Способ и устройство бесконтактного оптического измерения размеров объектов. Рычажно-оптические приборы Оптические средства измерения

Статья посвящена разработанным ООО «НТП «ТКА» приборам для измерения основных световых и энергетических параметров и характеристик источников оптического излучения, в том числе и светодиодов.

Необходимость оперативного и достоверного измерения основных световых и энергетических параметров и характеристик источников излучения в видимой области спектра, таких как координаты цветности, коррелированная цветовая температура, коэффициент пульсации, яркость, освещенность и облученность, очевидна. Она продиктована стремительным развитием альтернативных источников оптического излучения (светодиодов), появлением различных вариантов дисплеев и световых табло, а также технологическими процессами, использующими источники оптического излучения.

Некоторые особенности построения приборов для измерения основных световых характеристик источников света

Измерение освещенности и яркости является простой фотометрической процедурой. Вместе с тем при проектировании и производстве люксметров и яркомеров приходится сталкиваться с достаточно серьезными проблемами по обеспечению соответствия выпускаемых приборов требованиям нормативных документов.

Так, например, фотоприемные устройства (ФПУ), являясь основной частью прибора для измерения оптического излучения, должны отвечать ряду электрических и фотометрических требований, зависящих от области применения и назначения. При разработке и производстве приборов для измерения параметров излучения необходимо знание этих требований, их особенностей, трудностей создания и путей их преодоления.

Устройство для формирования пространственной характеристики (входное устройство) формирует угол зрения, величина которого определена назначением разрабатываемого прибора. Так, например, входное устройство люксметра или пульсметра рассчитывается исходя из следующих соображений.

Освещенность поверхности, создаваемая точечным источником излучения, произвольно расположенным под углом. к ее нормали (рис. 1), определяется выражением:

Е = Е 0 ×сosβ, (1)

где Е 0 - освещенность, создаваемая точечным источником, расположенным нормально относительно поверхности; β - угол между нормалью и направлением на источник.

Рис. 1. Произвольно расположенный источник

Очевидно, измерения прибора, измеряющего освещенность, должен подчиняться такому же закону. Практически реализовать это условие без принятия определенных мер невозможно из-за зависимости коэффициента отражения поверхности оптических элементов приемной системы от угла падения излучения, описываемой формулой Френеля (2). Для выполнения этого условия приходится включать в оптическую схему фотоприемного устройства так называемую косинусную насадку, формирующую необходимый угол зрения и компенсирующую погрешность, вносимую поверхностным отражением оптических элементов.

Наиболее оптимальная косинусная насадка для рабочих средств (рис. 2) измерения оптического излучения представляет собой выполненный из молочного стекла элемент, равномерно рассеивающий падающее излучение по всем направлениям, обеспечивая тем самым выполнение закона Ламберта, согласно которому яркости светорассеивающей поверхности во всех направлениях одинаковы.


Рис. 2. Цилиндрическая косинусная насадка для рабочих средств

Поверхность материалов, используемых во входных устройствах, отражает падающее излучение по закону Френеля:

где φ 1 - угол между падающим на поверхность лучом света и нормалью; φ 2 - угол между преломленным лучом и нормалью. Графически эта зависимость представлена на рис. 3.


Рис. 3. Зависимость коэффициента отражения поверхности материала от угла падения

Это означает, что фотоприемное устройство регистрирует излучение, не отвечающее соотношению (1) при углах более 60°, т. е. отличное от реального излучения.

Для компенсации потерь отраженного излучения используют боковую грань диска из молочного стекла. Величина потока излучения, прошедшего внутрь стекла через боковые грани, пропорциональна величине цилиндрической освещенности. Под средней цилиндрической освещенностью понимают среднюю освещенность боковой поверхности вертикально расположенного цилиндра. Она определяется выражением:

где β - угол падения света от точечного источника на боковую поверхность вертикально расположенного цилиндра.

Световой поток Ф, попадающий на используемый в ФПУ светочувствительный элемент, является функцией отражения (ρ) и пропускания (τ) используемого материала, освещенности плоской поверхности (Е п) и цилиндрической освещенности боковой грани (Е ц):

Аналитически описать эту связь достаточно сложно из-за разброса параметров используемых материалов и геометрических размеров составляющих ФПУ элементов. При разработке и изготовлении ФПУ эмпирически находится оптимальное сочетание характеристик (марки молочного стекла, его толщины и высоты боковой поверхности, выступающей над корпусом), обеспечивающее заданную погрешность (1–2%), определяемую отличием полученной пространственной характеристики от теоретической.

Кроме того, при создании приборов для измерения оптического излучения необходимо решить задачу приведения спектральной характеристики чувствительности кремниевого фотодиода к относительной световой спектральной эффективности V(λ), табулированные значения которой регламентированы решениями комиссии МКО и ГОСТ 8.332.

Спектральная коррекция чувствительности фотоприемника Sф(λ) к заданному виду S(λ) осуществляется, как правило, цветными фильтрами. При этом коэффициент пропускания Т(λ) определяется соотношением:

Существует два основных способа расположения корригирующих светофильтров перед фоточувствительным элементом (рис. 4).


Рис. 4. Способы расположения корригирующих светофильтров: а) субтрактивный; б) субтрактивно-аддитивный (схема Дреслера)

В первом случае цветные фильтры с подходящими спектральными характеристиками располагаются последовательно друг за другом. При таком расположении (рис. 4а) излучение, прежде чем попасть на фотоприемник, последовательно фильтруется в каждом фильтре.

Другой способ расположения фильтров с требуемыми спектральными характеристиками показан на рис. 4б. При этом расположении, называемом схемой Дреслера, некоторые фильтры размещаются рядом один с другим. Различные части светового потока по-разному пропускаются фильтрами, прежде чем поток достигает приемной площадки фотоприемника. Результирующая кривая спектрального пропускания комбинации может эффективно регулироваться путем изменения относительного размера отдельных компонентов. Выполненные по такому принципу корректирующие фильтры могут с высокой степенью точности приблизить относительную спектральную чувствительность фотоприемника к идеальным значениям V(λ) при относительно высоком пропускании в максимумах кривых. Обычно на практике в частности и в расчете рассматриваемых приборов используется первый способ расположения светофильтров ввиду его технологичности и простоты расчетов.

Рассмотрим пример приведения спектральной характеристики кремниевого фотодиода Sф(λ) к относительной световой спектральной эффективности V(λ) (рис. 5).


Рис. 5. Вид кривых спектральной чувствительности кремниевого фотодиода S(.) и заданной меры V(.)

Характеристика S(λ) приводится к заданной кривой с помощью исправляющего фильтра, который может быть составлен из цветных стекол (рис. 6).


Рис. 6. Коррекция спектральной чувствительности фотоприемника с помощью цветных фильтров

Общий коэффициент пропускания исправляющего светофильтра рассчитывается по формуле:

где i - номера цветных стекол, составляющих светофильтр, к i (λ) - показатель поглощения цветных стекол с индексом, соответствующим номеру цветного стекла, t i - толщина соответствующих цветных стекол.

Тип стекол и их количество выбирались полуэмпирическим способом, исходя из наличия производимых и доступных для использования марок. Так, например, для видимой области спектра пригодными для коррекции оказались следующие цветные стекла: СЗС-21, СЗС-22, СЗС-23, ЖС-20, ЖЗС-5, ЖЗС-6, ОС-5. Из группы сине-зеленых стекол (СЗС) было выбрано СЗС-21, так как оно хорошо подавляет излучение в ближней ИК-области спектра (760–1200 нм), где наблюдается максимальная чувствительность кремниевых фотодиодов (λ max = 800–900 нм), выбранных для коррекции. Оранжевое стекло ОС-5 взаимозаменяемо со стеклом ЖС-20, а желто-зеленое стекло ЖЗС-6 взаимозаменяемо со стеклом ЖЗС-5.

Выбор марки стекол и их толщины и расчет спектрального коэффициента пропускания исправляющего светофильтра осуществляется таким образом, чтобы на каждой длине волны выполнялось условие: τ(λ)= V(λ)/Sф(λ).

Строгое выполнение этого условия на всех длинах волн для серийных цветных стекол и фотоприемников практически невозможно. Всегда будет иметь место отступление реально выполненной кривой S(λ) = Sa(λ)..(λ) от заданной, которое необходимо оценить в зависимости от назначения и способа градуировки фотометра, где применяется исправляющий светофильтр.

Оценка погрешности коррекции фотоприемника производится по методике, разработанной МКО (публикация № 53). Расчет погрешности коррекции фотометрической головки f 1 (Z) основан на отличии реакции на излучение идеального фотоприемника, табулированное значение спектральной чувствительности которого известно, и реального фотоприемника, относительное спектральное распределение которого отличается от того, при котором была произведена градуировка.


где S(λ) - относительная спектральная чувствительность исследуемого фотоприемника; SV(λ) - относительная спектральная чувствительность эталонного фотоприемника; Фa(λ) - относительное спектральное распределение источника «А», при котором производится градуировка; Ф i (λ) - относительная спектральная характеристика табулированных источников.

Приборы для измерения оптического излучения

Люксметры нового поколения «ТКА-Люкс» (рис. 7) и «ТКА-ПКМ-31» являются в настоящее время самыми востребованными и имеют метрологические характеристики на уровне приборов лучших мировых производителей рабочих средств измерения. Диапазон измерения освещенности в диапазоне 10–200000 лк с погрешностью 6–8%.


Рис. 7. Внешний вид люксметра «ТКА-Люкс»

«ТКА-Люкс/Эталон» является первым российским люксметром, метрологические характеристики которого отвечают требованиям, предъявляемым к рабочим эталонам. Он предназначен для измерения освещенности в видимой области спектра 380–760 нм, создаваемой стандартными источниками оптического излучения, расположенными нормально относительно приемника. Люксметр предназначен для практической реализации Государственной поверочной схемы средств из мерений световых величин в соответствии с ГОСТ 8.023-2000. Этот прибор по точности воспроизведения и передачи размеров единиц силы света и освещенности обеспечивает метрику прецизионных и рабочих средств измерений и отличается временной стабильностью и достоверностью. Допускаемая прибором основная относительная погрешность измерения освещенности не превышает 6,0%.

Разработанный комбинированный прибор люксметр+яркомер «ТКА-ПКМ» (02) служит для измерения освещенности (в диапазоне 10–200000 лк с погрешностью 8%) и яркости накладным способом (в диапазоне 10–200 000 кд/м 2 с погрешностью 10%) самосветящихся протяженных объектов (рис. 8).


Рис. 8. Внешний вид прибора «ТКА-ПКМ» мод.0,2

Прибор отличается от традиционных яркомеров отсутствием в схеме оптических элементов (линзы, объектива), что значительно упрощает конструкцию и удешевляет стоимость прибора при сохранении его точностных характеристик.

Для дистанционного определения яркости протяженных источников разработан недорогой, отвечающий современным метрологическим и техническим требованиям прибор для измерения яркости киноэкранов яркомер «ТКАЯР» (рис. 9), представляющий собой портативный малогабаритный прибор с автономным питанием, снабженный функцией запоминания результата измерения (Hold). Наводка на измеряемый объект осуществляется с помощью лазерного прицела.


Рис. 9. Внешний вид яркомера «ТКА-ЯР»

Для упрощения конструкции прибора в оптической схеме был применен нефокусируемый объектив. Нерегулируемая фокусировка на некоторое постоянное расстояние повышает оперативность работы с прибором, так как исключается одна из рабочих операций. При этом не требуется вводить никаких поправок к градуировке, поскольку показания прибора пропорциональны яркости объекта независимо от расстояния. Прибор имеет следующие технические характеристики:

  • угол зрения - 1,0–1,5°;
  • диапазон измерения - 10,0–2000,0 кд/м2;
  • спектральная коррекция - 2,0%;
  • суммарная погрешность - 10,0%;
  • расстояние до измеряемого объекта - не менее 7,0 м.

Измерение коэффициента пульсации источников излучения

Излучение источников света при питании от сети переменного тока (как правило, с частотой 50 Гц) является пульсирующим. Частота пульсации при этом равна удвоенной частоте питающего напряжения 100 Гц. В качестве критерия оценки относительной глубины колебаний освещенности в результате изменения во времени светового потока источников излучения при питании их переменным током введен коэффициент пульсации освещенности (Кп), выражаемый формулой:

где Еmax - максимальное значение амплитуды переменой составляющей освещенности, Еmin - ее минимальное значение, Еср - среднее значение освещенности (рис. 10).


Рис. 10. Временная характеристика пульсирующей освещенности


Рис. 11. Внешний вид прибора «ТКА-ПКМ (08)»

Конструктивно прибор выполнен в виде двух блоков: фотоприемной части (ФПУ) и блока обработки информации. В блоке обработки информации размещена электронная схема, состоящая из АЦП (аналого-цифрового преобразователя), ЖКИ (жидкокристаллического индикатора) и процессора ADuС.

Прибор работает следующим образом. Сигнал с ФПУ подается на предварительный усилитель, где происходит одновременно с усилением сигнала и его масштабирование.

Усиленный сигнал подается на вход АЦП для преобразования в цифровую форму. Цифровой сигнал с выхода АЦП подается в микропроцессор для дальнейшей обработки. Проводится серия измерений с периодом 10 мс и определяются максимальное, минимальное и среднее значения освещенности.

Обработка сигнала ведется не синфазно периодам колебаний. В процессе измерения производится анализ нескольких периодов, и значения результатов выборок усредняются. Результат - значения max, min и среднее определяются в единицах освещенности лк. После нахождения параметров сигнала по формуле (8) вычисляется значение коэффициента пульсации.

Определение коэффициента пульсации источников излучения и освещенности выполняется прибором «ТКА-ПКМ (08)», информация в нем обрабатывается микропроцессором. Этот пульсметр-люксметр имеет следующие технические характеристики:

  • диапазон измерения коэффициента пульсации - 0–100%;
  • диапазон измерения освещенности - 10–200 000 лк;
  • погрешность измерения не превышает 10%.

    Измерение полного светового потока

    Важной световой характеристикой излучения светодиода является световой поток Ф (лм), определяющийся как интеграл всего потока излучения, заключенного под пространственной индикатрисой излучения (рис. 12).


    Рис. 12. Пространственное распределение силы света светильника

    Необходимо при этом отметить, что индикатрисы излучения светодиодов (в отличие от ламп накаливания) могут принимать самые причудливые формы. Эта особенность в немалой степени помогла в выборе нами пути построения измерительного прибора.

    Способы измерения полного светового потока

    Имеются два существенно различающихся способа измерения полного светового потока:

    • гониометрический метод;
    • метод «интегрирующей сферы».

    Гониометрический метод

    Метод основан на пошаговой фиксации значений силы света светодиода при его повороте на известный угол. Используемые для этих целей приборы - гониометр с достаточным угловым разрешением и фотометрическая головка с известным коэффициентом преобразования. Уменьшение погрешности измерений и получение наиболее достоверного углового распределения возможно при минимальном значении шага угла поворота светодиода относительно фотометра (или наоборот). Современные гониофотометрические установки имеют шаг несколько угловых минут. Одновременно выполняются измерения осевой силы света и ее пространственного распределения.

    На основании этих данных рассчитывается световой поток. Получение светового потока светодиода Ф с пространственным распределением силы света произвольной формы определяется с помощью индикатрис излучения большого числа плоскостей (nI v (Θ) при n→∞) и последующим вычислением среднего значения Ф:


    Процесс измерения полного светового потока гониометрическим методом является перспективным с точки зрения точности и информативности, но требует серьезных материальных затрат и времени.

    Для оперативного проведения простых технологических измерений полного светового потока нами был выбран так называемый метод «интегрирующей сферы», изложенный М. М. Гуревичем . В нем неизвестный световой поток сопоставляется с заранее вычисленным световым потоком образцового осесимметричного источника. Этот метод позволяет проводить измерения светового потока источника с произвольным распределением излучения в окружающем пространстве на порядки быстрее, чем гониометрический метод (рис. 13).


    Рис.13. Измерение светового потока с помощью фотометрического шара

    Такое сопоставление производится с помощью фотометрического шара, имеющего достаточно большой диаметр, окрашенного изнутри матовой белой краской и рассеивающего свет в соответствии с законом Ламберта.

    Теория фотометрического шара показывает, что световой поток, рассеиваемый его внутренней стенкой, распределяется по ней весьма равномерно. Поэтому если внутрь полой сферы, стенка которой имеет во всех точках одинаковый коэффициент отражения ρ, поместить источник S, излучающий световой поток Ф, то отраженный от стенки шара поток ρФ создаст во всех точках одну и ту же освещенность

    где r - радиус поверхности шара.

    Вторично отраженный световой поток ρ 2 Ф снова равномерно распределится по стенке шара, и дополнительная освещенность окажется:

    Общую (суммарную) освещенность в некоторой точке М на внутренней поверхности шара можно рассчитать следующим образом:

    где E и - освещенность в некоторой точке М при непосредственном падении света на поверхность шара. Очевидно, что эта величина не будет одинакова во всех точках, поскольку зависит как от положения источника S внутри шара, так и от его светораспределения.

    Однако если с помощью малого непрозрачного экрана Э (рис. 13), помещенного вовнутрь шара, защитить от попадания света непосредственно от источника малый участок стенки около точки М, то освещенность этого участка будет следующая:

    где α - коэффициент пропорциональности, зависящий только от свойств шара.

    Поэтому если испытуемый источник S со световым потоком Ф заменить внутри шара на образцовый источник S 0 c известным световым потоком Ф 0 , то очевидно, что освещенность в точке М будет:

    Или, разделив выражение (14) на (15), получим:


    Рис. 14. Вариант измерения полного светового потока светодиода

    Установив тем или другим способом отношение освещенностей, можно определить световой поток Ф интересующего нас источника.

    В связи с тем, что излучение светодиодов направленное, и угол излучения не превышает 2. возможно упрощение конструкции прибора за счет установки исследуемых светодиодов в стенке шара. Тем самым снижается количество элементов конструкции внутри шара и, следовательно, его геометрические размеры. Шар выполняется с двумя отверстиями. За первым размещается фотодиод с молочным стеклом и набором корригирующих светофильтров, а за вторым - исследуемые светодиоды (рис. 14).

    Определив реакцию фотодиода на излучение - например, фототоки, возникающие в измерительной цепи, - находим отношение i/i 0 и Е/Е 0 , которые можно считать равными между собой, и вычисляем световой поток Ф согласно выражению (16).

    В результате реализации на практике вышеизложенного метода мы получили рабочее средство измерения полного потока, показанного на рис. 15. Погрешность измерения полного светового потока белых светодиодов составила 7,0%, цветных светодиодов - 10,0%.


    Рис. 15. Внешний вид опытного экземпляра прибора «ТКА-КК» для измерения полного светового потока излучающего светодиода


    Рис. 16. Фотоприемное устройство (ФПУ) спектроколориметра

    Дополнительные погрешности суммарной спектральной коррекции, возникающие из-за селективности коэффициента отражения интегрирующей сферы, достаточно просто устраняются коррегирующими фильтрами. Измерения полного светового потока могут проводиться за считанные секунды операторами любого уровня квалификации (рис. 15).

    Измерение цветовых характеристик источников оптического излучения

    Общая концепция построения приборов

    Приборы ООО «НТП «ТКА» для определения цветовых характеристик источников (спектроколориметры) основаны на измерении спектрального состава оптического излучения с последующей математической обработкой результатов.

    Координаты цвета источников определяются значениями трех интегралов, взятых в пределах видимого спектра:


    где Ф еλ (λ) - спектральная плотность потока излучения; x‾(λ),y‾(λ),z‾(λ) - удельные координаты цветности.

    Координаты цветности рассчитываются:


    Фотоприемное устройство спектроколориметра показано на рис. 16.

    Излучение исследуемого источника, пройдя отделение для формирования пространственной характеристики (1), попадает в диспергирующее устройство. Устройство представляет собой полихроматор (2) с регистрацией разложенного излучения фотодиодной линейкой (3). Рабочий спектральный диапазон обусловлен характером поставленных задач.

    При определении коррелированной цветовой температуры спектральная плотность энергетической светимости М еλ (Вт·м3) абсолютно черного тела (АЧТ) определяется в соответствии с законом Планка по формуле:

    Координаты цвета АЧТ при данной температуре Т рассчитываются по формулам (17). Затем применяется переход от системы цветовых координат х, у МКО 1931 г. в более равноконтрастную систему u’, v’ МКО 1976 г. по следующим формулам:

    Такой же пересчет цветности производится для исследуемого источника излучения. Затем определяется массив координат цветности АЧТ и соответствующий массив температур.

    Минимальное расстояние в пространстве u, v между точкой цветности исследуемого источника (u0’, v0’) и точками цветности массива линии АЧТ (ui’, vi’) (рис. 17) определяется по формуле:


    Рис. 17. Линия АЧТ в системе цветовых координат u’,v’

    Затем сопоставляется рассчитанный массив цветности и массив температур АЧТ и определяется температура исследуемого источника Тj, соответствующая определенной точке цветности (u j , v j).

    Разработанный спектроколориметр «ТКА-ВД» предназначен для определения спектрального состава источника оптического излучения с последующим вычислением цветовых координат в выбранной системе координат (рис. 18). Оптическая схема прибора представляет собой полихроматор на дифракционной решетке с регистрацией разложенного излучения фотодиодной линейкой. Рабочий спектральный диапазон прибора (380–760) нм. Диапазон линейности сигналов достигает шести порядков. В зависимости от конфигурации входного устройства прибор работает как в режиме яркомера, так и в режиме измерения освещенности. Спектральное разрешение прибора не превышает 3 нм.


    Рис. 18. Внешний вид спектроколориметра «ТКА-ВД»

    Заключение

    В заключение хочется отметить следующее. Прибор становится измерительным средством тогда, когда он метрологически обеспечен. Порой на метрологию затрачиваются усилия, соизмеримые с усилиями, затраченными на разработку самого прибора. ООО «НТП «ТКА» оснащено современным, в том числе уникальным оборудованием, которое обеспечивает проведение калибровочных и поверочных (силами «Тест-Санкт-Петербург») работ при выпуске приборов серии «ТКА». По каждому типу приборов имеется утвержденное метрологическое обеспечение измерений и эталоны соответствующего уровня, госповерка которых ежегодно проводится в уполномоченных организациях Госстандарта РФ. Специалистами центра проводятся консультации по вопросам возможности применения приборов для решения конкретных задач и даются рекомендации по наилучшему выбору среди них. По заданию министерств, ведомств и отдельных заказчиков выполняются научно-исследовательские и опытно-конструкторские работы, связанные как с разработкой новых типов приборов, так и с исследованиями воздействия физических факторов на материальные объекты и изучением происходящих в связи с этим изменений.

    Литература

    1. www.ledcommunity.ru (Сайт объединения людей, сфера деятельности которых связана со светодиодной индустрией.)
    2. Заутер Г., Линдеманн М., Шперлинг А., Оно О. Фотометрия светодиодов // Светотехника. 2004. № 3.
    3. Никифоров С. Измерительная лаборатория для комплексного исследования характеристик светодиодов, применяемых в системах отображения информации // Компоненты и технологии. 2007. № 7.
    4. Круглов О. В., Кузьмин В. Н., Томский К. А. Измерение светового потока светодиодов // Светотехника. 2009. № 3.
    5. Сапожников Р. А. Теоретическая фотометрия. Л.: Энергия. 1977.
    6. Гуревич М. М. Фотометрия (теория, методы и приборы). Л.: Энергоатомиздат. 1983.
  • В способе бесконтактного оптического измерения размещают объект между источником лазерного излучения и фотоприемником, измеряют мощность лазерного излучения Р, сравнивают ее с заданным уровнем Р 0 , осуществляют оптическую развертку лазерного излучения в пучок параллельных лучей в зоне нахождения объекта и определяют размер объекта по величине тени от объекта на фотоприемнике, корректируя время экспозиции фотоприемника по величине разности (Р 0 -Р). Устройство для осуществления способа включает лазер, светоделительную пластину, короткофокусную цилиндрическую линзу, выходную цилиндрическую линзу, коллимирующую линзу, ПЗС, блок обработки информации, фотоприемное пороговое устройство. Технический результат - повышение точности измерений. 2 н. и 2 з.п. ф-лы, 1 ил.

    Рисунки к патенту РФ 2262660

    Изобретение относится к измерительной технике, в частности к бесконтактным оптическим средствам измерения геометрических размеров различных объектов.

    Известен способ бесконтактного оптического измерения размеров объектов, называемый также теневым, который заключается в размещении исследуемого объекта между лазером и многоэлементным фотоприемником, развертке лазерного излучения в пучок параллельных лучей в зоне расположения объекта и определении размера объекта по величине тени, отбрасываемой им на фотоприемник. Устройства, реализующие известный способ, - лазерные теневые измерители - состоят из источника лазерного излучения, системы линз, формирующей из первоначального луча путем оптической развертки пучок параллельных лучей, и многоэлементного фотоприемника, подключенного к блоку обработки информации. Количество незасвеченных пикселов на фотоприемнике на линейке ПЗС определяет размер объекта (1, 2).

    Использование оптической развертки позволяет применить для непрерывного считывания информации многоэлементный фотоприемник на линейке ПЗС и осуществить съем информации в течение одного кадра, длительность которого регулируется в широких пределах, вплоть до 0,1 мкс. Это обстоятельство дает возможность использовать лазерные теневые измерители для измерения параметров объектов, движущихся с большой скоростью.

    В качестве прототипа заявляемого технического решения выбран способ бесконтактного оптического измерения размеров объектов, заключающийся в размещении исследуемого объекта между лазером и фотоприемником, оптической развертке лазерного излучения в пучок параллельных лучей в зоне расположения объекта и определении размера объекта по величине тени от объекта на фотоприемнике. Устройство, реализующее известный способ, состоит из источника лазерного излучения, линзовой системы оптической развертки, многоэлементной фотодиодной линейки, схемы обработки информации и компьютера (3).

    Недостатки известного способа и устройства, с помощью которого реализуется способ, обусловлены следующим. Точность измерения при использовании известного способа зависит, прежде всего, от точности определения границ контура исследуемого объекта. Дифракционные эффекты приводят к тому, что переход от света к тени на поверхности фотоприемника характеризуется определенной протяженностью, которая для используемых на практике фотоприемников на линейке ПЗС составляет, как правило, несколько пикселов. Размытость границы между светом и тенью снижает точность определения размеров объекта, причем влияние этого фактора будет тем больше, чем меньше размер объекта.

    Как было показано выше, размер объекта определяется количеством незасвеченных (затемненных) пикселов на линейке ПЗС. Затемненным считается пиксел, видеосигнал с которого меньше определенного порога.

    Можно показать, что размер детали будет определяться количеством пикселов, на которых напряжение U t больше порогового U пор

    где Е max - максимальная мощность лазерного излучения;

    r - текущий радиус лазерного пучка на линейке ПЗС;

    r о - радиус лазерного пучка в точке с плотностью мощности излучения в е 2 раз меньшей, по сравнению с интенсивностью в центре;

    Т экс - время экспозиции;

    RC - параметр, характерный для конкретной линейки ПЗС.

    Из выражения (1) следует, что размер объекта зависит как от мощности лазерного излучения, так и от времени экспозиции.

    За время экспозиции число пикселов, на которых U t U пор, будет определяться мощностью лазерного излучения, так как освещенность каждого пиксела и, следовательно, скорость нарастания заряда на нем зависит от мощности лазерного излучения. Как следствие, определяемый размер объекта будет зависеть от величины мощности лазерного излучения. Поэтому в известном лазерном измерителе при флуктуациях мощности точность определения размера объекта снижается.

    Задача, решаемая изобретением, - повышение точности измерений.

    Указанная задача решается тем, что в способе бесконтактного оптического измерения размеров объектов, заключающемся в размещении объекта между источником лазерного излучения и фотоприемником, оптической развертке лазерного излучения в пучок параллельных лучей в зоне расположения объекта и определении размера объекта по величине тени от объекта на фотоприемнике, измеряют мощность лазерного излучения Р, сравнивают ее с заданным уровнем Р о и по величине (Р о -Р) осуществляют корректировку времени экспозиции фотоприемника. Устройство для осуществления способа, содержащее источник лазерного луча, средства оптической развертки лазерного луча, фотоприемник, подключенный к первому входу блока обработки информации, и объект, расположенный между источником лазерного луча и фотоприемником, снабжено светоделителем, размещенным между источником лазерного луча и средствами оптической развертки, и фотоприемным пороговым устройством, выход которого подсоединен ко второму входу блока обработки информации. Средства оптической развертки лазерного луча выполнены в виде цилиндрических линз, а светоделитель - в виде полупрозрачной пластины.

    Изобретение иллюстрируется чертежом, где схематически изображено устройство, с помощью которого реализуется заявляемый способ. Оно включает лазер 1, светоделительную полупрозрачную пластину 2, средства оптической развертки лазерного луча, состоящие из короткофокусной цилиндрической линзы 3 и выходной цилиндрической линзы 4, коллимирующую линзу 5, фотоприемник на линейке ПЗС 6, соединенный с первым входом блока обработки информации 7, и фотоприемное пороговое устройство 8, подключенное ко второму входу блока 7 и представляющее собой фотоприемник со схемой сравнения. Светоделительная пластина 2 и фотоприемное пороговое устройство 8 образуют канал корректировки времени экспозиции. Светоделительная пластина 2 расположена под углом к траектории луча лазера 1 для того, чтобы обеспечить отвод части мощности излучения на фотоприемное пороговое устройство 8. Измеряемый объект 9 размещается между линзами 4 и 5.

    Заявляемый способ осуществляется следующим образом. Излучение лазера 1 попадает на светоделительную пластину 2. Часть излучения отклоняется пластиной 2 на фотоприемное пороговое устройство 8, а остальная часть проходит в оптическую систему линз 3 и 4, осуществляющих развертку излучения в пучок параллельных лучей. В результате исследуемый объект 9 засвечивается плоским лучом и на фотоприемнике 6 формируется изображение объекта, соответствующее тени, отбрасываемой объектом 9 на поверхность фотоприемника 6. В блоке 7 происходит обработка сигнала изображения и определение размера объекта 9. В пороговом устройстве 8 осуществляется сравнение части мощности лазерного излучения, поступившей на устройство 8, с пороговой величиной, соответствующей заданной мощности излучения. Если величина мощности отлична от заданной, на выходе порогового устройства 8 будет формироваться разностный сигнал, поступающий на второй вход блока 7. В соответствии с величиной поступившего сигнала блок 7 осуществляет корректировку времени экспозиции фотоприемника 6. Если фактическая мощность лазерного излучения больше заданной, блок 7 уменьшает время экспозиции, если меньше - увеличивает.

    Как следствие, регулировка времени заряда пикселов даже в условиях флуктуации мощности лазерного излучения обеспечивает высокую точность измерений.

    Таким образом, заявляемые способ и устройство за счет корректировки времени экспозиции в зависимости от мощности лазерного излучения обеспечивают - по сравнению с устройством-прототипом - повышение точности измерения размеров объектов.

    ЛИТЕРАТУРА

    1. А.З.Венедиктов, В.Н.Демкин, Д.С.Доков, А.В.Комаров. Применение лазерных методов для контроля параметров автосцепки и пружин. Новые технологии - железнодорожному транспорту. Сборник научных статей с международным участием, часть 4. Омск 2000, с.232-233.

    2. V.N.Demrin, D.S.Dokov, V.N.Tereshkin, A.Z.Venediktov. Optical control of geometrical dimensions for railway cars automatic coupling. Third Internat. Workshop on New Approaches to High-Tech: Nondestructive Testing and Computer Simulations in Science and Engineering. Proceedings of SPAS, Vol. 3. 7-11 June 1999, St. Petersburg, p. А17.

    3. В.В.Анциферов, М.В.Муравьев. Бесконтактный лазерный измеритель геометрических размеров роликов подшипников. Новые технологии - железнодорожному транспорту. Сборник научных статей с международным участием, часть 4. Омск 2000, с.210-213 (прототип).

    ФОРМУЛА ИЗОБРЕТЕНИЯ

    1. Способ бесконтактного измерения размеров объектов, заключающийся в размещении объекта между источником лазерного излучения и фотоприемником, оптической развертке лазерного излучения в пучок параллельных лучей в зоне расположения объекта, и определении размера объекта по величине тени от объекта на фотоприемнике, отличающийся тем, что измеряют мощность лазерного излучения Р, сравнивают ее с заданным уровнем Р о и по величине (Р о -Р) осуществляют корректировку времени экспозиции фотоприемника.

    2. Устройство для бесконтактного оптического измерения размеров объектов, содержащее источник лазерного луча, средства оптической развертки лазерного луча, фотоприемник, подключенный к первому входу блока обработки информации, и объект, расположенный между средствами оптической развертки лазерного луча и фотоприемником, отличающееся тем, что оно снабжено светоделителем, размещенным между источником оптического излучения и средствами оптической развертки и оптически связанным с фотоприемным пороговым устройством, выход которого подсоединен ко второму входу блока обработки информации.

    3. Устройство по п.2, отличающееся тем, что средства оптической развертки лазерного луча выполнены в виде цилиндрических линз.

    4. Устройство по п.2, отличающееся тем, что светоделитель выполнен в виде полупрозрачной пластины.

    Оптические измерительные приборы чрезвычайно разнообразны. По количеству типов оптических приборов их можно сопоставить с электроизмерительными. На самом деле, очень многие приборы из других видов измерения - из механики, из теплофизики, из физико-химии - в качестве оконечного каскада или в качестве первичного датчика имеют те или иные оптические детали.

    С самого начала следует определить, что в дальнейшем изложении будет считаться оптическим прибором. Вообще оптическим считается метод или прибор, регистрирующий электромагнитное излучение, видимое человеческим глазом, т. е. электромагнитные колебания с длинами волн от 760 нм до 350 нм. Однако развитие науки о свете привело к тому, что под оптическим и задачам и стали понимать измерение в более длинноволновой области -инфракрасное излучение - и в более коротковолновой области -ультрафиолетовое излучение. Соответственно, расширилось число методов и приборов, которые являются прерогативой оптиков. Чтобы убедиться в этом, достаточно вспомнить, что в оптическом приборостроении и в оптических исследованиях последних десятилетий оптическая наука прирастала в основном крайними, т. е. инфракрасной (ИК) и ультрафиолетовой (УФ) областями спектра. Поэтому сейчас под оптическими приборами и методами подразумевают практически все, что «родом» из видимого человеческим глазом электромагнитного излучения.

    Ограничиваясь тематикой и объемом изложения, мы будем полагать, что читатель знаком с основами физической и геометрической оптики. Во всяком случае, здесь нет возможности излагать суть таких явлений, как дифракция, интерференция, поляризация и др., равно как останавливаться на основных законах оптики, например на фотоэффекте, принципах работы лазеров, на законах излучения, на синхротронном излучении и т. д. Для более подробного знакомства с физикой оптических явлений здесь даны ссылки на учебный материал, специально посвященный данному конкретному разделу оптики.

    Прежде чем перейти к конкретному изложению принципов действия оптических приборов, имеет смысл раскатегорировать их по измеряемым физическим величинам или по области применения, что зачастую является одним и тем же. С такой точки зрения оптические измерительные приборы можно разделить на классы, например так, как показано на схеме рис. 8.1.

    Фотометрические оптические приборы - это класс оптики для изменения световых потоков и величин, непосредственно связанных со световыми потоками: освещенности, яркости, светимости и силы света. Фотометры целесообразно разделять на традиционно оптические, измеряемые характеристики в которых имеют чувствительность, соответствующую чувствительности человеческого глаза, и так называемые фотометры энергетических фотометрических величин, т. е. те же характеристики безотносительно к чувствительности глаза человека. Естественно, что в энергетических фотометрах величины выражаются не в люменах, люксах, нитах, а в единицах механических:

    Спектральные оптические приборы - огромный класс оптической техники, для которого общим является разложение электромагнитного излучения в спектр по длинам волн. Существуют спектроскопы - визуальные приборы,монохроматоры - приборы, выделяющие излучения на какой-либо фиксированной длине волны,полихроматоры, выделяющие излучение на нескольких длинах волн,спектрографы - регистрирующие весь спектр монохроматического излучения. Если в приборе кроме разложения излучения в спектр имеется возможность измерения каких-либо энергетических характеристик электромагнитного излучения, то такой прибор называетсяспектрофотометром иликвантометром.

    Интерферометрами называют приборы, в которых основной измеряемой характеристикой является не амплитуда световой волны и связанная с ней энергия, а фаза электромагнитного колебания. Именно такой подход позволил создать самые точные на данный момент средства измерения, реально позволяющие измерять величины с погрешностями в 11-12 знаке. Именно поэтому интерферометры применяются в основном для решения задач, требующих от приборов предельно высокой точности, например, в эталонах, в обслуживании уникальных научных программ, в реализации сверхчувствительных методов анализа состава вещества и т.п.

    Другие классы оптических приборов, представленные на схеме рис. 8.1не так обширны, как фотометры и спектрометры. Тем не менее они выделены вследствие того, что у них определяющим является специфическое физическое явление.

    В поляриметрах используется такое волновое свойство света, как поляризация, т. е. определенная ориентация колебаний электромагнитной волны относительно направления распространения. Многие вещества обладают свойствами изменять направление поляризации. На этом принципе работают не только преобразователи для измерения магнитных величин, но и некоторые приборы для анализа состава веществ и материалов, напримерсахариметры.

    Рефрактометры - приборы для измерения показателя преломления твердых тел, жидкостей и газов. В них используется изменение направления пучка света на границе раздела двух сред. Эти приборы используются в качестве индикаторов в хроматографах, в многочисленных метеорологических приборах специального назначения, в газовом анализе и т. д.

    Гониометры - приборы для угловых измерений - в большинстве своем представляют собой зрительные трубы или лазеры, оптическая ось которых снабжена отсчетным угловым лимбом. Таким прибором можно измерять углы, последовательно наводя оптическую ось на два раздельных объекта. Сюда же можно отнести и оптические дальномеры, использующие измерения углов наблюдения одного и того же объекта двумя зрительными трубами. Гониометры широко применяются в топографии, в военной технике, в геодезических работах.

    Измерительные микроскопы представляют собой приборы для увеличения видимых размеров (или углов наблюдения) различных объектов и измерения размеров увеличенных деталей. В разделе «Механические измерения» рассматривались два типа такой измерительной техники: это измеритель длин ИЗА и микроскоп Линника - прибор для измерения шероховатости поверхностей. Наиболее массовыми приборами такого типа являются обычные микроскопы, снабженныеокуляр-микрометром. Это позволяет оценивать размеры объема при непосредственном наблюдении его через микроскоп. Такими приборами широко пользуются врачи, биологи, ботаники и вообще все специалисты, работающие с небольшими объектами.

    Приборы для измерения собственного теплового излучения тел называются пирометрами (от слова «пиро» - огонь). В этих приборах используются законы излучения нагретых тел - закон Планка, закон Стефана-Больцмана, закон Вина, закон Релея-Джинса. Этот класс приборов рассмотрен нами в разделе о температурных измерениях, где пирометры рассматриваются как средства неконтактного измерения температуры.

    К рычажно-оптическим приборам относятся оптиметры и измерительные пружинно-оптические головки.

    Оптиметры . Оптиметры разделяются на вертикальные (ОВО – с окуляром и ОВЭ с проекционным экраном) и горизонтальные (ОГО и ОГЭ). Последние применяются для измерения как наружных, так и внутренних размеров. Наиболее распространены вертикальные оптиметры (рис. 23,а ) с ценой деления 0,001 мм и погрешностью показаний ±0,0002 мм , применяемые для измерения наружных размеров (концевых мер, калибров-пробок и особо точных изделий).

    Рис. 23. Вертикальный оптиметр(а), принцип действия

    трубки оптиметр (б)

    Основной отсчетной частью прибора является трубка оптиметра, построенная по рычажно-оптической схеме. Принцип действия трубки оптиметра показан на рис. 23, б. Лучи света 1 направляются зеркалом 2 в щель трубки и, преломляясь трехгранной призмой 3 , проходят через шкалу, нанесенную на пластинке 4 . Затем пучок лучей проходит через призму полного отражения 5 и, отразившись от нее под прямым углом, попадает в объектив 6 , а потом на зеркальце 7 . Зеркальце 7 пружиной 8 прижимается к измерительному стержню 9 , а при перемещении измерительного стержня зеркальце поворачивается вокруг оси, проходящей через центр шарика 10 . Угол поворота зеркальца зависит от наклона зеркальца 7 . На рис. 23, б показан ход одного падающего луча (сплошной линией) и отраженного (штрих - пунктирной линией). Угол между этими лучами равен 2 .

    Отраженный пучок лучей объективом превращается в сходящийся пучок лучей, который дает изображение шкалы. Установка трубки прибора по блоку концевых мер заключается в совмещении нулевого штриха шкалы с неподвижным указателем. При перемещении из измерительного стержня на 1 мкм изображение шкалы смещается в поле зрения на 1 деление по отношению к неподвижному указателю.

    Измерительные пружинно-оптический головки . Эти приборы имеют сокращенное название – оптикаторы. В них используется пружинный принцип действия микрокатора, только к завитой спиральной пружине прикреплена не стрелка, а зеркальце, на которое падает луч света и отражается на стеклянную шкалу, где появляется изображение указательного штриха. Выпускаемые пружинно-оптические головки, обозначаемые ОП, имеют присоединительный диаметр 28 мм и предназначены для точных линейных измерений при закреплении в стойках тяжелого тина. Измерительные головки имеют поворот шкалы для точной настройки на размер и указатели поля допуска в виде цветных шторок на пути светового луча (зайчика) окрашивающих его в зеленый или красный цвет. Пружинно-оптические головки выпускаются долемикронные (модели 01П, 02П и 05П) и микронные (П1, П2 и П5) с увеличенным интервалом между делениями шкалы для облегчения отсчета.

    Пневматические длиномеры низкого и высокого давления .

    Работа пневматических измерительных приборов – длиномеров основана на свойстве истечения воздуха с постоянным давлением из небольшого отверстия, называемого соплом. Шкалы пневматических приборов градуируют не в единицах давления, а в линейных единицах (например, в мкм ). Такая градуировка позволяет непосредственно отсчитывать отклонения размеров проверяемых деталей от размера образцовой детали или меры, по которым настроен прибор и определять отклонения от правильной геометрической формы изделий. На заводах применяют два вида приборов: приборы низкого давления, основанные на изменении давления воздуха (рис. 24,а ), и поплавковые (ротаметры), основанные на изменении расхода воздуха (рис. 24,б ).

    Рис. 24. Пневматические длиномеры:

    а – с жидкостным регулятором давления; б – поплавковый прибор;

    в – пробка в отверстии (разрез)

    Приборы низкого давления выпускаются с двумя и большим количеством шкал для одновременного или раздельного измерения двух и более размеров. На рис. 24,а показан прибор с двумя отсечными шкалами и измерительной пробкой с образцовым кольцом для установки прибора на нуль. Пределы измерения можно менять от 0,02 до 0,20 мм , так как они зависят от размеров сопл, которые применяются в приборе. При пределе измерения 0,02 мм предельная погрешность показаний равна 0,0005 мм , а при наибольшем пределе измерения 0,20 мм погрешность соответственно равна 0,005 мм.

    Наиболее распространены поплавковые пневматические длиномеры (рис. 24,б).

    Принцип действия этих приборов основан на изменении расхода воздушного потока в конической стеклянной трубке. Воздух от источника питания с давлением 300-600 кПа (3-6 кгс/см 2 ) проходит через отстойник, фильтр и редукционный стабилизатор 1, выравнивающий давление воздуха, затем поступает в коническую стеклянную трубку 2. рабочее давление воздуха может колебаться от 70 до 200 кПа (от 0,7 до 2 кгс/см 2 ). При настройке прибора добиваются, чтобы металлический легкий поплавок 3 (масса менее 1 г ) находился во взвешенном состоянии на отметке 0 шкалы 4 . при измерении деталей в зависимости от изменения зазора (рис. 24, в ) между выходным соплом и поверхностью измеряемого изделия (см. рис. 24,б ) меняется расход воздуха, а следовательно, и положение поплавка устанавливается относительно отметок шкалы 4. при большом зазоре расход воздуха больше, и поплавок 3 поднимается, при меньшем зазоре расход меньше, и поплавок опускается. Цена деления зависит от градуировки и настройки прибора и может быть равна 1-2 мкм и даже долям микрометра.

    Перед измерением диаметров отверстий с помощью пневматического прибора пробку специальной конструкции вводят в образцовое кольцо и, регулируя подачу воздуха с помощью винта 5, устанавливают поплавок 3 в трубке 2 в нулевое положение. Если размер отверстия проверяемой детали будет отличаться от размера образцового кольца или блока из плиток, поплавок покажет отклонение от размера.

    Повертывая пробку в проверяемом отверстии на 90, 180 и 270° в одном и разных сечениях по оси детали, можно определить отклонения деталей от правильной геометрической формы.

    Пневматические приборы особенно незаменимы при определении диаметров и отклонений формы у отверстий, особенно глубоких и несквозных, а также отверстий небольшого диаметра.

    Калибры

    При массовом выпуске изделий, когда на заводе ежедневно вынуждены измерять детали по одному и тому же размеру, широко применяются инструменты жесткой конструкции – предельные калибры (рис. 25): пробки для контроля отверстий (рис. 25,а,б ) и скобы для контроля валов (рис. 25,в,г ). Калибры не имеют отсчетных устройств для определения размеров, с их помощью можно только установить, выполнен ли действительный размер детали в пределах допуска или нет. Для этого калибры изготавливают по предельным размерам проверяемой детали. Одна сторона пробки (удлиненная) будет иметь номинальный размер и называться проход ной ПР, а другая сторона пробки (укороченная) будет иметь номинальный размер наибольшего отверстия. Эта сторона пробки называется непроходной и обозначается НЕ, она может входить только в деталь, имеющую завышенный размер отверстия. Такие детали бракуются.

    Процесс контроля деталей заключается в простой сортировке их с помощью двух предельных калибров на три группы: годные детали, размер которых находится в пределах допускаемого (ПР проходит; а НЕ не проходит); брак исправимый, когда размер вала больше допустимого, а размер отверстия меньше допустимого (ПР не проходит); брак неисправимый, когда размер у вала занижен, а у отверстия завышен (НЕ проходит).

    Калибры, которыми пользуются рабочие и контролеры ОТК для проверки деталей, называются рабочими калибрами; их типы, размеры и технические условия стандартизованы.

    Рис. 25. Калибры.

    а – двухсторонняя пробка, б – односторонняя пробка, в – двухсторонняя скоба,

    г – предельная регулируемая скоба


    Калибры для отверстий до 50 мм изготавливают в виде полных пробок (рис.25,а ), для отверстий свыше 50 до 100 мм могут применяться как полные пробки, так и неполные (рис. 25,б ), а свыше 100 мм – только неполные. Для больших размеров свыше 360 мм вместо пробок применяют сферические нутромеры.

    Калибры-скобы для валов чаще всего применяют односторонние предельные целые или двусторонние листовые (рис. 25,в ). Для валов с размерами от 100 до 360 мм применяют односторонние предельные скобы со вставными губками (рис. 25,г ). На калибры наносятся следующие обозначения (маркировка): номинальный размер контролируемой детали, обозначение поля допуска детали и класса точности (квалитета), цифровые величины предельных отклонений детали в миллиметрах, обозначение сторон калибра – проходная ПР и непроходная НЕ, товарный знак завода-изготовителя. Для проходных калибров в стандартах предусмотрены допуски на изготовление и износ, а на непроходные - только допуски на изготовление. Стандартные отклонения на изготовление и износ калибров отсчитываются от предельных размеров валов и отверстий; для проходных скоб – от наибольшего предельного размера вала, а для проходных пробок от наименьшего предельного размера отверстия; для непроходных калибров, наоборот – от наименьшего размера вала и наибольшего размера отверстия.

    СТ СЭВ 157-75, «Калибры гладкие для размеров до 500 мм . Допуски», предусматривает особый порядок определения предельных (исполнительных) размеров проходных калибров, Z и Z 1 – это отклонения середины поля допуска на изготовление проходных калибров (Z для отверстия и Z 1 для вала) относительно наименьшего размера отверстия и наибольшего предельного размера вала ; Н и Н 1 – допуски на изготовление проходных и непроходных калибров (для отверстия Н и вала Н 1 ); Y и Y 1 – допустимые выходы изношенного калибра за границу поля допуска (отверстия Y и вала Y 1 ).

    Для калибров с размерами более 180 мм предусмотрены еще величины компенсаций погрешности контроля калибрами, обозначаемые для отверстий и для вала.

    Средства измерения с оптическим и оптико-механическим преобразованием

    Наименование параметра Значение
    Тема статьи: Средства измерения с оптическим и оптико-механическим преобразованием
    Рубрика (тематическая категория) Образование

    Оптико-механические измерительные приборы находят широкое применение в измерительных лабораториях и цехах для измерения калибров, плоскопараллельных концевых мер длины, точных изделий, а также для настройки и проверки средств активного и пассивного контроля. Эти приборы основаны на сочетании оптических схем и механических передач.

    К оптико-механическим измерительным приборам относятся пружинно-оптические измерительные головки (оптикаторы), оптиметры, ультраоптиметры, длиномеры, измерительные машины, интерферометры и др.

    Оптиметр (ГОСТ 5405-75) состоит из измерительной головки 1, называемой трубкой оптиметра, и стоек (вертикальной 2 или горизонтальной 3). Учитывая зависимость отвида стойки оптиметры подразделяют на вертикальные (к примеру, ОВО-1 или ИКВ) и горизонтальные (к примеру, ОГО-1 или ИКГ).

    Вертикальные оптиметры предназначены для измерений наружных размеров деталей, а горизонтальные - для измерения как наружных, так и внутренних размеров.

    В оптической схеме оптиметров использованы принципы автоколлимации и оптического рычага.

    Трубка оптиметра действует следующим образом. Лучи от источника света направляются зеркалом в щель трубки и, преломившись в трехгранной призме , проходят через шкалу, нанесенную на плоскость стеклянной пластины и имеющую 200 делœений. Пройдя через шкалу, луч попадает на призму полного отражения и, отразившись от нее под прямым углом, направляется на объектив и зеркало. Качающееся зеркало пружиной прижимается к измерительному стержню. При перемещении измерительного стержня, опирающегося на измеряемую деталь, зеркало поворачивается на угол вокруг оси, проходящей через центр опорного шарика, что вызывает отклонение отраженных от зеркала лучей на угол, в 2 раза больший первоначального. Рассеянный отраженный пучок лучей объективом превращается в сходящийся пучок, который дает изображение шкалы. При этом шкала смещается в вертикальном направлении относительно неподвижного указателя на некоторую величину, пропорциональную измеряемому размеру. Контролер наблюдает изображение шкалы в окуляр, как правило, одним глазом, отчего сильно утомляется. Для удобства отсчета на окуляр надевают специальную проекционную насадку, на экране которой можно наблюдать изображение шкалы обоими глазами.

    Рис. 14. Оптиметр

    Оптические измерительные приборы нашли применение в измерительных лабораториях для абсолютных и относительных измерений бесконтактным методом деталей сложного профиля (резьб, шаблонов, кулачков, фасонных режущих инструментов), для точных измерений длин, углов, радиусов. Эти приборы построены на оптических схемах. Наиболее распространенными из них являются: микроскопы (инструментальный, универсальный, проекционный), проекторы, оптические длиномеры и угломеры, делительные головки, столы и др.

    Инструментальные и универсальные микроскопы предназначены для абсолютных измерений углов и длин различных деталей в прямоугольных и полярных координатах. В соответствии с ГОСТ 8074-82 выпускают микроскопы с микрометрическими измерителями типов: типа А - без наклона головки и типа Б - с наклоном головки. У микроскопов ИМ 100х50, А и ИМ 150х50, Б предусмотрена возможность отсчета показаний по шкалам микрометрических головок и применения концевых мер длины, тогда как микроскопы ИМЦ 100х500, А; ИМЦ 150х50, А; ИМЦ 150х50, Б; ИМЦЛ 160х80, Б оснащены цифровым отсчетным устройством.

    Универсальные измерительные микроскопы (ГОСТ 14968-69) отличаются от инструментальных большим диапазоном измерений и повышенной точностью. В них вместо микрометрических измерителœей применены миллиметровые шкалы с отсчетными спиральными микроскопами.

    Несмотря на конструктивные различия инструментальных и универсальных микроскопов, принципиальная схема измерения у них общая - визирование различных точек контролируемой детали, перемещаемых для этого по взаимно перпендикулярным направлениям, и измерение этих перемещений посредством отсчетных устройств. Для обеспечения хорошего визирования микроскопы снабжают сменными объективами различной степени увеличения.

    В качестве примера рассмотрим конструкцию и принцип измерения микроскопа ММИ (рис. 15). Измеряемая деталь АБ рассматривается через объектив ОБ микроскопа. Изображение детали А1Б1 получается действительным, обратным и увеличенным.

    Глаз наблюдателя через окуляр ОК видит мнимое, обратное и еще раз увеличенное окуляром изображение детали А2Б2.

    Рис. 15. Инструментальный микроскоп ММИ

    На массивном чугунном основании 1 в двух взаимно перпендикулярных направлениях на шариковых направляющих с помощью микрометрических винтов 2, 1 4 перемещается измерительный стол 3 с направляющими 4. Важно заметить, что для снятия отсчета величины перемещения стола на гильзе, скрепленной с метрической гайкой, имеется миллиметровая шкала I , а на барабане, связанном с микрометрическим винтом, - круговая шкала II со 100 делœениями (на рисунке показание микрометра равно 29,025). Объектив 5 с тубусом установлен на кронштейне 7, который перемещается в вертикальном направлении по стойке 11. У микроскопов типа Б стойка с помощью маховика 13 может наклоняться в обе стороны, что позволяет установить микроскоп, под углом, равным углу подъема измеряемой резьбы. Маховик 6, перемещающий кронштейн 7, служит для фокусировки микроскопа, причем установленное положение фиксируется винтом 12. Для точного фокусирования микроскопа вращают рифленое кольцо 8, при этом тубус смещается по цилиндрическим направляющим кронштейна. К верхней части тубуса крепится сменная угломерная окулярная головка с визирным 10 и отсчетным 9 микроскопами.

    Оптические линœейки (ГОСТ 24703-81) предназначены для определœения отклонений от прямолинœейности и плоскостности поверочных линœеек, плит, а также направляющих поверхностей станков, образующих валов.

    Принципиальная схема оптической линœейки представлена на рис. 16.

    Прибор основан на измерении отклонений точек контролируемой поверхности от воображаемой прямой - оптической оси. Линœейка 5 (тонкостенная труба с оптической системой) устанавливается на двух опорах 4. Она имеет сквозной шлиц, вдоль которого перемещается измерительная каретка 3 с щупом 2, касающимся контролируемой поверхности. Для определœения отклонений точек поверхности крайне важно совмещать видимые на экране визирный штрих 7 и бифиляр б и снимать отсчеты по барабану микрометра 1. Оптические линœейки могут иметь регистрирующее устройство в виде профилографа, позволяющего графически воспроизводить на бумаге профиль контролируемой поверхности.

    Рис. 16. Оптическая линœейка.

    Средства измерения с оптическим и оптико-механическим преобразованием - понятие и виды. Классификация и особенности категории "Средства измерения с оптическим и оптико-механическим преобразованием" 2017, 2018.