Трансформатор Тесла на качере Бровина своими руками и съем энергии. Радиантная энергия. Беспроводная передача энергии. Генератор Тесла – идеальный источник энергии Отличное видео с объяснением принципов работы трансформатора Теслы

Первый в данной публикации видеоролик канала E-Station.

Наиболее простой для сборки вариант трансформатора тесла, его не сложно собрать своими руками

Схема простейшая, все элементы и радиодетали доступные. Объяснение ясное и доходчивое даже для начинающих радиолюбителей. Все радиодетали и даже сам генератор Тесла можно купить в этом китайском магазине .

В этом видео канала “VLAD YOUTUBER” ведущий показал простейшее устройство, которое собрал своими руками. Называется трансформатор или катушка тесла на транзисторе irfp460. Рассмотрим поближе. Сбоку имеется два выключателя. Один отвечает за охлаждение, то есть включение кулера, чтобы он охлаждал транзистор. 2 выключатель кнопка пуска. Разъем на 220 вольт. Подсоединение прерывателя. С другой стороны имеется кулер от компьютера intel. Радиатор к нему.

С противоположной стороны устройства нарисованная схема и детали, которые в неё входят.

Прерыватель подсоединяется к катушке, собрано на таймерах 555. Прерыватель имеет три регулятора, отвечающие за скважности, частоты и длительности импульса. Пуско включает трансформатор без прерывателя. Разряды будут идти непрерывно. Когда включаем охлаждения, слышал, как заработал кулер.

Простой, и при этом, мощный трансформатор тесла

Youtube канал “Своими руками!”. В этом видео рассказано, как сделать простой сетевой трансформатор Тесла. Другое название качер Бровина. Перед тем, как начнем, чем в первую очередь нужно обзавестись. Понадобится деталь – дроссель от люминесцентных ламп. Встречается редко в продаже. Стоит недешево. В районе 500 руб. Такие дроссели практически не используются. Но вместе с корпусами ламп выбрасываются на улицу, поэтому при желании можно найти. Сопротивление составляет 40 ом. Можно также воспользоваться первичной обмоткой трансформатора. Замерить сопротивление первичной обмотки. Она должна составлять не менее 15 м. Это не удобно, так как трансформатор массивный и в небольшую коробочку всё это не вместится. Даже в маленькую коробочку удалось разместить три таких дросселя.

Перейдем к схеме питания трансформатора. Здесь вход 220 вольт. Дали 3 дросселя от люминесцентных ламп, включенных параллельно. Каждый из них имеет сопротивление 40 ом. В целом примерно 15 Ом идет ограничение входного тока. По другой линии ультрабыстрый диод. Это может быть любой с током 10 ампер. Конденсатор пленочный 1 микрофарад 400 вольт. Что касается дроссели. Они в основном служат в качестве резисторов. Можно их заменить первичкой какого-нибудь сетевого трансформатора, но обязательно смотрите, чтобы сопротивление было у первичной обмотки не менее 15 м. Иначе будет сильный перегрев и вероятность пробоины. Далее, блокинг-генератор на биполярном транзисторе с изолированным затвором. Очень мощный транзистор. Его можно заменить полевым мосфетом. Но тот в свою очередь рассчитан на напряжение 400 вольт с током коллектор-эмиттер 20 ампер. Данные же мощный транзистор показывает гораздо лучшие результаты и греется значительно меньше.

Это уже сам трансформатор. Первичная обмотка 3-5 витков проводом 1,5 до 3 миллиметра. Все обмотки мотаются в одну сторону. Если не заработал, поменяйте местами провода первичной обмотки. Лучше всего использовать медную трубу. Вторичная обмотка приблизительно 1500 витков провода 0,2 – 0,5 мм. Два резистора мощностью 2 ватт, 1,5 и 2,4 КОм. Ограничитель напряжения, защищающий igbt транзистор от пробоя. Можно вместо этой детали использовать два стабилитрона на 12 вольт, включенных встречно друг другу. Прекрасно подходят советские.

Встречайте очередную катушку Теслы. Это качер. До этого момента я качеры вообще не воспринимал как схему, у меня ни один не работал, пока не посоветовали вот этот вариант с питанием от бытовой сети 220 вольт. Его схема:

Но у меня не было нужного полевого транзистора, вернее у меня вообще не было полевых транзисторов, а поэтому решил поставить биполярный, но довольно мощный транзистор D13009K. Качер не может работать напрямую от сети так как транзистор, какой бы не был, все равно сгорит, для это ставят диод для выпрямления одного полупериода и дроссель по питанию, сопротивлением несколько десятков Ом.


У биполярных транзисторов сопротивление перехода больше чем у полевых, поэтому решил еще больше ограничить ток. Поставил резистор в 1кОм по питанию и параллельно ему конденсатор 1мкФ. Благодаря конденсатору качер начал работать импульсами и транзистор совсем перестал греться. Даже без радиатора он был абсолютно холодный, но я на всякий случай прикрутил его к небольшой пластине. Далее в процессе сборки параллельно питанию поставил еще конденсатор 5мкФ.


Стабилитроны VD1 и VD2 защищают затвор (базу) транзистора от скачков напряжения, их также можно заменить одним супрессором. Резистор 1к заменил на маленький трансформатор, у него как раз первичная обмотка была 1кОм, так как резистор прилично грелся.


Собрал все элементы качера навесом, протестировал и решил в корпус разместить. В качестве корпуса выбрал стаканчик из плотного пластика от пюре быстрого приготовления.


Вырезал из толстого картона дно для стаканчика и установил все на нем - трансформатор и остальные радиоэлементы.


По ходу сборки добавил термистор, у которого при нагревании увеличивается во много раз сопротивление. И приклеил его на радиатор. Вдруг все-таки после пары часов работы закипит транзистор, а термистор сработает и перестанет пропускать ток - схема выключится...



Разряд получился порядка 3-х сантиметров и очень похож на настоящую молнию или искру с SGTC. Вообще схема довольно простая, и, думаю, не вызовет особых затруднений даже у новичков. Главной причиной неработоспособности может является неправильная фразировка обмоток, достаточно просто поменять местами выводы первичной обмотки. Также необходимо проверить «заземлена» ли вторичная обмотка именно на базу (затвор) транзистора - это очень важно, т.к. вторичная обмотка одновременно выполняет роль ОС (обратной связи). Ну и конечно видео работы качера.

Никола Тесла - легендарная личность, причем о смысле некоторых его изобретений спорят и по сей день. В мистику мы вдаваться не будем, а поговорим лучше о том, как сделать кое-что эффектное по «рецептам» Теслы. Это катушка Тесла. Увидев ее один раз, вы никогда не забудете это невероятное и удивительное зрелище!

Общие сведения

Если говорить о простейшем таком трансформаторе (катушке), то он состоит из двух катушек, у которых нет общего сердечника. На первичной обмотке должно быть не менее десятка витков толстой проволоки. На вторичную наматывают уже минимум 1000 витков. Учтите, что катушка Тесла обладает таким который в 10-50 раз больше, чем отношение количества витков на второй обмотке к первой.

На выходе напряжение такого трансформатора может превышать несколько миллионов вольт. Именно это обстоятельство и обеспечивает возникновение зрелищных разрядов, длина которых может достигать сразу нескольких метров.

Когда возможности трансформатора были впервые продемонстрированы публике?

В городке Колорадо Спрингс однажды полностью сгорел генератор на местной электростанции. Причина была в том, что ток от него шел на питание первичной обмотки В ходе этого гениального эксперимента ученый впервые доказал сообществу, что существование стоячей электромагнитной волны - реальность. Если вашей мечтой является катушка Тесла, своими руками сложнее всего сделать именно первичную обмотку.

Вообще, смастерить ее самому не так уж и сложно, но куда труднее придать готовому изделию визуально привлекательный облик.

Простейший трансформатор

Сперва вам придется где-то отыскать источник высокого напряжения, причем минимум на 1,5 кВ. Впрочем, лучше всего сразу рассчитывать на 5 кВ. Затем крепим все это к подходящему конденсатору. Ежсли его емкость будет излишне велика, можно немного поэкспериментировать с диодными мостами. После этого делаете так называемый искровой промежуток, ради эффекта от которого и создается вся катушка Тесла.

Сделать его просто: берем пару проводов, а затем так скручиваем их изолентой, чтобы заголенные концы смотрели в одну сторону. Очень аккуратно регулируем зазор между ними, чтобы пробой был при напряжении чуть выше такового для источника питания. Не беспокойтесь: так как ток переменный, то на пике напряжение всегда будет немного выше заявленного. После этого всю конструкцию можно подключать к первичной обмотке.

В этом случае для изготовления вторичной можно намотать всего 150-200 витков на любую картонную втулку. Если все сделаете правильно, то получится неплохой разряд, а также заметная его ветвистость. Очень важно хорошо заземлить вывод со второй катушки.

Вот такая получилась простейшая катушка Тесла. Своими руками сделать ее сможет каждый, кто имеет хотя бы минимальные познания в электрике.

Конструируем более «серьезное» устройство

Все это хорошо, но как устроен трансформатор, который не стыдно показать даже на какой-нибудь выставке? Сделать более мощное устройство вполне реально, но для этого нужно будет намного больше поработать. Сперва предупредим, что для проведения таких опытов у вас должна быть очень надежная проводка, иначе беды не избежать! Итак, что нужно брать в расчет? Катушки Тесла, как мы уже и говорили, нуждаются в действительно высоком напряжении.

Оно должно быть минимум 6 кВ, иначе красивых разрядов вам не видать, да и настройки будут постоянно сбиваться. Кроме того, искровик нужно делать только из цельнолитых кусков меди, причем ради вашей же собственной безопасности их следует максимально прочно зафиксировать в одном положении. Мощность всего «хозяйства» должна быть минимум 60 Вт, но лучше брать 100 и больше. Если это значение ниже, то у вас точно не получится действительно зрелищная катушка Тесла.

Очень важно! И конденсатор, и первичная обмотка обязательно должны в конечном счете образовать специфический колебательный контур, входящий в состояние резонанса со вторичной обмоткой.

Имейте в виду, что обмотка может резонировать сразу в нескольких различных диапазонах. Опыты показали, что имеет место частота 200, 400, 800 или 1200 кГц. Как правило, все это зависит от состояния и месторасположения первичной обмотки. Если у вас нет то придется экспериментировать с емкостью конденсатора, а также менять количество витков на обмотке.

Еще раз напоминаем, что нами обсуждается бифилярная катушка Тесла (с двумя катушками). Так что к вопросу намотки следует подходить серьезно, ведь иначе ничего толкового из затеи не выйдет.

Некоторые сведения о конденсаторах

Сам конденсатор лучше брать не слишком выдающейся емкости (чтобы он успевал вовремя накопить заряд) или же использовать диодный мост, предназначенный для выпрямления переменного тока. Сразу заметим, что использование моста более оправдано, так как можно применять конденсаторы практически любой емкости, но при этом придется брать специальный резистор для разрядки конструкции. Током от него бьет очень (!) сильно.

Заметим, что катушка Тесла на транзисторе нами не рассматривается. Ведь вы попросту не найдете транзисторов с нужными характеристиками.

Важно!

Вообще, еще раз напоминаем: перед тем как собрать катушку Тесла, проверьте состояние всей проводки в доме или квартире, позаботьтесь о наличии качественного заземления! Это может показаться занудным увещеванием, но с таким напряжением не шутят!

Обязательно нужно очень надежно изолировать обмотки друг от друга, так как в противном случае пробитие вам будет гарантировано. На вторичной обмотке желательно делать изоляцию между слоями витков, так как любая более-менее глубокая царапина на проволоке будет украшена небольшой, но чрезвычайно опасной короной разряда. А сейчас - за дело!

Приступаем к работе

Как можно заметить, элементов для сборки вам потребуется не так уж и много. Вот только нужно помнить, что для правильной работы устройства нужно не только правильно собрать, но и правильно настроить! Однако обо всем по порядку.

Трансформаторы (МОТы) можно демонтировать из любой старой микроволновки. Это практически стандартный но у него есть одно важное отличие: его сердечник практически всегда работает в режиме насыщения. Таким образом, весьма компактное и простое устройство вполне может выдавать вплоть до 1,5 кВ. К сожалению, есть у них и специфические недостатки.

Так, величина тока холостого хода равна приблизительно трем-четырем амперам, да и нагрев даже в простое очень велик. У среднестатистической микроволновки МОТ выдает порядка 2-2,3 кВ, а равна приблизительно 500-850 мА.

Характеристики МОТов

Внимание! У этих трансформаторов первичная обмотка начинается снизу, тогда как вторичная расположена наверху. Такая конструкция обеспечивает лучшую изоляцию всех обмоток. Как правило, на «вторичке» находится накальная обмотка от магнетрона (приблизительно 3,6 Вольт). Между двумя слоями металла внимательный мастер может заметить пару каких-то металлических перемычек. Это магнитные шунты. Для чего они нужны?

Дело в том, что они замыкают на себе некоторую часть того магнитного поля, которое создает первичная обмотка. Это сделано для стабилизации поля и самого тока на второй обмотке. Если их нет, то при малейшем замыкании вся нагрузка идет на «первичку», а ее сопротивление совсем невелико. Таким образом, эти небольшие детали защищают трансформатор и вас, так как предотвращают многие неприятные последствия. Как ни странно, их все же лучше удалить? Почему?

Помните, что в микроволновой печи проблема с перегревом сего важного устройства решается путем установки мощных вентиляторов. Если же у вас трансформатор, в котором нет шунтов, то его мощность и тепловыделение значительно выше. У всех импортных микроволновых печей они чаще всего обстоятельно залиты эпоксидной смолой. Так почему же их нужно удалить? Дело в том, что в этом случае значительно снижается «просадка» тока под нагрузкой, что для наших целей очень важно. Как же быть с перегревом? Рекомендуем поместить МОТ в

Кстати, плоская катушка Тесла вообще обходится без ферромагнитного сердечника и трансформатора, но нуждается в подаче тока еще большего напряжения. Из-за этого испытывать что-то подобное в домашних условиях настоятельно не рекомендуется.

Еще раз о технике безопасности

Маленькое дополнение: на вторичной обмотке напряжение такое, что поражение током при ее пробое приведет к гарантированной смерти. Помните, что схема катушки Тесла предполагает силу тока 500-850 А. Максимальное значение этой величины, которое еще оставляет шанс на выживание, равно… 10 А. Так что при работе ни на секунду не забывайте о простейших мерах предосторожности!

Где и за сколько купить комплектующие?

Увы, но есть и некоторые плохие новости: во-первых, приличный МОТ стоит минимум две тысячи рублей. Во-вторых, отыскать его на прилавках даже специализированных магазинов практически нереально. Есть надежда разве что на развалы и «блошиные рынки», по которым придется немало побегать в поисках искомого.

Если есть возможность, обязательно используйте МОТ от старой советской микроволновой печи «Электроника». Он не так компактен, как импортные аналоги, но зато и работает в режиме обычного трансформатора. Его промышленное обозначение - ТВ-11-3-220-50. Мощность он имеет приблизительно 1,5 кВт, на выходе выдает около 2200 Вольт, сила же тока равна 800 мА. Короче говоря, параметры весьма приличные даже для нашего времени. Кроме того, у него есть дополнительная обмотка на 12 В, идеальная в качестве источника питания для вентилятора, который будет охлаждать искровик Теслы.

Что еще нужно использовать?

Качественные высоковольтные конденсаторы из керамики серий К15У1, К15У2, ТГК, КТК, К15-11, К15-14. Отыскать их сложно, так что лучше иметь в хороших друзьях профессиональных электриков. Как же быть с фильтром ВЧ? Понадобятся две катушки, которые могут надежно отфильтровать высокие частоты. В каждой из них должно быть не менее 140 витков качественного медного провода (в лаке).

Некоторые сведения об искровике

Искровик предназначен для возбуждения колебаний в контуре. Если его в схеме не будет, то питание пойдет, а вот резонанс - нет. Кроме того, блок питания начинает «пробивать» через первичную обмотку, что практически гарантированно приводит к короткому замыканию! Если искровик не замкнут, высоковольтные конденсаторы не могут заряжаться. Как только происходит его замыкание, в контуре начинаются колебания. Именно для предотвращения некоторых проблем используют дросселя. Когда искровик замыкается, дроссель предотвращает утечку тока от блока питания, а уж потом, когда контур будет разомкнут, начинается ускоренная зарядка конденсаторов.

Характеристика устройства

Напоследок мы скажем еще несколько слов о самом трансформаторе Теслы: для первичной обмотки вы вряд ли сможете отыскать медный провод нужного диаметра, так что проще использовать медные трубки от холодильного оборудования. Число витков - от семи до девяти. На «вторичку» нужно намотать не менее 400 (до 800) витков. Точное количество определить невозможно, так что придется ставить опыты. Один выход подключается к ТОРу (излучателю молний), а второй очень (!) надежно заземляется.

Из чего сделать излучатель? Используйте для этого обыкновенную вентиляционную гофру. Перед тем как сделать катушку Тесла, фото которой есть здесь же, обязательно подумайте, как сконструировать ее более оригинальной. Ниже есть несколько советов.

В завершение…

Увы, но никакого практического применения у этого эффектного устройства нет и по сию пору. Кто-то показывает опыты в институтах, кто-то зарабатывает на этом, устраивая парки «чудес электричества». В Америке один весьма чудной товарищ пару лет назад так и вовсе соорудил из катушки Тесла… рождественскую елку!

Чтобы сделать ее красивее, он наносил различные вещества на излучатель молний. Имейте в виду: борная кислота дает зеленый цвет, марганец делает «елку» синей, а литий придает ей малиновый окрас. До сих пор идут споры об истинном назначении изобретения гениального ученого, но сегодня это - обычный аттракцион.

Вот как сделать катушку Тесла.

Идея получения «бестопливного» электричества в домашних условиях чрезвычайно интересна. Любое упоминание о действующей технологии мгновенно приковывает внимание людей, желающих безвозмездно получить в свое распоряжение упоительные возможности энергетической независимости. Чтобы сделать правильные выводы по данной тематике, необходимо изучить теорию и практику.

Генератор собрать можно без больших затруднений, в любом гараже

Как создать вечный генератор

Первое, что приходит на ум при упоминании подобных устройств, это изобретения Тесла. Этого человека нельзя назвать фантазером. Наоборот, он известен своими проектами, которые были успешно реализованы на практике:

  • Он создал первые трансформаторы и генераторы, работающие на токах высокой частоты. Фактически он основал соответствующее направление электротехнического ВЧ оборудования. Некоторые результаты его экспериментов используются до сих пор в правилах безопасности.
  • Тесла создал теорию, на базе которой появились конструкции электрических машин многофазного типа. Многие современные электродвигатели созданы на основе его разработок.
  • Многие исследователи справедливо полагают, что передачу информации на расстояние с помощью радиоволн также изобрел Тесла.
  • Его идеи были реализованы в патентах знаменитого Эдисона, как утверждают историки.
  • Гигантские башни, генераторы энергии, которые были построены Тесла, использовались для множества экспериментов, фантастических даже по современным меркам. Они создавали полярное сияние на широте Нью-Йорка и вызывали вибрации, сопоставимые по силе с мощными природными землетрясениями.
  • Тунгусский метеорит, говорят, был в действительности результатом эксперимента изобретателя.
  • Небольшая черная коробочка, которую Тесла установил в серийный автомобиль с электромотором, обеспечивала полноценное многочасовое питание техники без аккумуляторов и проводов.

Опыты в районе Тунгуски

Здесь перечислена только часть изобретений. Но даже краткие описания некоторых из них позволяют предположить, что Тесла своими руками создал «вечный» двигатель. Впрочем, сам изобретатель использовал для расчетов не заклинания и чудеса, но вполне материалистичные формулы. Следует отметить, однако, что они описывали теорию эфира, которая не признается современной наукой.

Для проверки на практике можно использовать типовые схемы приборов.

Если с помощью осциллографа сделать измерения колебаний, которые образует «классическая» катушка Тесла, будут сделаны интересные выводы.

Осциллограммы напряжений при разных видах индуктивной связи

Сильная связь индуктивного типа обеспечена стандартным способом. Для этого в каркас устанавливается сердечник из трансформаторного железа, или другого подходящего материала. В правой части рисунка приведены соответствующие колебания, результаты измерений на первичной и вторичной катушке. Явно видна корреляция процессов.

Теперь нужно обратить внимание на левую часть рисунка. После подачи на первичную обмотку кратковременного импульса колебания постепенно затухают. Однако на второй катушке зарегистрирован иной процесс. Колебания здесь имеют явно выраженную инерционную природу. Они не затухают еще некоторое время без внешней подпитки энергией. Тесла полагал, что данный эффект объясняет наличие эфира, среды с уникальными свойствами.

В качестве прямых доказательств этой теории приводят следующие ситуации:

  • Самостоятельный заряд конденсаторов, не подсоединенных к источнику энергии.
  • Существенное изменение нормальных параметров электростанций, которое вызывает реактивная мощность.
  • Появление коронных разрядов на неподключенной к сети катушке, при размещении ее на большом расстоянии от работающего аналогичного устройства.

Последний из процессов происходит без дополнительных затрат энергии, поэтому следует рассмотреть его более внимательно. Ниже приведена принципиальная схема катушек Тесла, которую можно собрать без больших затруднений своими руками дома.

Принципиальная схема катушек Тесла

В следующем перечне приведены основные параметры изделий и особенности, которые надо учитывать в процессе монтажа:

  • Для крупной конструкции первичной обмотки понадобится трубка из меди, диаметром около 8 мм. Эта катушка состоит из 7-9 витков, укладывающихся с расширением по спирали в верхнюю сторону.
  • Вторичную обмотку можно сделать на каркасе из полимерной трубы (диаметр от 90 до 110 мм). Хорошо подходит фторопласт. Этот материал обладает отличными изоляционными характеристиками, сохраняет целостность структуры изделия в широком диапазоне температур. Проводник подбирают такой, чтобы сделать 900-1100 витков.
  • Внутри трубы помещают третью обмотку. Чтобы собрать ее правильно, используют многожильный провод в толстой оболочке. Площадь сечения проводника должна быть 15-20 мм 2 . От количества ее витков будет зависеть величина напряжения на выходе.
  • Для точной настройки резонанса все обмотки настраиваются на одну частоту с применением конденсаторов.

Практическая реализация проектов

Приведенный в предыдущем пункте пример описывает только часть устройства. Там нет точного указания электрических величин, формул.

Своими руками сделать подобную конструкцию можно. Но придется искать схемы возбуждающего генератора, совершать многочисленные эксперименты по взаимному расположению блоков в пространстве, подбирать частоты и резонансы.

Говорят, что кому-то удача улыбнулась. Но в открытом доступе найти полные данные, или заслуживающие доверия доказательства невозможно. Поэтому далее будут рассмотрены только реальные изделия, которые действительно можно сделать дома самому.

На следующем рисунке изображена принципиальная электрическая схема. Она собирается из недорогих стандартных деталей, которые можно приобрести в любом специализированном магазине. Их номиналы и обозначения указаны на чертеже. Затруднения могут возникнуть при поиске лампы, которая не выпускается в настоящее время серийно. Для замены можно использовать 6П369С. Но надо понимать, что этот вакуумный прибор рассчитан на меньшую мощность. Так как элементов немного, допустимо использование простейшего навесного монтажа, без изготовления специальной платы.

Электрическая схема генератора

Обозначенный на рисунке трансформатор – это катушка Тесла. Ее наматывают на трубке из диэлектрика, руководствуясь данными из следующей таблицы.

Количество витков в зависимости от обмотки и диаметра проводника

Свободные провода высоковольтной катушки устанавливают вертикально.

Чтобы обеспечить эстетичность конструкции, можно сделать своими руками специальный корпус. Он же пригодится для надежной фиксации блока на ровной поверхности и последующих экспериментов.

Один из вариантов конструкции генератора

После включения аппарата в сеть, если все сделано правильно, а элементы исправны, можно будет любоваться коронарным свечением.

Приведенную в предыдущем разделе схему из трех катушек, можно использовать совместно с этим устройством для опытов с целью создания личного источника бесплатной электроэнергии.

Коронарное излучение над катушкой

Если предпочтительна работа с новыми комплектующими деталями, стоит рассмотреть следующую схему:

Схема генератора на полевом транзисторе

Основные параметры элементов приведены на чертеже. Пояснения к сборке и важные дополнения указаны в следующей таблице.

Пояснения и дополнения к сборке генератора на полевом транзисторе

Деталь Основные параметры Примечания
Полевой транзистор Можно использовать не только тот, который отмечен на схеме, но и другой аналог, работающий с токами от 2,5-3 А и напряжением более 450 V. Перед монтажными операциями необходимо проверить функциональное состояние транзистора и других деталей.
Дроссели L3, L4, L5 Допустимо применение стандартных деталей из блока строчной развертки телевизора. Рекомендуемая мощность – 38 Вт
Диод VD 1 Возможно использование аналога. Номинальный ток прибора от 5 до 10 А
Катушка Тесла (Первичная обмотка) Создается из 5-6 витков толстого провода. Его прочность позволяет не использовать дополнительный каркас. Толщина проводника из меди – от 2 до 3 мм.
Катушка Тесла (Вторичная обмотка) Состоит из 900-1100 витков на трубчатой основе из диэлектрического материала с диаметром от 25 до 35 мм. Эта обмотка высоковольтная, поэтому пригодится ее дополнительная пропитка лаком, или создание защитного слоя фторопластовой пленкой. Для создания обмотки используют медный провод 0,3 мм в диаметре.

Скептики, отрицающие саму возможность использования «дармовой» энергии, а также те люди, которые не имеют элементарных навыков для работы с электротехникой, могут сделать своими руками следующую установку:

Безграничный источник бесплатной энергии

Пусть читателя не смущает отсутствие множества деталей, формул и объяснений. Все гениальное – просто, не правда ли? Здесь изображена принципиальная схема одного изобретения Тесла, которое до наших дней дошло без искажений, исправлений. Эта установка вырабатывает ток из солнечного света без специальных батарей и преобразователей.

Дело в том, что в потоке излучения ближайшей к Земле звезды есть частицы с положительными зарядами. При ударах о поверхность металлической пластины происходит процесс накопления заряда в электролитическом конденсаторе, который «минусом» подключен к стандартному заземлителю. Для увеличения эффективности приемник энергии устанавливают как можно выше. Подойдет алюминиевая фольга для запекания еды в духовке. Своими руками с использованием подручных средств можно сделать основу для ее закрепления и поднять устройство на большую высоту.

Но не стоит спешить в магазин. Производительность такой системы минимальна (ниже таблица с информацией по устройству).

Точные данные эксперимента

В солнечный день после 10 часов измерительный прибор показал 8 вольт на клеммах конденсатора. За несколько секунд в таком режиме разряд полностью был израсходован.

Очевидные выводы и важные дополнения

Несмотря на то что простое решение пока не предъявлено общественности, нельзя утверждать, что электромагнитный генератор великого изобретателя Тесла не существует. Теорию эфира не признает современная наука. Нынешние системы экономики, производства, политики будут уничтожены бесплатными или очень дешевыми источниками энергии. Разумеется, есть много противников их появления.

Трансформатор Тесла на качере Бровина своими руками и съем энергии.

Радиантная энергия. Беспроводная передача энергии.

Энергия эфира.

Из чего состоит вселенная? Вакуум, то есть пустота, или эфир - нечто из которого состоит все сущее? В подтверждение теории эфира Интернет предложил личность и исследования физика Николы Тесла и естественно его трансформатор,представленный классической наукой, как некое высоковольтное устройство по созданию спец-эффектов в виде электрических разрядов.

Особых пожеланий, предпочтений по длине и диаметру катушек трансформатора Тесла не нашел. Вторичная обмотка была намотана проводом 0,1мм на трубе пвх диаметром 50мм. Так сложилось что длина намотки составила 96 мм. Намотка велась против часовой стрелки. Первичная обмотка - медная трубка от холодильных установок диаметром 5 мм.

Запустить собранный коллайдер, можно простым способом. В интернет предлагаются схемы на резисторе, одном транзисторе и двух конденсаторах - качер Бровина по схеме Михаила (на форумах под ником МАГ). Трансформатор тесла после установки направления витков первичной обмотки так, как и на вторичной заработал, о чем свидетельствуют - небольшой объект похожий на плазму на конце свободного провода катушки, лампы дневного света на расстоянии горят, электричество, вряд ли это электричество в обычном понимании, по одному проводу в лампы поступает. Во всем металлическом находящемуся рядом с катушкой присутствует электростатическая энергия. В лампах накаливания - очень слабое свечение синего цвета.

Если цель сборки трансформатора тесла - получение хороших разрядов, то данная конструкция, на основе качера Бровина, для этих целей абсолютно не пригодна. То же самое мугу сказать об аналогичной катушке длинной 280 мм.

Возможность получения обычного электричества. Замеры осциллографом показали частоту колебаний на катушке съема порядка 500 кГц. Поэтому в качестве выпрямителя был использован диодный мост из полупроводников используемых в импульсных источниках питания. В начальной версии - автомобильные диоды шоттки 10SQ45 JF, затем быстрые диоды HER 307 BL.

Ток потребления всего трансформатора без подключения диодного моста 100 ма. При включении диодного моста в соответствии со схемой 600 ма. Радиатор с транзистором КТ805Б теплый, катушка съема, слегка греется. Для катушки съема использована медная лента. Можно использовать любой провод 3-4 витка.
Ток съема при включенном двигателе и только что заряженнном аккумуляторе порядка 400 ма, Если подключить двигатель на прямую к аккумулятору, ток потребления двигателя ниже. Измерения проводились стрелочным амперметорм советского производства, поэтому на особую точность не претендуют. При включенной тесле абсолютно везде (!) присутствует "горячая" на ощупь энергия.

Конденсатор 10000мF 25V без нагрузки заряжается до 40V, старт двигателя происходит легко. После запуска двигателя падение напряжения, двигатель работает на 11.6V.

Напряжение меняется при перемещении катушки съема вдоль основного каркаса. Минимальное напряжение при размещении катушки съема в верхней части и соответственно максимальное в нижней его части. Для данной конструкции максимальное значение напряжения удавалось получить порядка 15-16V.

Максимального съема по напряжению с использованием диодов шоттки можно добиться располагая витки катушки съема вдоль вторичной обмотки трансформатора Теслы, максимального съема по току - спираль в один виток перпендикулярно вторичной обмотки трансформатора Теслы.

Разница, в использовании диодов шоттки и быстрых диодов значительна. При использовании диодов шоттки, ток примерно раза в два выше.

Любые усилия по съему или работа в поле трансформатора тесла уменьшают напряженность поля, уменьшается заряд. Плазма выступает в роле индикатора наличия и силы поля.

На фотографиях объект, похожий на плазму, отображается лишь частично. Предположительно, для нашего глаза смена 50 кадров в секунду не различима. Тоесть набор постоянно сменяющихся объектов составляющих "плазму" воспринимается нами как один разряд. На боолее качественной аппаратуре съемка не проводилась.
Аккумулятор, после взаимодействия с токами теслы стремительно приходит в негодность. Зарядное устройство дает полную зарядку, но емкость аккумулятора падает.

Парадоксы и возможности.

При подключении электролитического конденсатора 47 мкф 400 вольт к аккумулятору или любому источнику постоянного напряжения 12В заряд конденсатора не привысит значение источника питания. Подключаю конденсатор 47 мкф 400 вольт к постоянному напряжению порядка 12В, полученного диодным мостом с катушки съема качера. Через пару-тройку секунд подключаю автомобильную лампочку 12В/21ВТ. Лампочка ярко вспыхивает и сгорает. Конденсатор оказался заряжен до напряжения более 400 вольт.

На осциллографе виден процесс зарядки электролитического конденсатора 10000 мкф, 25V. При постоянном напряжении на диодном мосте порядка 12-13 вольт, конденсатор заряжается до 40-50 вольт. При том же входном, переменном напряжении, конденсатор в 47 мкф 400V, заряжается до четырехсот вольт.

Электронное устройство съема дополнительной энернии с конденсатора должно работать по принципу сливного бочка. Ждем зарядки конденсатора до определенного значения либо по таймеру разряжаем конденсатор на внешнюю нагрузку (сливаем накопившуюся энергию). Разряд конденсатора соответствующей емкости даст хороший ток. Таким образом можно получить стандартное электричество.

Съем энергии.

При сборке трансформатора Тесла установлено, что статическое электричество, получаемое с катушки тесла, способно заряжать конденсаторы до значений, превышающих их номинал. Целью эксперимента является попытка выяснить заряд каких конденсаторов, до каких значений и при каких условиях возможен максимально быстро.

Скорость и возможность заряда конденсаторов до предельных значений определеят выбор выпрямителя тока. Проверены следующие выпрямители, показанные на фотографии (слева на право по эффективности работы в данной схеме) - кенотроны 6Д22С, демпферные диоды КЦ109А, КЦ108А, диоды шоттки 10SQ045JF и прочие. Кенотроны 6Д22С рассчитаны на напряжения 6,3В их необходимо включать от двух дополнительных аккумуляторов по 6,3В либо от понижающего трансформатора с двумя обмотками на в 6,3В. При последовательном подключении ламп к аккумулятору 12В, кенотроны работают не равнозначно, отрицательное значение выпрямленного тока необходимо соединить с минусом аккумуляторной батареи. Прочие диоды, в том числе и "быстрые" - малоэффективны, поскольку имеют незначительные обратные токи.

В качестве разрядника использована свеча зажигания от автомобиля, зазор 1-1,5мм. Цикл работы устройства следующий. Конденсатор заряжается до значений напряжения достаточного для возникновения пробоя через искровой промежуток разрядника. Возникает ток высокого напряжения способный зажечь лампочку накаливания 220В 60ВТ.

Ферриты используются для усиления магнитного поля первичной катушки - L1 и вставляются внутрь трубки ПВХ на которой намотан трансформатор тесла. Следует обратить внимание, что ферритовые наполнители должны находиться под катушкой L1 (медная трубка 5 мм) и не перекрывать весь объем трансформатора тесла. В противном случае генерация поля трансформатором Тесла срывается.

Если не использовать ферриты с конденсатором 0,01 мкф лампа зажигается с частотой прядка 5 герц. При добавлении ферритового сердечника (кольца 45мм 200НН) искра стабильна, лампа горит с яркостью до 10 процентов от возможной. При увеличении зазора свечи, происходит высоковольтный пробой между контактами электролампы к которым крепится вольфрамовая нить. Накал вольфрамовой нити не происходит.

При предлагаемых, емкости конденсатора более 0,01 мкф и зазоре свечи 1-1.2 мм, по цепи идет преимущественно стандартное (кулоновское) электричество. Если уменьшить емкость конденсатора, то разряд свечи будет состоять из электростатического электричества. Поле генерируемое трансформатором тесла в данной схеме, слабое, лампа светиться не будет. Краткое видео:

Вторичная катушка трансформатора тесла, представленая на фотографии, намотана проводом 0,1 миллиметра на трубке пвх с внешним диаметром 50 миллиметров. Длинна намотки 280 мм. Величина изолятора между первичной и вторичной обмотками 7 мм. Какого либо прироста мощности по сравнению с аналогичными катушками длинной намотки 160 и 200 мм. не отмечается.

Ток потребления устанавливается переменным резистором. Работа данной схемы стабильна при токе в пределах двух ампер. При токе потребления более трех ампер или меннее одного ампера, генератрация стоячей волны трансформатором Тесла срывается.

При увеличении тока потребления с двух до трех ампер, мощность отдаваемая в нагрузку увеличивается на пятьдесят процентов, поле стоячей волны усиливается,лампа начинает гореть ярче. Следует отметить только 10 процентное увеличения яркости свечения лампы. Дальнейшее увеличение тока потребления перерывает генерацию стоячей волны либо сгорает транзистор.

Начальный заряд аккумулятора составляет 13,8 вольта. В процессе работы данной схемы, аккумулятор заряжается до 14.6-14.8V. При этом емкость аккумулятора падает. Общая продолжительность аккумулятора под нагрузкой составляет четыре-пять часов. В итоге аккумулятор разряжается до 7 вольт.

Парадоксы и возможности.

Результат работы данной схемы - стабильный высоковольтный искровой разряд. Представляется возможным запуск классического варианта трансформатора Тесла с генератором колебаний на искровом промежутке (разряднике) SGTC (Spark Gap Tesla Coil) Теоретически: это замена в схеме лампы накаливания на первичную катушку трансформатора Тесла. Практически: при установке в цепь вместо электролампы трансформатора Тесла такого же как на фотографии идет пробой между первичной и вторичной обмотками. Высоковольтные разряды до трех саниметров. Требуется подобрать расстояние между первичной и вторичной обмотками, величину искрового промежутка, емкость и сопротивление цепи.

Если использовать сгоревшую электрическую лампу, то между проводниками к которым крепится вольфрамовая нить, возникает устойчивая высоковольтная электрическая дуга. Если напряжение разряда свечи зажигания можно оценить примерно в 3 киловольта, то дугу лампы накаливания можно оценить в 20 киловольт. Так как лампа имеет емкость. Данная схема может быть использована как умножитель напряжения на основе разрядника.

Техника безопасности.

Какие либо действия со схемой необходимо проводить только после отключения трансформатора тесла от источника питания и обязательной разрядки всех конденсаторов, находящихся вблизи трансформатора Тесла.

При работе с данной схемой настоятельно рекомендую использовать разрядник, постоянно подключенный параллельно конденсатору. Он выполняет роль предохранителя от перенапряжений на обкладках конденсатора, способных привести его к пробою либо взрыву.

Разрядник не даёт зарядиться конденсаторам до максимальных значений по напряжению, поэтому разряд высоковольтного конденсаторов менее 0,1 мкф при наличии разрядника на человека опасен, но не смертелен. Величину искрового промежутка руками не регулировать.

Пайкой в поле качера электронных компонентов не заниматься.

Радиантная энергия. Никола Тесла.

В настоящее время подменяются понятия и радиантной энергии дается иное определение, отличное от свойств описанных Николой Тесла. В наши дни радиантная энергия это - энергия открытых систем таких как энергия солнца, вода, геофизические явления которые могут использованы человеком.

Если вернутся к первоисточнику. Одно из свойств радиантного тока демонстрировалось Николой Тесла на устройстве - повышающий трансформатор, конденсатор, разрядник подключенный к медной U-образной шине. На короткозамкнутой шине размещены лампы накаливания. По классическим представлениям, лампы накаливания гореть не должны. Электрический ток должен идти по линии с наименьшим сопротивлением, тоесть по меденой шине.

Для воспроизведения эксперимента был собран стенд. Повышающий трансорматор 220В-10000В 50ГЦ типа ТГ1020К-У2. Во всех патентах Н.Тесла рекомендует в качестве источника питания использовать положительное (однополярное), пульсирующее напряжение. На выходе высоковольтного трансформатора установлен диод, сглаживающий отрицательные пульсации напряжения. На этапе начала заряда конденсатора ток, идущий через диод, сопоставим с коротким замыканием, поэтому для предотвращения выхода из строя диода последовательно включен резистор 50К. Конденсаторы 0.01мкф 16КВ, включены последовательно.

На фотографии, вместо медной шины, представлен соленоид намотанный медной трубкой диаметром 5мм. К пятому витку соленоида подключен контакт лампочки накаливания 12В 21/5ВТ. Пятый виток соленоида (желтый провод), выбран экспериментально, чтобы лампа накаливания не перегорела.

Можно допустить, факт наличия соленоида, вводит в заблуждение многих исследователей пытающихся повторить устройства Дональда Смита (американский изобретатель СЕ устройств) Для полной аналогии с классическим вариантом, предложенным Н.Теслой, соленоид был развернут в медную шину, лампа накаливания горит с такой же яркостью и перегорает при перемещении ближе к концам медной шины. Таким образом, математические выкладки, которыми пользуется американский исследователь слишком упрощены и не описывают процессы происходящие в соленоиде. Расстояние искрового промежутка разрядника не значительно влияет на яркость свечения электролампы, но влияет на рост потенциала. Между контактами электролампы, на которых закреплена вольфрамовая нить, происходит высоковольтный пробой.

Логичным продолжением соленоида в качестве первичной обмотки является и классический вариант трансформатора Н.Тесла.

Что за ток и каковы его характеристики на участке между разрядником и обкладкой конденсатора. То есть в медной шине в схеме предлагаемой Н.Тесла.

Если длина шины порядка 20-30 см., то электрическая лампа, закрепленная на концах медной шины не горит. Если размер шины увеличить до полутора метров лампочка начинает гореть, вольфрамовая нить раскаляется и светится привычным ярко-белым светом. На спирале лампы (между витками вольфрамовой нити) присутствует голубоватое пламя. При значительных "токах", обусловленных увеличением длины медной шины температура увеличивается, лампа темнеет, вольфрамовая нить точечно выгорает. Ток электронов в цепи прекращается, на участке выгорания вольфрама появляется энергетическая субстанция холодного, голубого цвета:

В эксперименте использовался повышающий трансформатор - 10КВ, с учетом диода максимальное напряжение составит 14КВ. По логике - максимальный потенциал всей схемы должен быть не выше этого значения. Так и есть, но только в разряднике, где возникает искра порядка полутора сантиметров. Слабый высоковольтный пробой на участках медной шины в два и более сантиметров говорит о наличии потенциала более 14 КВ. Максимальный потенциал в схеме Н.Тесла у лампочки, которая ближе к разряднику.

Конденсатор начинает заряжаться. На разряднике идет рост потенциала, возникает пробой. Искра обуславливает появление электродвижущей силы определенной мощности. Мощность это произведение тока на напряжение. 12 вольт 10 ампер (толстый провод) то же, что и 1200 вольт 0,1 ампер (тонкий провод). Разница состоит в том, что для передачи большего потенциала требуется меньшее число электронов. Для придачи значительному числу "медленных" электронов в медной шине ускорения (больший ток) требуется время. На данном участке цепи происходит перераспределение - возникает продольная волна увеличения потенциала при незначительным росте тока. На двух различных участках медной шины образуется разность потенциалов. Эта разность потенциалов и обуславливает свечение лампы накаливания.На медной шине наблюдается скин эффект (движение электронов по поверхности проводника) и значительный потенциал, больший чем заряд конденсатора.

Электрический ток обусловлен наличием в кристаллических решётках металлов подвижных электронов, перемещающихся под действием электрического поля. В вольфраме, из которого сделана нить лампы накаливания, свободные электроны менее подвижны чем в сербре, меди или алюминии. Поэтому движение поверхностного слоя электрнов фольфрамовой нити вызывает свечение лампы накаливания. Вольфрамовая нить лампы накаливания разорвана, потенциальный барьер выхода из металла электроны преодолевают, возникает электронаая эмиссия. Электронны находятся в области разрыва вольфрамовой нити. Энергетическая субстанция голубого цвета следствие и одновременно причина поддержание тока в цепи.

Говорить о полном соответствии полученного тока с радиантным током, описанным Н.Тесла преждевременно. Н.Тесла указывает, что подключенные к медной шине электролампы не нагревались. В прооведенном эксперементе электрические лампы нагреваются. Это говорит о движении электрнов вольфрмаовой нити. В эксперементе следует добиться полного отсутствия электрического тока в цепи: Продольная волна роста потенцила широкого частотного спектра искры без токовой составляющей.

Заряд конденсаторов.

На фотографии показана возможность заряда высоковольтных конденсаторов. Заряд осуществляется с помощью электростатического электричесвтва трансформатора Тесла. Схема и принципы съема описаны в разделе съем энергии.

Ролик демонстрирующий заряд конденсатора 4Мкф можно посмотреть по ссылке:

Разрядник, четыре конденсатора КВИ-3 10КВ 2200ПФ и два конденсатора емкостью 50МКФ 1000В. включены последовательно. В разряднике идет постоянный искровой разряд сатистического электричества. Разярядник собран из клемм магнитного пускателя и имеет более высокое сопротивление, чем медная проволока. Величина искрового промежутка разрядника - 0,8-0,9мм. Величина промежутка между контактами разрядника на основе медной проволоки, подключенной к конденсаторам 0,1 и менее мм. Искровой разряд статического электричества между контактами медной проволоки отсутствует, хотя искровой промежуток меньше, чем в основном разряднике.

Конденсаторы заряжаются до напряжений более 1000В, оценить величину напряжения нет технической возможности. Следует отметить, при неполном заряде конденсатора, например до 200В, тестер показывает колебания напряжения от 150В до 200В и более вольт.

При накоплении заряда конденсаторы заряжаются до напряжений более 1000В, происходит пробой промежутка устанавливаемого медной проволокой подключенной к клемам конденсатора. Пробой сопровождается вспышкой и громким взрывом.

При включении схемы, сразу на клемах конденсатора появляется и начинает рости высокое напряжение и далее идет заряд конденсатора. То что конденсатор заряжен можно определить по уменьшению и последующему прекращению электростатической искры в разряднике.

Если убрать дополнительный разрядник из медной проволоки, подключенной к высоковольтным конденсаторам, вспышки происходят в основном разряднике.

Конденсатор используемый в ролике, МБГЧ-1 4 мкф * 500В через 10 минут непрерывной работы - вздулся и вышел из строя, чему предшествовало бульканье масла.

При работе схемы на всех участках присутствует электростатическое электричество, о чем свидетельствует свечение неоновой лампочки.

Если заряжать конденсаторы высокой емкости без разрядника, при разряде конденсаторов выходят из строя выпрямительные диоды.

Беспроводная передача энергии.

Оба соленоида намотаны на трубе пвх с внешним диаметром 50 мм. Горизонтальный солионоид (передатчик) намотан проводом 0,18 мм, длина 200 мм., расчетная длина провода 174,53м. Вертикальный соленоид (приемник) намотан проводом 0,1 мм., длина 280 мм, расчетная длина провода 439,82м.

Ток потребления схемы менее одного ампера. Электролампа 12 вольт 21 ватт. Яркость свечения лампы составляет около 30% в сравнении с непосредственным подключением к аккумулятору.

На увеличение яркости свечения лампы, помимо перпендикулярного размещения соленоидов, влияет взаимное расположение проводников - конец соленоида передатчика (красная изолента) и начало солиноида приемника (черная изолента). При близком, парралельном их размещении яркость свечения лампы увеличивается.

Заряд конденсаторов в ранее рассмотренной схеме возможен через катушку посредник без непосредственной связи блока съема (высоковольтный конденсатор и выпрямительные диоды) с трансформатором тесла. Эффективность беспроводной передачи энергии порядка 80-90% в сравнении с непосредственным подключением блока съема к соленоиду-передатчику. На фотографии показано наиболее эффективное расположение соленоидов друг относительно друга. Поскольку расположение соленоидов перпендикулярно, передача энергии посредством магнитного поля по классическим представлениям невозможна. Визуально оценить энергетику процесса возможно просмотрев фильм:

Верхний конец соленоида-приемника соеденен с выпрямителями КЦ109А, нижний не соеденен ни с чем. При работающей схеме в нижней части соленоида-приемника наблюдается незначительная искра. Верхний конец соленоида-передатчика в воздухе, не соеденен ни с чем.
Ток потребления 1А. В качестве катушки посредника проверялись соленоиды намотанные проводом 0,1мм, длина 200 и 160 мм. Конденсатор до напряжения необходимого для пробоя разрядника не заряжается. Соленоид-приемник представленный на фотографии дает наилучший результат. Ферритовые наполнители в передатчике и приемнике не использовались.

С уважением, А. Мищук.