Методы получения дисперсных систем дисперсные системы. Способы получения дисперсных систем Конденсационные методы получения дисперсных систем

Два метода получения дисперсных систем – диспергирование и конденсация

Диспергирование и конденсация – методы получения свободнодисперсных систем: порошков, суспензий, золей, эмульсий и т. Д. Под диспергированием понимают дробление и измельчение вещества, под конденсацией – образование гетерогенной дисперсной системы из гомогенной в результате ассоциации молекул, атомов или ионов в агрегаты.

В мировом производстве различных веществ и материалов процессы диспергирования и конденсации занимают одно из ведущих мест. Миллиарды тонн сырья и продуктов получают в свободнодисперсном состоянии. Это обеспечивает удобство их транспортирования и дозировки, а также дает возможность получать однородные материалы при составлении смесей.

В качестве примеров можно привести дробление и измельчение руд, каменного угля, производство цемента. Диспергирование происходит при сжигании жидкого топлива.

Конденсация происходит при образовании тумана, при кристаллизации.

Необходимо отметить, что при диспергировании и конденсации образование дисперсных систем сопровождается возникновением новой поверхности, т. Е. увеличением удельной площади поверхности веществ и материалов иногда в тысячи и более раз. Поэтому получение дисперсных систем, за некоторым исключением, требует затрат энергии.

При дроблении и измельчении материалы разрушаются в первую очередь в местах прочностных дефектов (макро- и микротрещин). Поэтому по мере измельчения прочность частиц возрастает, что ведет к увеличению расхода энергии на их дальнейшее диспергирование.

Разрушение материалов может быть облегчено при использовании эффекта Ребиндера адсорбционного понижения порочности твердых тел. Этот эффект заключается в уменьшении поверхностной энергии с помощью поверхностно-активных веществ, в результате чего облегчается деформирование и разрушение твердого тела. В качестве таких поверхностно-активных веществ, называемых в данном случае понизителями твердости, могут быть использованы, например, жидкие металлы для разрушения твердых металлов или типичные ПАВ.

Для понизителей твердости характерны малые количества, вызывающие эффект Ребиндера, и специфичность действия. Добавки, смачивающие материал, помогают проникнуть среде в места дефектов и с помощью капиллярных сил также облегчают разрушение твердого тела. Поверхностно-активные вещества не только способствуют разрушению материала, но и стабилизируют дисперсное состояние, препятствуя слипанию частиц.

Системы с максимальной степенью дисперсности могут быть получены только с помощью конденсационных методов.

Коллоидные растворы можно получать также и методом химической конденсации , основанном на проведении химических реакций, сопровождающихся образованием нерастворимых или малорастворимых веществ. Для этой цели используются различные типы реакций – разложения, гидролиза, окислительно-восстановительные и т.д.

Очистка дисперсных систем.

Золи и растворы высокомолекулярных соединений (ВМС) содержат в виде нежелательных примесей низкомолекулярные соединения. Их удаляют следующими методами.

Диализ. Диализ был исторически первым методом очистки. Его предложил Т. Грэм (1861). Схема простейшего диализатора показана на рис. 3 (смотри приложение). Очищаемый золь, или раствор ВМС, заливают в сосуд, дном которого служит мембрана, задерживающая коллоидные частицы или макромолекулы и пропускающая молекулы растворителя и низкомолекулярные примеси. Внешней средой, контактирующей с мембраной, является растворитель. Низкомолекулярные примеси, концентрация которых в золе или макромолекулярном растворе выше, переходят сквозь мембрану во внешнюю среду (диализат). На рисунке направление потока низкомолекулярных примесей показано стрелками. Очистка идет до тех пор, пока концентрации примесей в золе и диализате не станут близкими по величине (точнее, пока не выравняются химические потенциалы в золе и диализате). Если обновлять растворитель, то можно практически полностью избавиться от примесей. Такое использование диализа целесообразно, когда цель очистки – удаление всех низкомолекулярных веществ, проходящих сквозь мембрану. Однако в ряде случаев задача может оказаться сложнее – необходимо освободиться только от определенной части низкомолекулярных соединений в системе. Тогда в качестве внешней среды применяют раствор тех веществ, которые необходимо сохранить в системе. Именно такая задача ставится при очистке крови от низкомолекулярных шлаков и токсинов (солей, мочевины и т.п.).

Ультрафильтрация. Ультрафильтрация – метод очистки путем продавливания дисперсионной среды вместе с низкомолекулярными примесями через ультрафильтры. Ультрафильтрами служат мембраны того же типа, что и для диализа.

Простейшая установка для очистки ультрафильтрацией показана на рис. 4 (смотри приложение). В мешочек из ультрафильтра наливают очищаемый золь или раствор ВМС. К золю прилагают избыточное по сравнению с атмосферным давление. Его можно создать либо с помощью внешнего источника (баллон со сжатым воздухом, компрессор и т. П.), либо большим столбом жидкости. Дисперсионную среду обновляют, добавляя к золю чистый растворитель. Чтобы скорость очистки была достаточно высокой, обновление проводят по возможности быстро. Это достигается применением значительных избыточных давлений. Чтобы мембрана могла выдержать такие нагрузки, ее наносят на механическую опору. Такой опорой служат сетки и пластинки с отверстиями, стеклянные и керамические фильтры.

Микрофильтрация . Микрофильтрацией называется отделение с помощью фильтров микрочастиц размером от 0,1 до 10 мкм. Производительность микрофильтрата определяется пористостью и толщиной мембраны. Для оценки пористости, т. Е. отношения площади пор к общей площади фильтра, используют разнообразные методы: продавливание жидкостей и газов, измерение электрической проводимости мембран, продавливание систем, содержащих калиброванные частицы дисперсионной фазы, и пр.

Микропористые фильтры изготовляют из неорганических веществ и полимеров. Спеканием порошков можно получить мембраны из фарфора, металлов и сплавов. Полимерные мембраны для микрофильтрования чаще всего изготовляют из целлюлозы и ее производных.

Электродиализ. Очистку от электролитов можно ускорить, применяя налагаемую извне разность потенциалов. Такой метод очистки называется электродиализом. Его использование для очистки различных систем с биологическими объектами (растворы белков, сыворотка крови и пр.) началось в результате успешных работ Доре (1910). Устройство простейшего электродиализатора показано на рис. 5(смотри приложение). Очищаемый объект (золь, раствор ВМС) помещают в среднюю камеру 1, а в две боковые камеры наливают среду. В катодную 3 и анодную 5 камеры ионы проходят сквозь поры в мембранах под действием приложенного электрического напряжения.

Электродиализом наиболее целесообразно очищать тогда, когда можно применять высокие электрические напряжения. В большинстве случаев на начальной стадии очистки системы содержат много растворенных солей, и их электрическая проводимость высока. Поэтому при высоком напряжении может выделяться значительное количество теплоты, и в системах с белками или другими биологическими компонентами могут произойти необратимые изменения. Следовательно, электродиализ рационально использовать как завершающий метод очистки, применив предварительно диализ.

Комбинированные методы очистки. Помимо индивидуальных методов очистки – ультрафильтрации и электродиализа – известна их комбинация: электроультрафильтрация, применяемая для очистки и разделения белков.

Очистить и одновременно повысить концентрацию золя или раствора ВМС можно с помощью метода, называемого электродекантацией. Метод предложен В. Паули. Электродекантация происходит при работе электродиализатора без перемешивания. Частицы золя или макромолекулы обладают собственным зарядом и под действием электрического поля перемещаются в направлении одного из электродов. Так как они не могут пройти через мембрану, то их концентрация у одной из мембран возрастает. Как правило, плотность частиц отличается от плотности среды. Поэтому в месте концентрирования золя плотность системы отличается от среднего значения (обычно с ростом концентрации растет плотность). Концентрированный золь стекает на дно электродиализатора, и в камере возникает циркуляция, продолжающаяся до практически полного удаления частиц.

Коллоидные растворы и, в частности, растворы лиофобных коллоидов, очищенные и стабилизированные могут, несмотря на термодинамическую неустойчивость, существовать неопределенно долгое время. Растворы красного золя золота, приготовленные Фарадеем, до сих пор не подверглись никаким видимым изменениям. Эти данные позволяют считать, что коллоидные системы могут находиться в метастабильном равновесии.

Кандидат химических наук, доцент

Тема 1. Поверхностные явления и адсорбция

Занятие 1. Введение. Классификация и методы получения

дисперсных систем

Л е к ц и я

Саратов – 2010

Введение

1. Введение. Предмет и задачи коллоидной химии .

2. Классификация дисперсных систем.

3. Методы получения дисперсных систем

3. Свободная поверхностная энергия и поверхностное натяжение.

Заключение

ЛИТЕРАТУРА

1. Фролов коллоидной химии. – М.: Химия, 1989. – С. 10-20, 115-127.

2. Гельфман М., Ковалевич О., Юстратов В. Коллоидная химия. – СПб.: «Лань», 2003. – С. 6-15.

НАГЛЯДНЫЕ ПОСОБИЯ И ПРИЛОЖЕНИЯ

1. Слайды № 1,2,3,4:

Классификация дисперсных систем

Методы получения дисперсных систем

Удельная поверхность

Коэффициенты поверхностного натяжения

ВВЕДЕНИЕ

Дисциплина «Поверхностные явления и адсорбция» раннее называлась «Коллоидная химия». Коллоидную химию изучают после прохождения других химических наук (неорганическая, аналитическая, физическая, органическая химия), и это неслучайно.

Имея в качестве объектов исследования в основном реальные вещества и материалы, коллоидная химия завершает общехимическое образование. В то же время она является пограничной областью знаний, которая объединяет физическую химию и физику поверхностных явлений и дисперсных систем и рассматривает многие природные процессы, которым раньше не уделяли внимания. Поэтому коллоидная химия играет важную роль в научно-техническом прогрессе. Практически невозможно назвать отрасль промышленности, в которой не было бы коллоидно-химических процессов (пищевая промышленность , производство искусственного шелка, крашение тканей, кожевенная промышленность, сельское хозяйство , почвоведение, медицина, военная химия и др.).

1. ВВЕДЕНИЕ. ПРЕДМЕТ И ЗАДАЧИ КОЛЛОИДНОЙ ХИМИИ

Задача коллоидной химии – изучение гетерогенных систем с сильно развитой поверхностью раздела фаз. Такие системы называют дисперсными .

Одна из фаз дисперсной системы обычно сильно измельчена и называется дисперсной фазой . Дисперсная фаза в дисперсной системе распределена в объеме сплошной фазы, называемой дисперсионной средой . Число дисперсных фаз в дисперсной системе может быть в общем случае неограниченным.

Основоположником коллоидной химии по праву считается английский химик Томас Грэм (г. г.), впервые давший общие представления о дисперсных системах и разработавший некоторые методы их исследования (1861 г.). Изучая диффузию веществ в растворах, Грэм отметил медленное протекание диффузии частиц коллоидных растворов и их неспособность проникать через мембраны в отличие от молекул обычных растворов. Сопоставляя обычные растворы с коллоидными (золями), Грэм пришел к выводу о необходимости разделения веществ на «кристаллоиды» и «коллоиды».

В начале XX века профессор Санкт-Петербургского горного института показал, что не существует «особого вида коллоидов» и что одно и то же вещество в зависимости от условий, растворения может быть как «кристаллоидом», так и «коллоидом». Таким образом, установилось представление о коллоидном состоянии вещества, которое Веймарн считал всеобщим состоянием материи.

Дисперсные системы – наиболее типичные и вместе с тем сложные объекты коллоидной химии, потому что в них проявляется все многообразие поверхностных явлений, формирующих особые объемные свойства этих систем.

Дисперсными системами являются большинство окружающих нас реальных тел, поэтому есть основания называть науку о поверхностных явлениях и дисперсных системах физикой и химией реальных тел. Практически все тела окружающего нас мира являются дисперсными. Это - поликристаллические, волокнистые, слоистые, пористые, сыпучие и другие вещества, состоящие из наполнителя и связующего, а также вещества, находящиеся в состоянии суспензий, паст, эмульсий, пен, пыли и т. д. Почва, тела растительного и животного мира, облака и туманы, многие продукты промышленных производств, строительные материалы , металлы, полимеры, бумага, кожа, ткани, продукты питания – все это дисперсные системы свойства которых изучает коллоидная химия.

Универсальность дисперсного состояния, наличие внешней и внутренней поверхности у большинства реальных тел определяют фундаментальный и общенаучный характер коллоидной химии.

Познакомимся с основными понятиями коллоидной химии.

Коллоидная химия – это наука о поверхностных явлениях и дисперсных системах, их физических, химических и механических свойствах. Применяется и другое название коллоидной химии – Поверхностные явления и дисперсные системы , которое более точно отражает предмет изучения этой науки.

Таким образом, предметом изучения коллоидной химии являются дисперсные системы и поверхностные явления. Рассмотрим взаимосвязь этих понятий.

К поверхностным явлениям относятся процессы, происходящие на границе раздела фаз, в межфазном поверхностном слое сопряженных фаз.

Дисперсная система – это двух - или многофазная, т. е. гетерогенная система, в которой одна из фаз представлена очень маленькими частицами, размеры которых однако заметно превосходят молекулярные. Дисперсная система состоит из дисперсной фазы и дисперсионной среды.

Дисперсная фаза – это измельченная фаза дисперсной системы. Частицы дисперсной фазы могут иметь сферическую или кубическую форму, а также форму длинных тонких нитей (фибриллярные системы), очень тонких пленок, капилляров.

Дисперсионная среда – сплошная среда, в которой распределена дисперсная фаза.

Мерой раздробленности дисперсной фазы является дисперсность .

Дисперсность Д – величина, обратная размеру частиц. Для сферических частиц – это диаметр d, для кубических – ребро куба l . Следовательно

(1)

Чем мельче раздроблены частицы (т. е. чем выше дисперсность), тем больше суммарная поверхность частиц дисперсной фазы, т. е. больше поверхность раздела фаз. Поэтому важной характеристикой дисперсных систем является удельная поверхность .

Удельная поверхность – межфазная поверхность, приходящаяся на единицу объема или на единицу массы дисперсной фазы

; , (2)

где Sуд. – удельная поверхность, м2;

Vд. ф. – объем дисперсной фазы, м3;

m д. ф. – масса дисперсной фазы, г или кг.

Формулы (2) справедливы и для одной частицы дисперсной фазы. Несложный расчет показывает, что с уменьшением размера частиц удельная поверхность возрастает. Для частицы кубической формы с ребром , объем V = 3, а площадь поверхности S = 62 (6 сторон куба с площадью 2).

(3)

Из формулы 3 следует, что чем меньше , тем больше Sуд (см. табл. 1).

Чтобы убедиться, в том, что с увеличением степени дисперсности удельная поверхность возрастает, рассмотрим кубик с длиной ребра 1 см (рис. 1). Объем кубика 1 см3, площадь поверхности шести квадратов со стороной 1 см равна 6 см2. Удельная поверхность Sуд = 6 см2 /1 см3 = 6 см2 / см3. Раздробим этот кубик на более мелкие кубики с размером ребра 1 мм и рассчитаем удельную поверхность. Образовалось 10*10*10 = 1000 кубиков. Суммарный объем всех кубиков остался равным 1 см3. Площадь поверхности каждого кубика 6 мм2. Суммарная площадь поверхности тысячи кубиков 1000 * 6 мм2 = 6000 мм2 = 60 см2. Удельную поверхность получим путем деления площади поверхности на объем Sуд = 60 см2 /1 см3 = 60 см2 / см3. Обратите внимание, что сокращать единицы (см) в этом выражении нельзя, поскольку эти единицы относятся к разным фазам – см2 - к площади раздела фаз, а см3 – к объему дисперсной фазы. Сравнивая результаты расчета удельной поверхности нераздробленного кубика и раздробленного, приходим к выводу, что поверхность раздела фаз увеличилась в 10 раз.


Рис.1. Зависимость удельной поверхности от размера частиц

Если процесс дробления продолжить дальше, то, произведя необходимые расчеты, можно убедиться, что с уменьшением размера частиц удельная поверхность возрастает. Данные таблицы 1 подтверждают это. Так для частиц с размером ребра 1 нм удельная поверхность возрастает до 6000 м2/см3.

Таблица 1

Удельная поверхность кубических тел в зависимости

от степени измельчения

Аналогичные расчеты можно привести для частиц другой формы, они дадут подобные результаты. Таким образом, дисперсные системы обладают большой поверхностью раздела фаз. Она может достигать нескольких тысяч м2 на 1 г дисперсной фазы.

Приведенные примеры показывают, что дисперсные системы и поверхностные явления неразрывны: в дисперсных системах с их высокоразвитой поверхностью именно поверхностные явления определяют специфические свойства этих систем и пути управления этими свойствами.

В отличие от других областей химии, интересующихся преимущественно объемными свойствами фаз, у коллоидной химии в центре внимания поверхностные явления.

Общие признаки объектов коллоидной химии заключаются в следующем:

гетерогенность (частицы дисперсной фазы, несмотря на маленькие размеры, представляют собой самостоятельную фазу);

большая удельная поверхность (поэтому большое влияние на свойства оказывают поверхностные явления);

высокая дисперсность (малые размеры частиц влияют на оптические, кинетические и другие свойства систем).

Из всего вышесказанного вытекают задачи коллоидной химии:

– изучение поверхностных явлений и свойств поверхностных слоев;

– изучение условий получения и существования дисперсных систем и факторов, влияющих на их устойчивость;

– изучение молекулярно-кинетических, оптических, электрических, механических и других свойств дисперсных систем.

2. КЛАССИФИКАЦИЯ ДИСПЕРСНЫХ СИСТЕМ

Классификацию дисперсных систем осуществляют по различным признакам.

Классификация по степени связанности частиц дисперсной фазы

Свободнодисперсные системы – дисперсные системы, в которых частицы дисперсной фазы подвижны. В таких системах мелкие частицы дисперсной фазы свободно перемещаются в жидкой или газообразной дисперсионной среде . Это эмульсии, аэрозоли , суспензии и др.

Связнодисперсные системы дисперсные системы, в которых частицы дисперсной фазы или дисперсионной среды связаны между собой и не могут свободно перемещаться. К этому классу относятся дисперсные системы с твердой дисперсионной средой, а именно все капиллярно-пористые тела (почвы, грунты, горные породы, адсорбенты, активные угли), а также гели и студни, в которых сплошная пространственная сетка (матрица), включает очень мелкие ячейки, заполненные жидкостью или газом (желе, застывший клей, мармелад).

Классификация по степени дисперсности

Рассмотрим эту классификацию для свободнодисперсных систем.

1. Грубодисперсные (микрогетерогенные) системы – системы с размерами частиц от 100 донм (10-5 – 10-3 см). Частицы дисперсной фазы содержат более 109 атомов.

К грубодисперсным системам относятся: порошки, суспензии, эмульсии, пены, дымы. Эти системы неустойчивы, расслаиваются при стоянии, их частицы видны в микроскоп, они задерживаются бумажным фильтром.

2. Коллоидно-дисперсные (ультрамикрогетерогенные) системы – системы с размерами частиц от 1 до 100 нм (10-7 – 10-5 см). Дисперсные частицы содержат от 103 до 109 атомов.

Такие системы называют коллоидными (коллоидные растворы) или золями . Различают твердые золи (солидозоли ) с твердой дисперсионной средой, лиозоли с жидкой дисперсионной средой и аэрозоли с газообразной средой.

Частицы коллоидных систем невидимы в обычный микроскоп, проходят через бумажный фильтр, устойчивы длительное время.

3. Молекулярно-дисперсные системы – это истинные растворы, с размером частиц ~10-8 см (менее 103 атомов). Истинные растворы – это гомогенные системы, они не являются предметом изучения коллоидной химии, их свойства резко отличаются от свойств гетерогенных коллоидных растворов.

Для связнодисперсных систем к которым относятся пористые тела, применима другая классификация: микропористые (размеры пор до 2 нм), переходно-пористые (2-200 нм) и макропористые (выше 200 нм.). Другие дисперсные системы с твердой дисперсионной средой удобнее классифицировать по дисперсности так же, как и свободнодисперсные.

Обобщенно приведенную выше классификацию можно представить в виде схемы.

Эта классификация наиболее распространена. В ее основу положено агрегатное состояние частиц дисперсной фазы и дисперсионной среды. Сочетание трех агрегатных состояний (твердое, жидкое, газообразное) позволяет выделить девять типов дисперсных систем - для краткости их условно обозначают дробью, числитель которой указывает на агрегатное состояние дисперсной фазы, а знаменатель – дисперсионной среды. Например, обозначение т/ж показывает, что система состоит из твердой дисперсной фазы и жидкой дисперсионной среды (твердое в жидкости). В таблице 2 приведены возможные варианты дисперсных систем и примеры разных видов дисперсных систем.

Классификация по агрегатному состоянию фаз

Смеси газов представляют собой, вообще говоря, гомогенные системы. Однако, в этом случае следует принимать во внимание микронеоднородность этой системы, обусловленную флуктуациями (колебаниями) плотности. Именно наличием флуктуаций плотности и рассеянием на них света объясняется голубой цвет неба: если бы атмосфера была совершенно однородной, то небо было бы черным.

Таблица 2

Классификация дисперсных систем по агрегатному состоянию фаз

Дисперсионная

Дисперсная фаза

Твердое тело

Жидкость

Суспензии и золи: промышленные суспензии, взвеси, пасты, илы, лекарственные препараты, природные воды

Эмульсии : природная нефть, мо-локо, кремы, ле-карственные препараты

Пены : флотаци-онные, противопожарные, мыльные

Твердые гетерогенные систе-мы: минералы, сплавы, бетон, композиционные материалы, пластмассы

Капиллярные системы: гели, жидкость в пористых телах, в адсорбентах, почвы, грунты, ткани живых организмов, жемчуг

Пористые тела: адсорбенты и катализаторы в газах, активные угли, пенобетон, пе - нополиуретан, пемза, пористый шоколад

Газообразная

Аэрозоли: пыли, дымы, порошки, перистые облака, бактерии в воздухе

Аэрозоли: туманы, в том числе промышленные, облака кучевые, атмосфера Земли

смесь газов

3. МЕТОДЫ ПОЛУЧЕНИЯ ДИСПЕРСНЫХ СИСТЕМ

Коротко остановимся на методах получения дисперсных систем. Как известно, золи по размеру частиц дисперсной фазы занимают промежуточное положение между истинными растворами и суспензиями, поэтому, естественно, они могут быть получены либо путем соединения отдельных молекул или ионов растворенного вещества в агрегаты, либо в результате диспергирования сравнительно больших частиц. В соответствии с этим Сведберг делит методы синтеза коллоидных систем на конденсационные и диспергационные . Особо от этих методов стоит метод пептизации , который заключается в переводе в коллоидный раствор осадков, первичные частицы которых уже имеют коллоидные размеры. Наконец, в некоторых случаях коллоидные системы могут образовываться путем самопроизвольного диспергирования дисперсной фазы в дисперсионной среде.

Основными двумя условиями получения коллоидных систем, независимо от применяемых методов синтеза, являются: нерастворимость дисперсной фазы в дисперсионной среде и наличие в системе, в которой образуются частицы, веществ, способных стабилизировать эти частицы. Такими веществами могут быть как чужеродные вещества, специально вводимые в систему, так и соединения, образующиеся при взаимодействии дисперсной фазы с дисперсионной средой.

Диспергационные методы получения дисперсных систем

Диспергированием называют такое измельчение твердых и жидких тел в инертной (не взаимодействующей с измельчаемым веществом) среде, при котором резко повышается дисперсность и образуется дисперсная система, обладающая значительной удельной межфазной поверхностью. В противоположность растворению диспергирование происходит, как правило, не самопроизвольно, а с затратой внешней работы, расходуемой на преодоление межмолекулярных сил при дроблении вещества.

Процесс диспергирования имеет большое практическое значение в ряде производств и технологических процессов: при получении высокодисперсных порошков, пигментов для красок, при измельчении руд полезных ископаемых , при изготовлении муки и других пищевых продуктов и т. д.

Известны различные способы диспергирования.

Для получения грубодисперсных систем служат шаровые мельницы, представляющие собой полые, вращающиеся цилиндры, содержащие некоторое количество стальных или керамических шаров. При вращении цилиндра эти шары перекатываются, дробя и истирая измельчаемый материал. В шаровых мельницах получают порошки, цемент, густотертые краски и т. п.; размер частиц дисперсной фазы в них можно довести лишь до 1000 нм. Для более тонкого измельчения – до 100 нм и меньше – используют коллоидные мельницы, в которых измельчаемый материал (грубая суспензия), проходя через зазор между вращающимся ротором и корпусом мельницы, подвергается дальнейшему измельчению. В коллоидных мельницах получают акварельные краски, пудру, лекарственные препараты и т. п.

Конденсационные методы получения дисперсных систем

Методы конденсации по сравнению с методами диспергирования дают возможность получать коллоидные системы более высокой дисперсности.

Конденсационные методы получения дисперсных систем основаны на создании условий, при которых будущая дисперсионная среда пересыщается веществом будущей дисперсной фазы. В зависимости от способов создания этих условий конденсационный метод подразделяют на физический и химический .

К физическим методам относятся:

а) Конденсация паров при пропускании их через холодную жидкость, в результате чего образуются лиозоли. Так, при пропускании паров кипящей ртути, серы, селена в холодную воду образуются их коллоидные растворы.

б) Замена растворителя . Метод основан на том, что вещество, из которого хотят получить золь, растворяют в подходящем растворителе, затем добавляют вторую жидкость, являющуюся плохим растворителем для вещества, но хорошо смешивающуюся с исходным растворителем. Растворенное первоначально вещество выделяется из раствора в высокодисперсном состоянии. Например, таким путем можно получить гидрозоли серы, фосфора, канифоли, парафина, вливая их спиртовый раствор в воду.

Химическая конденсация отличается от всех рассмотренных выше методов тем, что диспергируемое вещество берут не в готовом виде, а получают непосредственно в растворе химической реакцией, в результате которой образуется нерастворимое в данной среде нужное соединение. Задача сводится к тому, чтобы получить выпадающий осадок в мелкодисперсном состоянии. В методах химической конденсации используются любые реакции, ведущие к образованию новой фазы: реакции двойного обмена, разложения, окисления-восстановления и т. д. Стабилизатором коллоидного раствора служит обычно один из участников реакции или побочный продукт, из которых на границе раздела частица – среда образуются адсорбционные слои ионного или молекулярного типа, препятствующие слипанию частиц и выпадению их в осадок.

4. СВОБОДНАЯ ПОВЕРХНОСТНАЯ ЭНЕРГИЯ И ПОВЕРХНОСТНОЕ НАТЯЖЕНИЕ

Поверхностные явления имеют особое значение для свойств дисперсных систем, обладающих развитой поверхностью раздела фаз. С поверхностными явлениями связаны такие процессы, как смачивание и растекание жидкостей по поверхности, прилипание, отмывание, поверхностная адсорбция, капиллярные явления, флотация. На этих явлениях основаны различные технологические процессы: крашение и печатание, гетерогенный катализ, применение связующих материалов и клеев, изготовление противогазов, очистка сточных вод . Знание природы поверхностных явлений необходимо военному химику, поскольку именно с этими процессами связано заражение поверхностей боевой техники и их дегазация, специальная обработка обмундирования, работа противогазов.

Всякая поверхность раздела фаз сильно отличается по физико-химическим свойствам от обеих соприкасающихся фаз. Возьмем две соприкасающиеся фазы: газ и жидкость, рассмотрим поведение молекул жидкости внутри объема и на поверхности (рис.1)

Рис.2. Действие межмолекулярных сил в объеме и на поверхности

Между молекулами существует межмолекулярное взаимодействие. Если молекула находится внутри, она испытывает притяжение со стороны всех соседних молекул. Равнодействующая всех этих сил равна 0. Молекула, находящаяся на поверхности, испытывает притяжение только внутренних молекул (газ из-за своей разряженности взаимодействует слабо), равнодействующая этих сил направлена внутрь тела, т. е. явно выражено стремление к втягиванию поверхностных молекул внутрь тела, поверхность тела как бы находится в натянутом состоянии и стремится к своему сокращению. Поскольку действие сил на поверхностные молекулы не скомпенсировано, такие молекулы обладают свободной поверхностной энергией. Дадим определение.

Свободная поверхностная энергия – это избыток энергии молекул поверхностного слоя по сравнению с молекулами, находящимися внутри DE = E* – Eср.

Эта энергия зависит от природы вещества соприкасающихся фаз, от температуры и площади раздела фаз.

где Fs – свободная поверхностная энергия, Дж;

s – площадь раздела фаз, м2;

s – коэффициент пропорциональности, называемый коэффициентом поверхностного натяжения (или просто поверхностное натяжение), Дж/м2.

Как известно, любая система стремится к минимуму энергии. Чтобы уменьшить свободную поверхностную энергию (Fs = ss) у системы есть два пути: уменьшить поверхностное натяжение s или площадь поверхности раздела фаз s.

Уменьшение s происходит при адсорбции веществ на твердых и жидких поверхностях (это является движущей силой адсорбции), при растекании одной жидкости по другой.

Стремление к уменьшению площади поверхности S приводит к слиянию частиц дисперсной фазы, к их укрупнению (при этом удельная поверхность сокращается), т. е. этот процесс является причиной термодинамической неустойчивости дисперсных систем.

Стремление жидкости к уменьшению поверхности приводит к тому, что она стремится принять форму шара. Математические расчеты показывают, что наименьшую площадь при постоянном объеме имеет шар, поэтому частицы жидкости принимают шарообразную форму, если только эти капли не расплющиваются под действием силы тяжести. Капли ртути на поверхности приобретают форму шариков. В невесомости все жидкости приобретают форму шара; шарообразную форму планет также приписывают действию поверхностных сил.

Поверхностное натяжение

Физический смысл коэффициента поверхностного натяжения можно истолковать с разных точек зрения.

1.Свободная поверхностная энергия (удельная поверхностная

энергия)

Из выражения (3) следует

https://pandia.ru/text/77/498/images/image009_29.gif" width="57" height="48"> [Дж/м2], (6)

где W – работа по созданию новой поверхности раздела фаз, Дж;

S – площадь поверхности раздела фаз, м2.

Из выражения (5) следует, что s – это работа, которую надо совершить, чтобы в изотермических условиях увеличить на единицу площадь поверхности раздела фаз при неизменном объеме жидкости (т. е. перенести соответствующее число молекул жидкости из объема в поверхностный слой).

Например, при разбрызгивании жидкости совершается работа, которая переходит в свободную поверхностную энергию (при разбрызгивании поверхность раздела фаз многократно увеличивается). Такая же работа затрачивается при дроблении твердых тел.

Так как поверхностное натяжение связано с работой, расходуемой на разрыв межмолекулярных связей при переводе молекул из объема в поверхностный слой, то очевидно, что поверхностное натяжение является мерилом сил межмолекулярного взаимодействия внутри жидкости. Чем полярнее жидкость, тем сильнее взаимодействие между молекулами, тем сильнее поверхностные молекулы втягиваются внутрь, тем выше значение s.

Из жидкостей наибольшее значение s у воды. Это неслучайно, поскольку между молекулами воды образуются достаточно прочные водородные связи. В неполярных углеводородах между молекулами существуют только слабые дисперсионные взаимодействия, поэтому поверхностное натяжение у них небольшое. Еще больше значение s у жидкой ртути. Это свидетельствует о значительном межатомном взаимодействии (и о большой величине свободной поверхностной энергии).

Высоким значением s характеризуются твердые тела.

3.Поверхностная сила

Есть также силовое толкование поверхностного натяжения. Исходя из размерности коэффициента поверхностного натяжения Дж/м2, можно записать

Таким образом, поверхностное натяжение – это поверхностная сила, приложенная к единице длины контура, ограничивающего поверхность и направленная на сокращение поверхности раздела фаз .

Существование этой силы наглядно иллюстрируется опытом Дюпре. На жесткой проволочной рамке закреплена подвижная перемычка (рис. 2). В рамке натянута мыльная пленка (положение 1). Чтобы растянуть эту пленку до положения 2, надо приложить силу F, которой противодействует сила поверхностного натяжения F2. Эта сила направлена вдоль поверхности (по касательной), перпендикулярно к контуру, ограничивающему поверхность. Для пленки на рис. 2 роль части контура играет подвижная перемычка.

Рис. 3. Опыт Дюпре

Следовательно,

где F – сила, стягивающая контур поверхности, Н;

 – длина контура, м.

Действие поверхностного натяжения можно наглядно представить в виде совокупности сил, стягивающих края поверхности к центру (поэтому эта сила называется поверхностным натяжением). Эти силы изображены на рис. 3 стрелками – векторами; длина стрелок отражает величину поверхностного натяжения, а расстояние между ними соответствует единице длины контура.

Рис. 4. Действие сил поверхностного натяжения

Таким образом, силы поверхностного натяжения обладают следующими свойствами:

1) равномерно распределены по линии раздела фаз;

Поверхностное натяжение возникает на всех поверхностях раздела фаз в соответствии с агрегатным состоянием этих фаз введены следующие обозначения:

sЖ-Г (на границе жидкость – газ)

sЖ1-Ж2 (на границе двух несмешивающихся жидкостей)

sТ-Г (на границе твердое тело – газ)

sТ-Ж (на границе твердое тело – жидкость)

Непосредственно экспериментально можно определить поверхностное натяжение на границе жидкость – газ и жидкость – жидкость. Методы определения поверхностного натяжения на границе с твердым телом основаны на косвенных измерениях.

ЗАКЛЮЧЕНИЕ

Сегодня мы познакомились с основными понятиями коллоидной химии, и перешли к рассмотрению поверхностных явлений, которые имеют большую роль в природе и технике. На следующей лекции мы продолжим знакомство с такими поверхностными явлениями как адгезия и когезия, смачивание и растекание, адсорбция.

Доцент кафедры ФОХ

Методы получения дисперсных систем, их классификация и краткая характеристика. Какой метод получения дисперсных систем с термодинамической точки зрения наиболее выгоден?

Метод диспергирования. Заключается в механическом дроблении твердых тел до заданной дисперсности; диспергирование ультразвуковыми колебаниями; электрическое диспергирование под действием переменного и постоянного тока. Для получения дисперсных систем методом диспергирования широко используют механические аппараты: дробилки, мельницы, ступки, вальцы, краскотерки, встряхиватели. Жидкости распыляются и разбрызгиваются с помощью форсунок, волчков, вращающихся дисков, центрифуг. Диспергирование газов осуществляют главным образом с помощью барботирования их через жидкость. В пенополимерах, пенобетоне, пеногипсе газы получают с помощью веществ, выделяющих газ при повышенной температуре или в химических реакциях.

Несмотря на широкое применение диспергационных методов, они не могут быть применимы для получения дисперсных систем с размером частиц -100 нм. Такие системы получают кондесационными методами.

В основе конденсационных методов лежит процесс образования дисперсной фазы из веществ, находящихся в молекулярном или ионном состоянии. Необходимое требование при этом методе - создание пересыщенного раствора, из которого должна быть получена коллоидная система. Этого можно достичь при определенных физических или химических условиях.

Физические методы конденсации:

1) охлаждение паров жидкостей или твердых тел при адиабатическом расширении или смешивании их с большим объемом воздуха;

2) постепенное удаление (выпаривание) из раствора растворителя или замена его другим растворителем, в котором диспергируемое вещество хуже растворяется.

Так, к физической конденсации относится конденсация водяного пара на поверхности находящихся в воздухе твердых или жидких частиц, ионов или заряженных молекул (туман, смог).

Замена растворителя приводит к образованию золя в тех случаях, когда к исходному раствору добавляют другую жидкость, которая хорошо смешивается с исходным растворителем, но является плохим растворителем для растворенного вещества.

Химические методы конденсации основаны на выполнении различных реакций, в результате которых из пересыщенного раствора осаждается нерастворенное вещество.

В основе химической конденсации могут лежать не только обменные, но и окислительно-восстановительные реакции, гидролиза и т.п.

Дисперсные системы можно также получить методом пептизации, который заключается в переводе в коллоидный «раствор» осадков, частицы которых уже имеют коллоидные размеры. Различают следующие виды пептизации: пептизацию промыванием осадка; пептизацию поверхностно - активными веществами; химическую пептизацию.

Например, свежеприготовленный и быстро промытый осадок гидроксида железа переходит в коллоидный раствор красно-бурого цвета от добавления небольшого количества раствора FeCl 3 (адсорбционная пептизация) или HCl (диссолюция).

Механизм образования коллоидных частиц по методу пептизации изучен довольно полно: происходит химическое взаимодействие частиц на поверхности по схеме:

С точки зрения термодинамики, наиболее выгодным является метод диспергирования.

1) Коэффициент диффузии для сферической частицы рассчитывается по уравнению Эйнштейна:

где N А - число Авогадро, 6 10 23 молекул/моль;

Вязкость дисперсионной среды, Н · с/м 2 (Па · с);

r - радиус частицы, м;

R - универсальная газовая постоянная, 8,314 Дж/моль · К;

T - абсолютная температура, К;

Число 3,14.

2) Среднее квадратичное смещение:

где? ?? ???среднее квадратичное смещение (усредненная величина сдвига) дисперсной частицы, м 2 ;?

Время, за которое происходит смещение частицы (продолжительность диффузии), с;??

D ?? коэффициент диффузии, м 2 . с -1 .

? ? ????·D·?=2*12,24*10 -10 *5=12,24*10 -9 м 2

Ответ: ? ? ?? 12,24*10 -9 м 2 .

По размеру частиц высокодисперсные системы − золи – занимают промежуточное положение между грубодисперсными системами и истинными растворами (атомно-молекулярная дисперсность растворенного вещества). Поэтому методы получения таких систем условно можно разделить на диспергирование – дробление крупных частиц до частиц коллоидного размера и конденсацию – соединение атомов, молекул или ионов в более крупные частицы.

Диспергирование − тонкое измельчение твердого тела или жидкости, в результате которого образуются дисперсные системы: порошки, суспензии, эмульсии, аэрозоли. Диспергирование жидкости в газовой среде называется распылением , диспергирование другой жидкости, не смешивающейся с первой, − эмульгированием . При диспергировании твердых тел происходит их механическое разрушение, например при помощи мельниц различных типов. Дробление вещества может происходить также под действием ультразвука.

Условно к диспергированию можно отнести метод пептизации . Он заключается в переводе свежеприготовленных рыхлых осадков в коллоидный раствор под действием специальных стабилизирующих добавок − пептизаторов (электролиты, растворы ПАВ). Пептизатор способствует отделению частиц осадка друг
от друга и переходу их во взвешенное состояние с образованием золя.

Конденсация − процесс образования дисперсной фазы из веществ, находящихся в молекулярном или ионном состоянии. Необходимое требование при этом методе – создание в дисперсионной среде пересыщенного раствора (выше предела растворимости) диспергируемого вещества, из которого должна быть получена коллоидная система. Этого можно достичь при определенных физических или химических условиях.

Физическая конденсация – конденсация паров вещества при превышении равновесного давления пара в результате изменения температуры или давления, например, образование тумана – капель жидкости в газе. Добавление к раствору жидкости, которая хорошо смешивается с растворителем, но является плохим растворителем для растворенного вещества, приводит к образованию золя (замена растворителя).

Электрическое диспергирование . Между электродами из распыляемого металла, помещенными в охлаждаемую дисперсионную среду, создают электрическую дугу. Металлы при высокой температуре испаряются, а затем в холодной дисперсионной среде конденсируются. Таким методом получают в основном гидрозоли металлов, например диспергированием серебра, золота и платины в воде.

Химическая конденсация. В основе химической конденсации могут лежать обменные, окислительно-восстановительные реакции, гидролиз и т.д., в результате протекания которых образуется нерастворимое вещество, осаждающееся из пересыщенного раствора.

Контрольные вопросы

1. Дисперсные системы − признаки, основные характеристики, свойства.

2. Классификация дисперсных систем по агрегатному состоянию и размерам.

3. Свободно- и связнодисперсные системы.

4. Способы получения дисперсных систем.

Поверхностные явления

Поверхностные явления связаны с самопроизвольными процессами, приводящими к уменьшению энергии системы (ΔG =
= ΔH T ΔS + σS ) главным образом за счет уменьшения поверхностного натяжения (σ) конденсированной фазы. К ним относятся адсорбция, адгезия, смачивание, капиллярные явления.

Адсорбция

Адсорбция – увеличение концентрации вещества на границе раздела фаз в результате самопроизвольного перераспределения компонентов системы между объемом фазы и поверхностным слоем. Различают адсорбцию молекул растворенного вещества поверхностью жидкого раствора и адсорбцию поглощения газов или жидкостей поверхностью твердого вещества.

2.1.1. Адсорбция растворенного вещества
поверхностью раствора

В объеме раствора молекулы растворенного вещества распределены равномерно. В зависимости от их влияния на величину поверхностного натяжения растворителя поверхностная концентрация растворенного вещества может отличаться от объемной концентрации.

При уменьшении поверхностного натяжения растворителя с ростом концентрации растворенного вещества (рис. 2.1) его поверхностная концентрация увеличивается − происходит адсорбция. Такие вещества называются поверхностно-активными (ПАВ). Если поверхностное натяжение растет, соответственно поверхностная концентрация уменьшается. Такие вещества называются поверхностно-инактивными (ПИВ), производная – поверхностной активностью . Вещества, для которых − поверхностно-неактивные (ПНВ). Поверхностная активность вещества зависит от растворителя. Одно и то же вещество для одного растворителя может быть поверхностно-активным, а для другого поверхностно-инактивным.


Рис. 2.1. Зависимость поверхностного натяжения на границе «раствор−газ»
от концентрации растворенного вещества

Для воды ПАВ это вещества, молекулы которых имеют дифильное строение, т.е. содержат гидрофобные и гидрофильные группы атомов. Гидрофобной частью обычно является неполярный углеводородный радикал СН 3 -(СН 2) n -, с относительно большой длиной цепи. Гидрофильная часть − полярная группа, например функциональные группы карбоновых кислот − COOH; сульфокислот − SO 2 OH; аминов − NH 2 ; эфиров − O- и др.

Гидрофильные группы обеспечивают растворимость ПАВ в воде, а гидрофобные – в неполярных средах. В адсорбционном слое молекулы ПАВ ориентируются энергетически выгодным образом: гидрофильные группы − в сторону полярной среды (воды), а гидрофобные − в сторону неполярной среды (газ, углеводород) (рис. 2.2).

Различают ионогенные и неионогенные ПАВ. Первые в растворе диссоциируют на ионы, один из которых поверхностно-активен (анионные и катионные ПАВ). Вторые не диссоциируют.

Относительно воды поверхностно-инактивными (ПИВ) являются все неорганические растворимые вещества (кислоты, щелочи, соли). Примерами поверхностно-неактивных вещества (ПНВ) могут быть глюкоза, сахароза.


Рис. 2.2. Ориентация молекул ПАВ на поверхности водного раствора

Адсорбция твердым веществом

При контакте твердого тела с газом или жидкостью происходит адсорбция − поглощение веществ поверхностью фазы. Твердое вещество с большой удельной поверхностью (например, микропористые тела) называется адсорбентом (AD). Поглощаемое вещество, находящееся в газовой или жидкой фазе, называется адсорбтивом (S), а после того, как оно перешло в адсорбированное состояние, − адсорбатом (ADS) (рис. 2.3). Обратный процесс перехода вещества из поверхностного слоя в объем газовой или жидкой фазы называется десорбцией .


Рис. 2.3. Схема процесса адсорбции

По природе сил, удерживающих молекулы адсорбтива на поверхности твердого тела, адсорбция в общем случае делится на два основных типа: физическая адсорбция и химическая (хемо-сорбция).

Физическая адсорбция определяется силами межмолекулярного взаимодействия (силами Ван-дер-Ваальса). Основной вклад вносят дисперсионные силы, не зависящие от природы адсорбируемых молекул, определенную роль могут играть ориентационные и индукционные силы. Энергия взаимодействия сравнительно небольшая – 8…25 кДж/моль. Силы физической адсорбции обладают свойством дальнодействия, хотя быстро убывают с расстоянием (~1/r 6). Физическая адсорбция – процесс самопроизвольный (ΔG < 0), экзотермический (ΔH < 0), с уменьшением энтропии (ΔS < 0), так как сопровождается упорядочение системы. Поэтому количество сорбируемого вещества при физической адсорбции растет с уменьшением температуры. Соответственно десорбция происходит при относительно высоких температурах.

Химическая адсорбция (хемосорбция ) связана с образованием сильных химических связей. При поглощении вещества поверхностью перераспределяется электронная плотность с образованием химической связи, т.е. на поверхности раздела фаз происходит химическая реакция между сорбентом и сорбтивом. При хемосорбции адсорбированное вещество локализовано на поверхности адсорбента. Энергия взаимодействия примерно на порядок выше, чем при физической сорбции. Химическая сорбция может эффективно протекать при высоких температурах. Поглотительная способность сильно меняется в зависимости от природы взаимодействующих веществ.

Сорбционную способность адсорбента характеризует величина, равная количеству адсорбата (моль, г и др.), поглощенного еди-ницей поверхности (поверхностная концентрация). Она называется адсорбцией (Г) и измеряется соответственно в моль/см 2 ; г/см 2 и др. Удельная адсорбция − количество адсорбата, сорбируемого единицей массы адсорбента (моль/г; экв/г и др.).

Адсорбция в состоянии равновесия зависит от природы
сорбента и сорбируемого вещества. Кроме того, она зависит от молярной концентрации сорбируемого вещества (C ) или парциального давления сорбируемого газа (р ), а также от темпера-
туры (T ):

Г = f (C , T ); Г = f (p , T ).

Для процесса, осуществляемого при постоянной температуре, зависимость Г = f (C ) называется изотермой адсорбции .

Одной из моделей, описывающих процесс адсорбции, является модель мономолекулярной адсорбции Ленгмюра, основанная на следующих предположениях:

– молекулы адсорбата заполняют поверхность адсорбента в один слой, образуя мономолекулярный слой (монослой);

– поверхность сорбента однородна;

– сорбированные молекулы неподвижны.

Процесс адсорбции можно представить как квазихимическую реакцию между молекулами сорбируемого вещества, концентрация которого равна C , и центрами сорбции AD на поверхности адсорбента:

Состояние равновесия реакции характеризуется константой равновесия, которая в данном случае называется константой сорбции (К с).

– концентрация сорбируемого вещества на поверхности сорбента равна адсорбции − = Г(С);

– концентрация центров сорбции на поверхности − Г ¥ , в случае сорбции в один слой она соответствует максимальному числу молекул, которые могут быть сорбированы (емкость монослоя);

– число свободных мест на поверхности сорбента − =
= Г ¥ − Г(С );

– концентрация сорбируемого вещества в объеме жидкости или газа −[S] = C.

Следовательно, и, соответственно,

; .

Данное уравнение получило название изотерма адсорбции Ленгмюра. Она представляет собой зависимость количества вещества, поглощенного адсорбентом при постоянной температуре, от концентрации в жидкости (С ) или парциального давления в газе (p ) (рис. 2.4).

При малых концентрациях (К с С << 1) количество вещества, поглощенного сорбентом, растет линейно с ростом концентрации. При больших концентрациях (К с С >> 1), Г(С ) = Г ¥ поверхность сорбента полно-стью занята молекулами сорбируемого вещества. Количество поглощенного вещества равно Г ¥ и не зависит от концентрации сорбируемого вещества в объеме жидкости или газа. Величина Г ¥ называется сорбционной емкостью и характеризует максимально возможное количество вещества, которое может поглотить сорбент.

При сорбции паров вещества пористыми адсорбентами процесс мономолекулярной адсорбции может перейти в капиллярную конденсацию . На первой стадии молекулы пара заполняют поверхность стенок пор (капилляров) в один слой, затем число слоев возрастает, образуется жидкая фаза, которая заполняет объем пор. Изотерма адсорбции в этом случае имеет S-образную форму. При малых давлениях кривая представляет собой изотерму адсорбции Ленгмюра, а при приближении к величине предельной сорбции резко поднимается вверх, процесс переходит в капиллярную конденсацию (рис. 2.5).

Твердые пористые адсорбен-ты широко используют в различных областях для удаления из газов и жидкостей нежелательных примесей − очистка веществ. Например, в фильтрующем противогазе происходит удаление ядовитых газов из воздуха.

Приведем примеры пористых адсорбентов.

Активные угли − пористые углеродные адсорбенты, которые получают путем термической обработки органического сырья (например, древесные материалы) без доступа воздуха с последующей физико-химической обработкой для создания требуемой микропористой структуры. Поверхность угольных сорбентов электронейтральна, и адсорбция определяется в основном дисперсионными силами взаимодействия. Активные угли хорошо поглощают неполярные вещества из газовой фазы и водных растворов. Обладают удельной поверхностью до 1000 м 2 /г.

В зависимости от назначения угольные сорбенты подразделяют на газовые, рекуперационные и осветляющие угли. Газовые угли предназначены для улавливания плохо сорбирующихся веществ, содержащихся в газах в небольшой концентрации, а также для очистки воды от примесей веществ с небольшим размером молекул, в частности дезодорация питьевой воды. Рекуперационные угли предназначены для улавливания паров органических растворителей из воздуха. Осветляющие угли служат для поглощения относительно крупных молекул и микросуспензий из жидкой среды, в частности используются для фармацевтических целей и для осветления пищевых продуктов.

Силикагель − минеральный адсорбент (гидратированный аморфный кремнезем ), образованный сферическими частицами размером 10…100 нм, которые связаны между собой, образуя жесткий кремнекислородный каркас. Удельная поверхность 300…700 м 2 /г. Адсорбционные свойства силикагеля в значительной степени определяются поверхностными группами Si-OH. Обычно его используют для поглощения из газов паров воды (осушитель) и органических растворителей, для адсорбционной очистки неполярных жидкостей.

Алюмогель − активная окись алюминия, которую получают прокаливанием гидроокиси алюминия (). Он является гидрофильным адсорбентом с сильно развитой пористой структурой. Используется для осушки газов, для очистки трансформаторных масел, газов и жидкостей, содержащих соединения фтора.

Цеолиты – кристаллические каркасные алюмосиликаты,
содержащие в своем составе ионы щелочных и щелочнозе-мельных металлов (). Основным «строительным блоком» для создания различных форм природных и синтетических цеолитов служит кристаллическая структура, представляющая собой кубооктаэдр, объем которого и является адсорбционной полостью. На шестиугольных гранях располагаются «входные окна» в адсорбционные полости, размер которых строго фиксирован и зависит от параметров кристаллической решетки. В зависимости от марки синтетических цеолитов диаметр входных окон может быть от 2 до 15 Å. Поэтому цеолиты могут использоваться для разделения веществ не только на основе избирательной адсорбции, но и на основе разницы в размере молекул − молекулярные сита.

П р и м е ч а н и е. Адсорбция различных веществ одним и тем же сорбентом неодинакова. На этом свойстве основан метод разделения смеси газов, паров, жидкостей или растворенных веществ, получивший название хроматография . Пропуская смесь газов или раствор (подвижная фаза) через неподвижный слой адсорбента, можно разделить смеси на индивидуальные вещества.

Известны два способа получения дисперсных систем. В одном из них тонко измельчают (диспергируют) твердые и жидкие вещества в соответствующей дисперсионной среде, в другом вызывают образование частиц дисперсионной фазы из отдельных молекул или ионов.

Методы получения дисперсных систем измельчением более крупных частиц называют диспергационными. Методы, основанные на образовании частиц в результате кристаллизации или конденсации, называют конденсационными.

Диспергационные методы

Эта группа методов объединяет, прежде всего, механические способы, в которых преодоление межмолекулярных сил и накопление свободной поверхностной энергии в процессе диспергирования происходит за счет внешней механической работы над системой. В результате твердые тела раздавливаются, истираются, дробятся или расщепляются, причем характерно это не только для лабораторных или промышленных условий, но и для процессов диспергирования, происходящих в природе (результат дробления и истирания твердых пород пол действием сил прибоя, приливно-отливные явления, процессы выветривания и выщелачивания и т.д.).

В лабораторных и промышленных условиях рассматриваемые процессы проводят в дробилках, жерновах и мельницах различной конструкции. Наиболее распространены шаровые мельницы. Это полые вращающиеся цилиндры, в которые загружают измельчаемый материал и стальные или керамические шары. При вращении цилиндра шары перекатываются, истирая измельчаемый материал. Измельчение может происходить и в результате ударов шаров. В шаровых мельницах получают системы, размеры частиц которых находятся в довольно широких пределах: от 2 - 3 до 50 - 70 мкм. Полый цилиндр с шарами можно приводить в круговое колебательное движение, что способствует интенсивному дроблению загруженного материала под действием сложного движения измельчающих тел. Такое устройство называется вибрационной мельницей.

Более тонкого диспергирования добиваются в коллоидных мельницах различных конструкций, принцип действия которых основан на развитии разрывающих усилий в суспензии или эмульсии под действием центробежной силы в узком зазоре между вращающимся с большой скоростью ротором и неподвижной частью устройства - статором. Взвешенные крупные частицы испытывают при этом значительное разрывающее усилие и таким образом диспергируются. Тип коллоидной мельницы, широко распространенный в настоящее время, изображен на рис. 1 (смотри приложение). Эта мельница состоит из ротора, представляющего конический диск 1, сидящий на валу 2, и статора 3. Ротор приводится во вращение с помощью специального расположенного вертикально мотора, совершающего обычно около 9000 об/мин. Рабочие поверхности ротора и статора 4 пришлифованы друг к другу и толщина щели между ними составляет около 0,05 мм. Грубая суспензия полается в мельницу по трубе 5 под вращающийся диск центробежной силой, развивающейся в результате вращений ротора, проталкивается через щель и затем удаляется из мельницы через трубу 6. При прохождении жидкости в виде тонкой пленки через щель взвешенные в жидкости частицы испытывают значительные сдвиговые усилия и измельчаются. Степень дисперсности полученной системы зависит от толщины щели и скорости вращения ротора: чем меньше зазор и больше скорость, тем больше сдвиговое усилие и следовательно, выше будет дисперсность.

Высокой дисперсности можно достичь ультразвуковым диспергированием. Диспергируещее действие ультразвука связано с кавитацией - образованием и захлопыванием полостей в жидкости. Захлопывание полостей сопровождается появлением кавитационных ударных волн, которые и разрушают материал. Экспериментально установлено, что дисперсность находится в прямой зависимости от частоты ультразвуковых колебаний. Особенно эффективно ультразвуковое диспергирование, если материал предварительно подвергнут тонкому измельчению. Эмульсии, полученные ультразвуковым методом, отличаются однородностью размеров частиц дисперсной фазы.

К диспергационным методам получения золей можно отнести метод Бредига, который основан на образовании вольтовой дуги между электродами из диспергируемого металла, помещенными в воду. Сущность метода заключается в распылении металла электрода в дуге, а также в конденсации паров металла, образующихся при высокой температуре. Поэтому электрический способ соединяет в себе черты диспергационных и конденсационных методов. Метод электрораспыления был предложен Бредигом в 1898 г. Бредиг включал в цепь постоянного тока силой 5-10 А и напряжением 30-110 В амперметр, реостат и два электрода из диспергируемого металла. Электроды он погружал в сосуд с водой, охлаждаемый снаружи льдом. Схематическое устройство прибора, которым пользовался Бредиг, показано на рис. 2 (смотри приложение). При прохождении тока через электроды между ними под водой возникает вольтова дуга. При этом у электродов образуется облачко высокодисперсного металла. Для получения более стойкий золей в воду, в которую погружены электроды, целесообразно вводить следы стабилизирующих электролитов, например гидроокисей щелочных металлов.

Более общее значение имеет способ Сведберга, в котором используется колебательный разряд высокого напряжения, приводящий к проскакиванию искры между электродами. Этим способом можно получать не только гидрозоли, но и органозоли различных металлов.

При дроблении и измельчении материалы разрушаются в первую очередь в местах прочностных дефектов (макро- и микротрещин). Поэтому по мере измельчения прочность частиц возрастает, что обычно используют для создания более прочных материалов. В то же время увеличение прочности материалов по мере их измельчения ведет к большому расходу энергии на дальнейшее диспергирование. Разрушение материалов может быть облегчено при использовании эффекта Ребиндера - адсорбционного понижения прочности твердых тел. Этот эффект заключается в уменьшении поверхностной энергии с помощью поверхностно- активных веществ (ПАВ), в результате чего облегчается деформирование и разрушение твердого тела. В качестве таких ПАВ, называемых в данном случае понизителями твердости, могут быть использованы, например, жидкие металлы для разрушения твердых металлов, органические вещества для уменьшения прочности органических монокристаллов. Для понизителей твердости характерны малые количества, вызывающие эффект Ребиндера, и специфичность действия. Добавки, смачивающие материал, помогают проникнуть среде в места дефектов и с помощью капиллярных сил также облегчают разрушение твердого тела. ПАВ не только способствуют разрушению материала, но и стабилизируют дисперсное состояние, так как, покрывая поверхность частиц, они тем самым препятствуют обратному слипанию их или слиянию (для жидкостей). Это также способствует достижению высокодисперсного состояния.

Применением диспергационных методов достичь весьма высокой дисперсности обычно не удается. Системы с размерами частиц порядка 10-6 - 10-7 см получают конденсационными методами.

дисперсный система гомогенный среда