чем при открытой дуге. Сварка под слоем флюса производится голой электродной проволокой, которая с катушки подается в зону горения дуги сварочной головкой автомата, перемещаемой вдоль шва. Впереди головки по трубе в разделку шва поступает зернистый флюс, который, расплавляясь в процессе сварки, равномерно покрывает шов, образуя твердую корочку шлака.

Таким образом, автоматическая сварка под слоем флюса отличается от ручной сварки по следующим показателям: стабильное качество шва, производительность в (4-8) раз больше, чем при ручной сварке, толщина слоя флюса - (50-60) мм, сила тока - (1000-1200) А, оптимальная длина дуги поддерживается автоматически, шов состоит на 2/3 из основного металла и на 1/3 дуга горит в газовом пузыре, что обеспечивает отличное качество сварки.

Электрошлаковая сварка.

Электрошлаковая сварка является принципиально новым видом процесса соединения металлов, изобретенном и разработанным в ИЭС им. Патона. Свариваемые детали покрываются шлаком, нагреваемом до температуры, превышающей температуру плавления основного металла и электродной проволоки.

На первой стадии процесс идет так же, как и при дуговой сварке под флюсом. После образования ванны из жидкого шлака горение дуги прекращается и оплавление кромок изделия происходит за счет тепла, выделяющегося при прохождении тока через расплав. Электрошлаковая сварка позволяет сваривать большие толщи металла за один проход, обеспечивает большую производительность, высокое качество шва. 

Рис. 1.27. :

1 - свариваемые детали, 2 - сварной шов, 3 - расплавленный шлак, 4 - ползуны, 5 - электрод

Схема электрошлаковой сварки показана на рис. 1.27. Сварку ведут при вертикальном расположении деталей (1), кромки которых так же вертикальны или имеют наклон не более 30 o к вертикали. Между свариваемыми деталями устанавливают небольшой зазор, куда насыпают порошок шлака. В начальный момент зажигается дуга между электродом (5) и металлической планкой, устанавливаемой снизу. Дуга расплавляет флюс, который заполняет пространство между кромками свариваемых деталей и медными формующими ползунами (4), охлаждаемыми водой. Таким образом, из расплавленного флюса возникает шлаковая ванна (3), после чего дуга шунтируется расплавленным шлаком и гаснет. В этот момент электродуговая плавка переходит в электрошлаковый процесс. При прохождении тока через расплавленный шлак выделяется джоулево тепло. Шлаковая ванна нагревается до температур (1600-1700) 0С, превышающих температуру плавления основного и электродного металлов. Шлак расплавляет кромки свариваемых деталей и погруженный в шлаковую ванну электрод. Расплавленный металл стекает на дно шлаковой ванны, где и образует сварочную ванну. Шлаковая ванна надежно защищает сварочную ванну от окружающей атмосферы. После удаления источника тепла, металл сварочной ванны кристаллизуется. Сформированный шов покрыт шлаковой коркой, толщина которой достигает 2 мм.

Повышению качества шва при электрошлаковой сварке способствует ряд процессов. В заключение отметим основные преимущества электрошлаковой сварки.

Газовые пузыри, шлак и легкие примеси удаляются из зоны сварки по причине вертикального расположения сварного устройства.

Большая плотность сварного шва.

Сварной шов менее подвержен трещинообразованию.

Производительность электрошлаковой сварки при больших толщинах материалов почти в 20 раз превышает аналогичный показатель автоматической сварки под флюсом.

Можно получать швы сложной конфигурации. 

Этот вид сварки наиболее эффективен при соединении крупногабаритных деталей типа корпусов кораблей, мостов, прокатных станов и пр.

Электронно-лучевая сварка.

Источником тепла является мощный пучок электронов с энергией в десятки килоэлектронвольт. Быстрые электроны, внедряясь в заготовку, передают свою энергию электронам и атомам вещества, вызывая интенсивный разогрев свариваемого материала до температуры плавления. Процесс сварки осуществляется в вакууме, что обеспечивает высокое качество шва. Ввиду того что электронный луч можно сфокусировать до очень малых размеров (менее микрона в диаметре), данная технология является монопольной при сварке микродеталей.

Плазменная сварка.

При плазменной сварке источником энергии для нагрева материала служит плазма - ионизованный газ. Наличие электрически заряженных частиц делает плазму чувствительной к воздействию электрических полей. В электрическом поле электроны и ионы ускоряются, то есть увеличивают свою энергию, а это эквивалентно нагреванию плазмы вплоть до 20-30 тыс. градусов. Для сварки используются дуговые и высокочастотные плазмотроны (см. рис. 1.17 - 1.19). Для сварки металлов, как правило используют плазмотроны прямого действия, а для сварки диэлектриков и полупроводников применяются плазмотроны косвенного действия. Высокочастотные плазмотроны (рис. 1.19) так же применяются для сварки. В камере плазмотрона газ разогревается вихревыми токами, создаваемыми высокочастотными токами индуктора. Здесь нет электродов, поэтому плазма отличается высокой чистотой. Факел такой плазмы может эффективно использоваться в сварочном производстве.

Диффузионная сварка.

Способ основан на взаимной диффузии атомов в поверхностных слоях контактирующих материалов при высоком вакууме. Высокая диффузионная способность атомов обеспечивается нагревом материала до температуры, близкой к температуре плавления. Отсутствие воздуха в камере предотвращает образование оксидной пленки, которая смогла бы препятствовать диффузии. Надежный контакт между свариваемыми поверхностями обеспечивается механической обработкой до высокого класса чистоты. Сжимающее усилие, необходимое для увеличения площади действительного контакта, составляет (10-20) МПа.

Технология диффузионной сварки состоит в следующем. Свариваемые заготовки помещают в вакуумную камеру и сдавливают небольшим усилием. Затем заготовки нагревают током и выдерживают некоторое время при заданной температуре. Диффузионную сварку применяют для соединения плохо совместимых материалов: сталь с чугуном, титаном, вольфрамом, керамикой и др.

Контактная электрическая сварка.

При электрической контактной сварке, или сварке сопротивлением, нагрев осуществляется пропусканием электрического тока достаточной иглы через место сварки. Детали, нагретые электрическим током до плавления или пластического состояния, механически сдавливают или осаживают, что обеспечивает химическое взаимодействие атомов металла. Таким образом, контактная сварка относится к группе сварки давлением. Контактная сварка является одним из высокопроизводительных способов сварки, она легко поддается автоматизации и механизации, вследствие чего широко применяется в машиностроении и строительстве. По форме выполняемых соединений различают три вида контактной сварки: стыковую, роликовую (шовную) и точечную.

Стыковая контактная сварка.

Это вид контактной сварки, при которой соединение свариваемых частей происходит по поверхности стыкуемых торцов. Детали зажимают в электродах-губках, затем прижимают друг к другу соединяемыми поверхностями и пропускают сварочный ток. Стыковой сваркой соединяют проволоку, стержни, трубы, полосы, рельсы, цепи и др. детали по всей площади их торцов. Существует два способа стыковой сварки:

Сопротивлением: в стыке происходит пластическая деформация и соединение образуется без расплавления металла (температура стыков 0,8-0,9 от температуры плавления).

Оплавлением: детали соприкасаются в начале по отдельным небольшим контактным точкам, через которые проходит ток высокой плотности, вызывающий оплавление деталей. В результате оплавления на торце образуется слой жидкого металла, который при осадке вместе с загрязнениями и окисными плёнками выдавливается из стыка.

Таблица 1.4

Параметры машин для стыковой сварки

Тип машин

W,(кВА)

U раб,(В)

Сварок в час.

F,(кН)

Обозначения столбцов: W - мощность машины, Uраб - рабочее напряжение, производительность, F - усилие сжатия свариваемых деталей, S - площадь свариваемой поверхности.

Температура нагрева и сжимающее давление при стыковой сварке взаимосвязаны. Как следует из рис. 1.28, усилие F значительно уменьшается с ростом температуры нагрева заготовок при сварке.

Шовная контактная сварка.

Разновидность контактной сварки, при которой соединение элементов выполняется внахлёстку вращающимися дисковыми электродами в виде непрерывного или прерывистого шва. При шовной сварке образование непрерывного соединения (шва) происходит последовательным перекрытием точек друг за другом, для получения герметичного шва точки перекрывают друг друга не менее чем на половину их диаметра. На практике применяется шовная сварка:

Непрерывная;

Прерывистая с непрерывным вращением роликов;

Прерывистая с периодическим вращением.

Рис. 1.28.

Шовная сварка применяется в массовом производстве при изготовлении различных сосудов. Осуществляется на переменном токе силой (2000-5000) А. Диаметр роликов равен (40-350) мм, усилие сжатия свариваемых деталей достигает 0,6 т, скорость сварки составляет (0,53,5) м/мин.

Точечная контактная сварка.

При точечной сварке соединяемые детали обычно располагаются между двумя электродами. Под действием нажимного механизма электроды плотно сжимают свариваемые детали, после чего включается ток. За счёт прохождения тока свариваемые детали быстро нагреваются до температуры сварки. Диаметр расплавленного ядра определяет диаметр сварной точки, обычно равный диаметру контактной поверхности электрода.

В зависимости от расположения электродов по отношению к свариваемым деталям точечная сварка может быть двусторонней и односторонней.

При точечной сварке деталей разной толщины образующееся несимметричное ядро смещается в сторону более толстой детали и при большом различии в толщине не захватывает тонкой детали. Поэтому применяют различные технологические приёмы, обеспечивающие смещение ядра к стыкуемым поверхностям, усиливают нагрев тонкого листа за счёт накладок, создают рельеф на тонком листе, применяют более массивные электроды со стороны толстой детали и др.

Разновидностью точечной сварки является рельефная сварка, когда первоначальный контакт деталей происходит по заранее подготовленным выступам (рельефам). Ток, проходя через место касания всех рельефов с нижней деталью, нагревает их и частично расплавляет. Под давлением рельефы деформируются, и верхняя деталь становится плоской. Этот способ применяют для сварки деталей небольших размеров. В табл. 1.5 приведены характеристики машин для точечной сварки.

Таблица 1.5

Характеристики машин для точечной сварки

Тип машины

W,(кВА)

U раб,(В)

D,(мм)

F,(кН)

Сварок в час

Обозначения столбцов: W - мощность машины, ираб - рабочее напряжение, D - диаметр электрода, F - усилие сжатия свариваемых деталей, сварок в час - производительность.

Точечная конденсаторная сварка.

Одним из распространенных видов контактной сварки является конденсаторная сварка или сварка запасённой энергией, накопленной в электрических конденсаторах. Энергия в конденсаторах накапливается при их зарядке от источника постоянного напряжения (генератора или выпрямителя), а затем в процессе разрядки преобразуется в теплоту, используемую для сварки. Накопленную в конденсаторах энергию можно регулировать изменением ёмкости конденсатора (С) и напряжения зарядки (U). 

Существует два вида конденсаторной сварки:

Бестрансформаторная (конденсаторы разряжаются непосредственно на свариваемые детали);

Трансформаторная (конденсатор разряжается на первичную обмотку сварочного трансформатора, во вторичной цепи которого находятся предварительно сжатые свариваемые детали).

Принципиальная схема конденсаторной сварки приведена на рис. 1.29.

Рис. 1.29. : Тр - повышающий трансформатор, В - выпрямитель, С - конденсатор емкостью 500 мкФ, Rк - сопротивление свариваемых деталей, К - ключ- переключатель

В положении переключателя 1 конденсатор заряжается до напряжения U0. При переводе переключателя в поз. 2 конденсатор разряжается через контактное сопротивление свариваемых деталей. При этом возникает мощный импульс тока.

Напряжение с конденсатора подается на заготовку через точечные контакты площадью ~ 2 мм. Возникающий при этом импульс тока в соответствии с законом Джоуля-Ленца разогревает область контакта до рабочей температуры сварки. Для обеспечения надежного прижимания свариваемых поверхностей через точечные электроды на детали передается механическое напряжение порядка 100 МПа.

Основное применение конденсаторной сварки состоит в соединении металлов и сплавов малых толщин. Преимуществом конденсаторной сварки является незначительная потребляемая мощность.

Для определения эффективности сварки оценим максимальную температуру в области контакта свариваемых деталей (Тmax).

Ввиду того что длительность импульса разрядного тока не превышает 10 -6 с, расчет проведен в адиабатическом приближении, то есть пренебрегая теплоотводом из области протекания тока. 

Принцип контактного нагрева деталей представлен на рис. 1.30.

Рис. 1.30.: 1 - свариваемые детали толщиной d = 5*10 -2 см, 2 - электроды площадью S= 3*10 -2 см, С - конденсатор емкостью 500 мкФ, Rк - контактное сопротивление

Преимуществом конденсаторной сварки является незначительная потребляемая мощность, которая составляет (0,1-0,2) кВА. Продолжительность импульса сварочного тока - тысячные доли секунды. Диапазон свариваемых толщин металла находится в пределах от 0,005 мм до 1 мм. Конденсаторная сварка позволяет успешно соединять металлы малых толщин, мелкие детали и микродетали, плохо различимые невооруженным глазом и требующие при сборке применения оптических приборов. Этот прогрессивный способ сварки нашел применение в производстве электроизмерительных приборов и авиационных приборов, часовых механизмов, фотоаппаратов и т.д.

Холодная сварка .

Соединение заготовок при холодной сварке осуществляется путем пластического деформирования при комнатной и даже при отрицательных температурах. Образование неразъемного соединения происходит в результате возникновения металлической связи при сближении соприкосающихся поверхностей до расстояния, при котором возможно действие межатомных сил, причем в результате большого усилия сжатия пленка окислов разрывается и образуются чистые поверхности металлов. 

Свариваемые поверхности должны быть тщательно очищены от адсорбированных примесей и жировых пленок. Холодной сваркой могут быть выполнены точечные, шовные и стыковые соединения.

На рис. 1.31 представлен процесс холодной точечной сварки. Листы металла (1) с тщательно зачищенной поверхностью в месте сварки помещают между пуансонами (2), имеющими выступы (3). Пуансона сжимают с некоторым усилием Р, выступы (3) вдавливаются в металл на всю их высоту, пока опорные поверхности (4) пуансонов не упрутся в наружную поверхность свариваемых заготовок.

Рис. 1.31.

Холодной сваркой выполняют соединения проволок, шин, труб внахлест и встык. Давление выбирают в зависимости от состава и толщины свариваемого материала, в среднем оно составляет (1-3) ГПа.

Индукционная сварка.

Этим способом преимущественно сваривают продольные швы труб в процессе их изготовления на непрерывных станах и наплавляют твердые сплавы на стальные основания при изготовлении резцов, буровых долот и другого инструмента.

При этом способе металл нагревается пропусканием через него токов высокой частоты и сдавливается. Индукционная сварка удобна тем, что она бесконтактна, токи высокой частоты локализуются вблизи поверхности нагреваемых заготовок. Подобные установки работают следующим образом. Ток высокочастотного генератора подводится к индуктору, который индуцирует вихревые токи в заготовке, и труба разогревается. Станы подобного типа успешно применяют для изготовления труб диаметром (12-60) мм со скоростью до 50 м/мин. Питание током производится от ламповых генераторов мощностью до 260 кВт при частоте 440 кГц и 880 кГц. Изготавливаются так же трубы больших диаметров (325 мм и 426 мм) с толщиной стенки (7-8)мм, со скоростью сварки до (30-40) м/мин.

Особенности сварки различных металлов и сплавов

Под свариваемостью понимают способность металлов и сплавов образовывать соединение с теми же свойствами, что и свариваемые металлы, и не иметь дефектов в виде трещин пор, каверн и неметаллических включений.

При сварке почти всегда возникают остаточные сварочные напряжения (как правило, растягивающие в шве и сжимающие в основном металле). Для стабилизации свойств соединения необходимо снизить эти напряжения.

Сварка углеродистых сталей.

Электродуговая сварка углеродистых и легированных сталей ведется электродными материалами, обеспечивающими необходимые механические свойства. Основная трудность при этом заключается в закалке околошовной зоны и в образовании трещин. Для предупреждения образования трещин рекомендуется:

1) производить подогрев изделий до температур (100-300) 0С;

2) заменять однослойную сварку многослойной;

3) применять электроды с покрытием (сварку ведут на постоянном токе обратной полярности);

4) производить отпуск изделия после сварки до температуры 300 0С.

Сварка высокохромистых сталей.

Высокохромистые стали, содержащие (12-28) % Cr, обладают нержавеющими и жаропрочными свойствами. В зависимости от содержания хрома и углерода высокохромистые стали по структуре делятся на ферритовые, ферритно- мартенситные и мартенситные.

Трудности при сварке ферритовых сталей связаны с тем, что в процессе охлаждения в области 1000 0С возможно выпадение на границах зерен карбида хрома. Это снижает коррозионную стойкость стали. Для предотвращения указанных явлений необходимо:

1) применять пониженные значения тока с целью обеспечения больших скоростей охлаждения при сварки;

2) вводить в сталь сильные карбидообразователи (Ti,Cr, Zr, V);

3) производить отжиг после сварки при 900 0С для выравнивания содержания хрома в зернах и на границах.

Феррито-мартенситные и мартенситные стали рекомендуется сваривать с подогревом до (200-300) 0С.

Сварка чугуна.

Сварка чугуна производится с подогревом до (400-600) 0С. Сварку ведут чугунными электродами диаметром (8-25) мм. Хорошие результаты дает диффузионная сварка чугуна с чугуном и чугуна со сталью.

Сварка меди и ее сплавов.

На свариваемость меди негативное влияние оказывают примеси кислорода, водорода, свинца. Наиболее распространена газовая сварка. Перспективна дуговая сварка угольными и металлическими электродами.

Сварка алюминия.

Сварке препятствует оксидная пленка Al2O3. Только применение флюсов (NaCl, RCl, LiF) позволяет растворить оксид алюминия и обеспечить нормальное формирование сварного шва. Хорошо сваривается алюминий диффузионной сваркой.