Скорость движения жидкости в самотечной. Гидравлический расчет самотечных трубопроводов. Расчитаем пропускную способность трубы с помощью онлайн калькулятора

К безнапорным (самотечным) трубопроводам относятся канали­зационные трубы, водосточные каналы (ливнеспуски), самотечные нефтепроводные и водопроводные трубы и т.д.

Наиболее распространенными формами сечений безнапорных трубопроводов являются: круглое (рис.5), овоидальное (рис.5) и лотковое (рис.5). Эти сечения характеризуются интересной гидравлической особенностью: наибольший расход и наибольшая скорость в них имеют место не при полном, а лишь при частичном наполнении.

Объясняется это тем, что при заполнении верхней части подобных сечений смоченный периметр растет быстрее, чем площадь, и поэтому начинает уменьшаться гидравлический радиус, что приводит одновременно к уменьшению скорости и расхода.

Гидравлические расчеты безнапорных трубопроводов выполняются аналогично расчетам открытых каналов, что естественно, поскольку безнапорный трубопровод представляет собой по существу также открытый канал; отличием трубопроводов от каналов в гидравлическом смысле является только отмеченное выше уменьшение гидравлического радиуса трубопроводов при заполнении его верхней части, в то время как гидравлический радиус каналом все время возрастает с увеличением наполнения.

Рис.6 Рис.7

Для упрощения расчетов значения характеристик трубопроводом (площади сечения, гидравлического радиуса и величин и зависящие от глубины наполнения, могут быть вычислены для определенных форм сечения заранее.

Если обозначить через W 0 и значения модуля скорости и модуля расхода при полном наполнении h 0 трубопровода, а теми же буквами без индекса –их значения при некотором частичном наполнении h, можно вычислить значения отношений

в зависимости от ; получающиеся при этом зависимости для трубопроводов круглого, оваидального и лоткового сечений представлены в виде графиков на рис.6, 7, 8. Пользуясь этими графиками, значения скорости и расхода Q при частичном наполнении можно находить по формулам

8.5. Безнапорное движение при ламинарном режиме

На практике, например при сливе весьма вязких нефтей и нефтепродуктов и их течении в открытых лотках и самотечных трубах, при решении некоторых задач в области химического и нефтезаводского аппаратостроения, иногда приходится встречаться с ламинарным безнапорным движением жидкости.

В этом случае оказывается возможным определить теоретическим путем потери напора (подобно тому, как при ламинарном движении в напорных трубах) и получать расчетные зависимости для расхода. Не приводя здесь соответствующих решений, математически обычно весьма сложных и громоздких, ограничимся лишь сводкой некоторых расчетных формул для каналов наиболее часто применяемых форм поперечных сечении. По И.А.Чарному, для канала прямоугольного сечения при глубине потока h и ширине b расход жидкости может быть подсчитан по формуле


где i –уклон дна канала; g –ускорение силы тяжести; v –кинематическая вязкость жидкости.

Если глубина потока весьма мала по сравнению с шириной, то

Для канала трапецеидальной формы гидравлически наивыгоднейшего сечения с углом

Для полукруглого канала

Задачи по гидравлическому расчету водоотводящих труб возникают как при проектировании, так и при строительстве и эксплуатации водоотводящих сетей. Основными случаями расчета водоотводящей сети при равномерном установившемся движении сточных вод являются следующие:

а) заданы диаметр, уклон и наполнение труб; требуется определить расход (пропускную способность) и скорость движения сточных вод;

б) заданы диаметр и наполнение труб, а также скорость движения сточных вод; требуется определить расход (пропускную способность) и уклон труб;

в) задан расход и требуется определить диаметр и уклон труб при скорости течения и наполнении, соответствующих требованиям ТКП 45-4.01-56–2012.

Последний вариант гидравлического расчета является наиболее распространенным в практике проектирования, но требует сопоставления стоимости труб и их прокладки, поскольку при уменьшении диаметров увеличивается объем земляных работ, так как для сохранения при этом пропускной способности надо увеличить скорость, следовательно, и уклон труб. Затем по заданному расходу устанавливаются наполнение и скорость движения сточных вод. Если при этом наполнение равно или близко к требуемому значению по ТКП 45-4.01-56–2012, то диаметр участка может считаться принятым. Если наполнение значительно отличается от максимально допускаемых значений, то диаметр при заниженном наполнении велик, а при завышенном наполнении мал. При завышенном наполнении труб можно или увеличить уклон, сохраняя диаметр, или увеличить диаметр, проведя технико-экономическое сравнение вариантов этого проектного решения. Одновременно производится проверка соответствия величин скоростей условиям незаиливаемости труб.

Необходимо иметь в виду, что увеличение уклона уменьшает наполнение труб при постоянном расходе, но увеличивает скорости, а уменьшение уклона увеличивает наполнение, но уменьшает скорости. Во всех случаях наполнение труб должно быть по возможности близким к допускаемому значению по ТКП 45-4.01-56–2012, а принимаемые уклоны – обеспечивать минимально возможные заглубления труб, минимально возможное количество перекачек и незаиливающие скорости.

Бытовая водоотводящая сеть рассчитывается на неполное заполнение труб. Это делается для того, чтобы обеспечить транспортирование плавающих веществ, удаление из сети вредных и взрывоопасных газов, а также для получения некоторого запаса в сечении труб, рассчитанного на неравномерное поступление сточных вод. Отношение высоты слоя воды (h) к диаметру трубы (d) называют ее наполнением. Частичное наполнение, соответствующее пропуску расчетного расхода, называется расчетным. Наполнение труб при самотечном режиме их работы нормируется ТКП 45-4.01-56–2012.



Расчетное наполнение трубопроводов в зависимости от диаметров труб должно приниматься не более:

Если наполнение труб диаметром 150–200 мм получается меньше расчетного, то участки таких трубопроводов не рассчитывают и скорость движения сточных вод в них не определяется.

Расчетное наполнение трубопроводов и каналов с поперечным сечением любой формы надлежит принимать не более 0,7 высоты, а каналов прямоугольного поперечного сечения – не более 0,75 высоты. Для трубопроводов дождевой сети и общесплавных коллекторов полураздельной системы водоотведения следует принимать полное расчетное наполнение.

Расчет водоотводящей сети выполняют, исходя из средней скорости. Средняя скорость потока получается как частное от деления расхода (q) на площадь живого сечения (w). Под самоочищающей скоростью при максимальном расчетном расходе понимают такую минимальную среднюю скорость потока, при которой взвешенные частицы из потока не выпадают. При расчетах водоотводящей сети назначают такую скорость потока, которая при расчетном наполнении будет не меньше, чем минимальная самоочичающая. При расчетном наполнении труб следует принимать следующие скорости движения потока (м/с) для труб с диаметром:

Для бытовых сточных вод с крупностью взвеси в 1 мм минимально допустимая скорость течения, при которой трубы не заиливаются, может определяться по формуле, предложенной Н. Ф. Федоровым:



где ν min – незаиливающая скорость, м/с;

R – гидравличиский радиус, м;

n = 0,35 + 0,5R – показатель степени корня.

Наименьшую расчетную скорость движения осветленных или биологически очищенных сточных вод в открытых лотках и самотечных трубопроводах допускается принимать 0,4 м/с.

Максимальная расчетная скорость движения сточных вод не должна быть опасной для механической прочности труб, по которым транспортируются вместе со сточными водами твердые вещества (галька, песок, обломки металла и т. д.). В соответствии с требованиями ТКП 45-4.01-56–2012 максимальная расчетная скорость движения сточных вод в металлических трубах должна быть не более 8 м/с, а в неметаллических – 4 м/с. Для дождевой сети – соответственно 10 и 7 м/с.

При расчетном наполнении для всех систем водоотведения в соответствии с ТКП 45-4.01-56–2012 рекомендуется принимать следующие наименьшие уклоны:

В зависимости от местных условий при неблагоприятном рельефе местности для отдельных коллекторов и участков уличной сети для труб диаметром 200 мм допускается уклон 0,005.

Наименьшие уклоны труб бытовой водоотводящей сети принимаются для труб диаметром: 150 мм – 0,008; 200 мм – 0,005; 250 мм и более – определяются гидравлическим расчетом в зависимости от допускаемых минимальных скоростей.

Уклоны менее 0,0005 не допускаются в связи с усилением засоряемости сетей и, следовательно, удорожанием эксплуатации их, а также в связи с трудностями выдерживания такого уклона при строительстве сетей.

Наименьшим уклоном называется уклон, обеспечивающий при расчетном заполнении незаиливающую скорость. Если наполнение труб диаметром 150 и 200 мм на отдельных участках, уложенных с нормативным уклоном, получается меньше расчетного, то такие участки считаются безрасчетными и скорости течения в них не определяются, а уклоны принимаются соответственно 0,008 и 0,005. Для ориентировочного назначения наименьшего уклона иногда используют формулу

(4.5)

Важнейшим этапом проектирования водоотводящей сети является гидравлический расчет, в итоге которого строится продольный профиль коллекторов. Продольный профиль представляет собой вертикальный разрез – разверстку верхнего слоя земли с запроектированным трубопроводом в направлении движения воды. Гидравлический расчет начинают с диктующих точек – начальных, низкорасположенных и наиболее удаленных точек схемы водоотведения. При построении продольного профиля от диктующих точек заглубление трубопровода получается наибольшим. Поэтому обеспечивается самотечное присоединение других более благоприятно расположенных всех боковых веток трубопроводов к проектируемому коллектору. Участок от диктующей точки до коллектора принято называть диктующей веткой. При построении продольного профиля трубопровода решается вопрос о соединении труб по высоте. В инженерной практике применяются два способа соединения труб в расчетной точке: «шелыга в шелыгу» и «по уровням воды». Опыт эксплуатации показывает, что для объектов водоотведения, имеющих равнинный характер со слабо выраженным рельефом местности, предпочтительны соединения труб одинакового диаметра «по уровням воды», а разного диаметра – «шелыга в шелыгу».

Скорость движения воды в самотечных трубах принимается не менее скорости течения воды в реке.

Принимают стандартные диаметры труб, округляя полученные расчетом в меньшую сторону. По принятому диаметру уточняют действительную скорость в самотечной трубе, и она должна быть больше расчетной. Затем эту скорость проверяют при уровне высоких вод, т.е. паводок, когда для обеспечения наименьшего заиления полный расход пропускается по одной линии.

Принятый диаметр самотечных трубопроводов D (в м ) должен быть проверен на незаиляемость транспортируемыми по трубе мелкими наносами в количестве ρ (в кг/м 3 ), имеющими средневзвешенную гидравлическую крупность ω, м/сек , по формуле (6) и на подвижности захватываемых в трубу и влекомых по дну наносов крупностью d, м , по формуле (7)

(6)

где V – скорость течения воды в самотечных линиях, м/сек;

u – скорость выпадения частиц взвеси в потоке; u≈0,07∙V м/сек ;

D – диаметр самотечных линий, м ;

А – параметр, принимаемый равным 7,5-10;

d – диаметр частиц, м .

Диаметр самотечных линий водозабора должен обеспечивать возможность гидравлического удаления отложившихся в них наносов.

Сифонные трубы допускается применять в водозаборах II и III категории. Эти трубы, как было ранее отмечено, выполняются из стальных труб на сварке, количество их принимается не менее двух.

Диаметр сифонных труб определяется по расходу при нормальном режиме работы водозабора и по скорости движения воды в них 0,7-1,2 м/сек .

Наибольшая величина вакуума должна создаваться в верхней точке сифона, в которой устанавливается воздухосборник, соединенный с вакуум-насосом. Допускаемая высота сифона, равная разности отметок его верхней точки и уровня низких вод (УНВ), определяется при аварийном режиме по формуле:

где – допускаемый вакуум в высшей точке сифона, принимается 0,6-0,7 мПа ;

– потери напора по длине сифона от точки приема до воздухосборника, м ;

∑ξ – сумма коэффициентов местных сопротивлений в сифоне;

V – скорость движения воды в сифонном водоводе при аварийном режиме, м/сек ;

h в – потери напора в восходящей ветви сифона, м .

Общая потеря напора в сифонной линии и водоприемнике:

h=h в +һ н +һ реш, м (9)

где h н – потери напора по длине и местные сопротивления сифона, м ;

h реш – потери напора в решетке, м .

Потери напора в решетках 0,03-0,06м .

Расчет производится для условий нормального и аварийного режима работы водозабора.

Сточные воды в канализационной сети должны двигаться с такой скоростью, чтобы из них на трассе не осаждалось твёрдое содержимое. В противном случае оно со временем неизбежно приведёт к заиливанию элементов транспортирования - трубопроводов или лотков.

Но существует и верхний предел скорости потока. Твёрдые частицы в воде, движущейся с большой скоростью, повышают механическое истирание поверхности коллекторов.

Расчётные скорости

Максимальная расчётная скорость - это предельная скорость течения сточных вод в каналах и трубах, при которой материалу коллекторов не наносятся механические повреждения.

Минимальная расчётная скорость (критическая) - наименьшая скорость течения, потребная для предотвращения заиливания труб и коллекторов.

Средняя скорость сточных вод - отношение расхода Q сточных вод в линии к величине её живого сечения ω:

v = Q/ω м/сек.

Скорости течения в различных местах поперечного сечения потока на самом деле неодинаковы. Чем ближе к середине (ядру) потока, тем они больше, чем у дна и стенок. Донная и пристеночная скорости минимальны. Рассчитывать канализационную сеть на донные и пристеночные скорости невозможно из-за высокой сложности таких расчётов. Поэтому базовой величиной, из которой исходят при проектировании, является транспортирующая способность потока. Она определяется через расчётную скорость течения. Главный критерий определения этой скорости - обеспечение самоочищения коллекторов и труб.

Для линий с самотёком нужная скорость обеспечивается правильной величиной уклона. Там, где уклон невозможен, используются канализационные насосы соответствующей мощности.

Расчётная скорость - это скорость протекания сточных вод при расчётных (максимальных) величинах расхода и, соответственно, наполнения. Расчётные скорости должны находиться между предельно допустимыми её величинами в канале - максимальной и минимальной.

За максимальную расчётную скорость движения сточных вод по нормам следует принимать для

  • металлических труб - не более 8 м/сек;
  • неметаллических (железобетонных, бетонных, асбестоцементных, керамических и прочих) - до 4 м/сек.

На величину расчётных самоочищающих каналы и трубы скоростей движения стоков влияют такие параметры как гидравлический радиус или степень наполнения и крупность взвешенных веществ, имеющихся в сточных водах.

Минимальная расчётная скорость течения в трубопроводах не прошедших очистки бытовых и дождевых сточных вод при расчётной величине наполнения указана в соответствующих СНиП.

Если наполнение труб канализационной сети не является расчётным, то скорость их самоочищения vн (индекс «н» означает «незаиливающая») вычисляется по формуле, предложенной профессором Н. Ф. Федоровым:

  • R — гидравлический радиус в м;
  • n - показатель степени корня (3,5 + 0,5R).

Наименьшая расчётная скорость в лотках и трубах для сточных вод осветлённых или очищенных биологическими способами может приниматься равной 0,4 м/сек.

В дюкерах с диаметрами до 800 мм в качестве нижнего предела расчётных скоростей для неосветлённых сточных вод принимается величина 1 м/сек. Для диаметров больше 80 см vн определяется также по формуле Фёдорова.

Сточные воды должны подходить к дюкеру со скоростью не выше расчётной скорости в самом дюкере. При этом нужно соблюдать минимальные величины, которые были указаны выше или вычислены по формуле Фёдорова.

Для того, чтобы коллекторы самоочищались, скорость по пути потока должна постоянно увеличиваться. Необходимые величины скорости задаются уклонами трубопроводов. Минимальные значения уклонов для любых систем канализации при расчётном их наполнении труб с диаметрами:

  • 150 мм - 0,007;
  • 200 мм - 0,005;
  • 1250 мм и выше - 0,0005.

Нагрузка начальных отрезков сети канализации с трубопроводами 200 мм и менее практически никогда не достигает расчётной. Поэтому скорость в них не вычисляется, и они называются безрасчётными.

Для канализационных же трубопроводов с диаметром больше 200 мм нужные минимальные уклоны необходимо рассчитывать с учётом обеспечения скорости течения, гарантирующей самоочищение коллектора. Вполне удовлетворительные результаты даёт для этого простейшая эмпирическая формула:

Здесь диаметр трубы d берётся в мм.

Диаметры самотечных и всасывающих трубопроводов определяют по рас­четному расходу при нормальном режиме работы водозабора и скорости дви­жения воды в трубах определяется по формуле (16):

где
- расчетный расход одной секции;

- допустимая расчетная скорость в трубопроводе (1табл. 2.2, 2.3).

Скорости в самотечных трубах должны быть проверены:

а) на незаиляемость транспортируемых по трубе диаметром D (м) мелкими наносами в количестве  (кг/м 3), имеющими средневзвешенную гидравлическую крупность  (м/с). (табл. 9):

, м/с, (17)

где
;

с - коэффициент Шези.

Незаиливающую скорость
можно также определить по формуле (18):

(18)

где = 8g/c 2 - коэффициент гидравлического трения.

Для частиц взвеси крупностью d = 1 мм с гидравлической крупностью

= 0,094 м/с значения следующие:

, м/с

б) на подвижность попадающих в водовод влекомых наносов крупностью мм:

, м/с (19)

1.7 Выбор способа и расчет системы промыва элементов

Хотя скорость в самотечных водоводах назначают больше незаиливающей, полностью исключить осаждение взвеси невозможно, поэтому пре­дусматрива­ется промыв трубопроводов.

Для обеспечения требуемой промывной скорости
необходимы расходы (
), превышающие нормальную работу самотечной линии. Для ряжевых фильтрующих водоприемников
для фильтров с приемом воды снизу вверх
для отверстий, расположенных в вертикальной плоскости и огражденных сороудерживающими решетками
для фильтрующих рыбозаградительных кассет, установленных в вертикальной плоскости
Промывка самотечной линии может быть прямой – при движении промывной воды от оголовка к ко­лодцу, обратной – движение промывной воды от колодца к оголовку и импульсной.

Для прямой промывки необходимо увеличить скорость движения воды в промывочных трубах уменьшением на время промывки число работающих са­мотечных линий. При выключении одной из двух линий и заборе того же коли­чества воды, которое забиралось до промывки, но через 1 самотечную линию, скорость промыва в трубе увеличивается в 2 раза; при выключении одной из трех самотечных труб скорости в двух промывочных трубопроводах увеличи­вается в 1,5 раза. При прямой промывке на время закрытия одной из линий ме­жду водоисточником и береговым колодцем создается определенный перепад уровней воды. Затем задвижка этой линии быстро открывается, и вода по ней с большей скоростью устремляется в береговой колодец, вынося из него все от­ложения, которые затем удаляются гидроэлеватором. Такой способ промывки осуществляется при больших уровнях водоисточника.

При обратной промывке самотечные линии соединяются промывными ли­ниями с напорными трубопроводами НС I. Линии 350 ÷ 600 мм и более 600 мм промываются водовоздушным или импульсным способом. Для этого в колодце на выходе из самотечной линии устанавливают герметически закрывающийся затвор. Перед ним подключают к линии напорную колонну высотой 6 ÷ 8 м и диаметром в 1,5 ÷ 3 раза больше диаметра промывной линии. Вверху в колонне с помощью патрубка подключают вакуум насос для создания в ней разряжения. Если в самотечной линии в период промывки закрыть затвор и создать в напор­ной колонне вакуум, вода поднимется в ней в соответствии степени разряжения уровня. При срыве вакуума в колонне находящаяся в ней вода устремляется в самотечную линию и образовавшимся током промывает отверстия оголовка. Промыв повторяют несколько раз и осуществляют в период низкого уровня воды в источнике. При расходах воды на промывку более 5%
применяют обратную водовоздушную промывку или импульсную, сжатым воздухом.