Контроллер для rgb ленты своими руками. Самодельный светодиодный rgb контроллер. Как изменяется цвет свечения

В этой статье описывается схема мощного RGB контроллера для управления светодиодной лентой на базе микроконтроллера PIC12F629. Достаточная мощность обеспечивается применением трех — по одному на каждый канал.

Описание RGB контроллера на PIC12f629

Управление светодиодами на микроконтроллере обеспечивается путем непрерывного изменения интенсивности свечения по каждому каналу. Поскольку цикл включения — выключения немного отличается у каждого из 3 каналов, то это позволило обеспечить отображение большого количества оттенков.

Система управления интенсивности свечения построена на ШИМ (широтно-импульсная модуляция). Этот метод очень эффективен, потому что выходные транзисторы работают в режиме насыщения, т.е. переключения, рассеивая очень мало энергии насебя, обеспечивая высокую производительность.

В схеме применен микроконтроллер Microchip PIC12F629. Поскольку программа написана без использования каких-либо специальных функций микроконтроллера (Таймер, АЦП и т.д..), программа может быть адаптирована под другой микроконтроллер Microchip с незначительными изменениями.

Переменный резистор позволяет регулировать скорость перехода цветов. Чтобы считывать значения переменного резистора была разработана специальная функция, которая измеряет время заряда конденсатора, подключенного к тому же выводу что и переменный резистор.

Микроконтроллер PIC12F629 имеет только восемь выводов: 2 для питания и 6 входов / выходов. Их 6 оставшихся выводов задействованы только 4: 3 выход для каждого из каналов и один для считывания значения переменного резистора.

Для успешной работы мощных MOSFET транзисторов, необходимо добавить еще три транзистора BC548. Схема питается от 12 вольт. Регулятор напряжения 78L05 обеспечивает питание микроконтроллера. При подключении длинных светодиодных лент возрастает нагрузка на MOSFET транзисторы, поэтому их желательно установить на теплоотвод.

Итак, кратко о мотивах создания этого проекта. Как я ранее говорил в статье "Многоцветная светодиодная подсветка или RGB-контроллер своими руками" , в заводском китайском RGB контроллере (т.е. оригинальном) очень сильно греются выходные силовые ключи (полевые транзисторы), реально можно обжечь пальцы. Речь идёт о работе на максимальной яркости, когда все три канала работают на полную; в данном случае это будет белый цвет свечения.

Замеры тока показали, что в таком режиме китайский RGB контроллер потребляет 1,2 ампера. Казалось бы ерунда, всего 1,2А*12В=14Ватт, но сука греется. Ок. Собираем свой вариант контроллера (ATtiny2313 + IRFZ 44 N на выходе) и испытываем чувство, что нас, мягко говоря, обманывают. Блок питания уходит в защиту. Снимаем защиту, измеряем ток = 2,2 ампера. Прикольно 2,2А*12В=26,4Ватт. Видимо китайский контроллер выдаёт ШИМ на силовые ключи не на всю ширину. Визуально с ATtiny2313 + IRFZ 44 N лента светится ярче.

Продолжаем изыскания. Подключаем 5 метров ленты к ATtiny2313 + IRFZ 44 N и гоняем. Всё прекрасно, ключи без радиатора немного теплые. Подключаем последовательно еще одну ленту и наблюдаем, что подключенный кусок изменил оттенок и равномерно снижается яркость по всей длине (на участке от 5 до 10 метров). Измеряем напряжение на конце ленты; напряжение упало с 12 вольт до 9,1 вольт. Очевидно, что ленты надо подключать в параллель, хотя я предполагал, что светодиоды в самой ленте и так подключены в параллель. Неудобняк, но других вариантов нет.

Включаем в параллель три рулона по 5 метров. Включилось, работает. Но сука греется. Можно радиатор поставить, но всё равно, нагрев убедительный. Чешем репу и делаем следующее.

В этом контроллере умощненные выхода. Также облегчили режим работы стабилизатора на 5 Вольт.

В общем всё довольно просто. Транзисторы BD139-BD140 можно заменить на КТ815-КТ814 и аналогичные.

При прошивании микроконтроллера ATtiny2313 устанавливаются следующие фьюзы.

Печатная плата изготавливается методом ЛУТ .


Ну и к слову говоря, на основе этой схемы можно сделать простой RGB усилитель, для объединения лент в последовательные или параллельные цепочки. Некоторые схемы последовательного и параллельного включения RGB усилителей смотри в файле

Схема RGB контроллера для светодиодной ленты на PIC16F628 своими руками. Схема контроллер rgb

САМОДЕЛЬНЫЙ СВЕТОДИОДНЫЙ RGB КОНТРОЛЛЕР

С появлением в продаже цветных RGB светодиодных лент, представляющих собой сборку из красных, синих и зелёных SMD светодиодов, стали изготавливать и устройства управления для этих лент - RGB контроллеры. Стоимость промышленных девайсов довольно высока, поэтому представляется интересным самому собрать такой RGB контроллер, тем более, что работы не так и много.

Забегая наперёд замечу, что радиаторы на тиристорные ключи не требуются. На самом контроллере написано, что рабочий ток нагрузки до 10 ампер. При испытании, за целый день работы схемы, нагрева не ощущается, так температура их не больше 30-ти градусов. Промышленный RGB контроллер обычно идёт с пультом дистанционного управления, но здесь мы не будем усложнять схему. Блок питания для двух светодиодных лент и контроллера, был стоваттный.

Большую часть начинки берём готовую - от небольшой коробочки, управляющей китайской гирляндой. Хотя количество режимов переключения выходов в таком контроллере будет невелико, простота изготовления схемы оправдывает дело.

По типовой схеме контроллера обычными гирляндами видно, что сеть 220В питает саму микросхему контроллера, а уже с выходов её сигналы подаются на тиристорные ключи.

В промышленной схеме RGB контроллера используют на выходе мощные тиристоры по нижеприведённой схеме. На их входа и подадим сигналы с микросхемы управления китайской гирляндой.

Как видите собрать самодельный RGB контроллер для светодиодных лент вполне простая задача. При этом общая экономия от такого решения, особенно используя не специальный покупной импульсный блок питания, а стандартный компьютерный ATX, будет сотню долларов.

Форум по контроллерам

Обсудить статью САМОДЕЛЬНЫЙ СВЕТОДИОДНЫЙ RGB КОНТРОЛЛЕР

Radioskot.ru

Схема RGB контроллера для светодиодной ленты на PIC16F628 своими руками

Существует множество контроллеров, которые являются компактными устройствами, позволяющие изменять свечение RGB светодиодной ленты по своему желанию. При помощи подобных контроллеров можно создавать различные цветовые композиции подсветки интерьера, тем самым сделать комфортную обстановку в квартире, которая поможет расслабиться и приятно отдохнуть.

В данной статье приведена схема RGB контроллера светодиодов или ленты, который можно собрать своими руками.

Схема собрана на популярном микроконтроллере PIC16F628 . Изменение и переключение яркости реализовано при помощи ШИМ. Контроллер позволяет управлять RGB светодиодами либо RGB светодиодной лентой по схеме подключения с общим анодом, суммарным током 10А и напряжением до 35 вольт.

Управление контроллером осуществляется двумя блоками переключателей SA и SB. Первый из них (SA) отвечает за переключение скорости изменения эффектов свечения, а при помощи второго (SB) можно выбрать одну из шести схем работы контроллера:

Описание работы устройства

Схема обеспечивает плавное переливание всех трех цветов с градацией 256 по каждому цвету, что в общей сложности получается более 16 миллионов оттенков.Питание контроллера светодиодов осуществляется стабилизатором DA1. На вход DA1 подается напряжение соответствующее напряжению питания светодиодов. Необходимо отметить, что в схеме отсутствует драйвер для светодиодов, который ограничивает ток.

Для светодиодов малой мощности ток потребления можно ограничить путем подключения соответствующего сопротивления. В светодиодных RGB лентах эти резисторы уже включены возле каждого светодиода, и ленту можно подключить напрямую к контроллеру, не забыв выбрать необходимое напряжение для данной ленты. Для более мощных светодиодов потребуется специальный стабилизатор, который можно сделать самостоятельно своими руками.

Управляющие сигналы с выходов микроконтроллера поступают на силовые ключи, в роли которых выступают мощные MOSFET транзисторы, рассчитанные на нагрузку до 10А.

Перечень необходимых деталей:

  • 1 шт. - Микроконтроллер PIC16F628A;
  • 1 шт. - Кварцевый резонатор на 20МГц;
  • 2 шт. - Конденсатор 22пкФ;
  • 1 шт. - Микропереключателя на 3;
  • 1 шт. - Микропереключателя на 2;
  • 3 шт. - Транзисторы IRL3103, IRL3705N, IRL2 203N;
  • 1 шт. - Стабилизатор L78L05;
  • 1 шт. – Конденсатор 10мкф х 16В;
  • 2 шт. – Конденсатор 0,1мкф;
  • 7 шт. – Резистор 4,7кОм;
  • 3 шт. – Резистор 10кОм;
  • 3 шт. – Резистор 680Ом.

Скачать прошивку и печатную плату (32,2 Kb, скачано: 3 071)

Симуляция в Proteus (14,8 Kb, скачано: 1 025)

Источник: www.alex-exe.ru

www.joyta.ru

RGB контроллер для управления светоиодной лентой своими руками

Выделенные цветовые зоны в спальне или гостиной – это всегда эстетично и красиво. Конечно, для того чтобы грамотно выполнить все работы по монтажу потолка, установке светодиодной ленты и всего сопутствующего оборудования, нужно немало потрудиться. Но зато результат будет радовать при правильном исполнении очень долго.

Ассортимент цветных светодиодных лент достаточно обширен и их правильный выбор – дело довольно сложное. И все же, какими бы идеальными они ни были, для их правильной работы необходим блок питания 12 В (реже 24 В) и, конечно же, блок управления с параметрами, подходящими именно под выбранную световую полосу.

Но что же такое этот RGB-контроллер, какие функции он выполняет? И если он так необходим, возможно ли его изготовить своими руками в домашних условиях?

Принцип работы

По своей сути контроллер RGB – это мозг домашней подсветки. Все команды, подаваемые с пульта дистанционного управления, им обрабатываются, а уже после нужный сигнал подается на светодиодную ленту, зажигая тот или иной цвет. Проще говоря, именно подобным электронным устройством осуществляется полное управление RGB-лентой.


Контроллеры различаются как по мощности, так и по количеству выходов, т. е. подключаемых к нему световых полос. Есть устройства с пультом, а бывают и без ПДУ. Также есть различие и по сигналу, поступающему на ленту, т. к. полоса может быть либо аналоговой, либо цифровой. Различие между ними существенное, а вот сходство одно. Все они работают только с блоком питания (трансформатором), потому как светодиодная полоса имеет номинальное напряжение в 12 В, а не 220, как думают некоторые.

Дело в том, что аналоговая светодиодная лента при получении сигнала с прибора управления зажигается тем или иным, но одним цветом по всей длине. У цифровой же есть возможность включения каждого светодиода отдельным цветом. А потому и RGB-контроллер для цифровой световой полосы более высокотехнологичен и стоимость его выше.

Варианты подключения

Естественно, что самым простым способом подключения устройства управления RGB станет вариант, при котором подключена лишь одна светодиодная полоса или ее часть. Но такой способ не совсем практичен, хотя он и не требует включения в цепь каких либо дополнительных приборов. Дело все в том, что на одну линию такого устройства возможно подключение не более 5–6 метров световой полосы, что для подсветки комнаты будет явно недостаточным. Если же длина отрезка будет больше, то на ближайшие к контроллеру светодиоды возрастет нагрузка, в результате чего они просто перегорят.

Еще одна проблема при подключении длинных светодиодных полос – большая нагрузка по мощности на тончайшие провода RGB-светодиодной ленты. При их нагреве пластиковое основание начинает плавиться, и в итоге жилы остаются без изоляции либо просто прогорают.


А потому при необходимости осветить более длинные расстояния применяются следующие способы и схемы подключения.

Две светодиодные ленты

При таком подключении к контроллеру для RGB-световой полосы понадобится два устройства питания и усилитель. Особенность подобного подключения в том, что отрезки ленты должны подключаться именно параллельно. Хотя у них и одно, общее электронное устройство управления, питание должно подаваться на каждую в отдельности. Усилитель же используется для более ясного и четкого света диодов.

Иными словами, напряжение поступает на оба блока питания, после чего с одного из них идет на усилитель и далее на световую полосу. Со второго блока питание поступает на электронный блок управления. Между собой устройство управления и усилитель связаны второй светодиодной лентой. Схематически такое подключение выглядит как на схеме выше.

При таком подключении желательно применять также два блока питания, но если они имеют большой выход мощности, то можно воспользоваться и одним.


Четыре отрезка по пять метров подключаются опять же параллельно. Пара полос напрямую подключена к контроллеру, вторая пара к нему же, но через усилитель сигнала. При подключении второго блока питания напряжение от него идет напрямую на усилитель. Выглядит подобное подключение примерно как на картинке выше.

Разобравшись с методами подключения контроллеров и их видами, можно попробовать сделать такой прибор своими руками в домашних условиях. Необходимо лишь помнить, что нужно соизмерять мощность устройства и его выходное напряжение с длиной и энергопотребляемостью светодиодной ленты.

Контроллер своими руками

Схема подобного прибора не сложна, единственный минус в том, что у изготовленного своими руками контроллера будет мало каналов, хотя для домашнего использования этого вполне достаточно.

Наверняка у каждого в квартире найдется неисправная китайская гирлянда с маленькой коробочкой – блоком управления устройством. Так вот, основные детали как раз будут браться из нее.


Схема контроллера, сделанного своими руками

Как раз внутри этого блока управления гирляндой можно увидеть три тиристорных выхода. Это и будут направления R, G и B.

Как раз к ним и следует подключить светодиодную полосу. Никакого охлаждения тиристорам не требуется, ну а отсутствие блока питания легко решается. Не будет большой проблемой найти неисправный системный блок компьютера. Так вот трансформатор от него идеально подойдет для этой цели. И в итоге сэкономить получится не только на покупке контроллера, но и на приобретении блока питания, причем блок питания может стоить в разы дороже, чем само устройство управления светодиодной RGB-лентой.

Конечно, никакого пульта дистанционного управления не будет, но все же можно подключить светодиодную RGB-ленту к трехклавишному выключателю, не потратив ни копейки на приобретение дополнительных устройств.

Стоит ли игра свеч?

Если рассуждать с точки зрения логики обычного человека, не увлеченного радиотехникой, то, конечно, купить дешевый RGB-контроллер будет ненамного дороже. К тому же при этом не будет потеряно время на изготовление своими руками подобного прибора. Но для настоящего радиолюбителя, а иногда и просто увлеченного человека, собрать подобный прибор самому во сто крат приятнее, нежели приобретать где-то. А потому попробовать изготовить RGB-контроллер своими руками стоит. Ведь удовольствие от проделанной, а к тому же еще и удачной работы не заменит ничто.

lampagid.ru

085-Контроллер RGB ленты на ATtiny2313. - GetChip.net

Все началось с идеи управления нагрузкой не постоянного тока, а переменного. Очень хорошая идея была предложена Сергеем (Ghjuhfvvf) вот тут. В развитии этой идеи им были разработаны и построены схемы управления нагрузкой переменного тока как с пульта так и по сенсорному управлению (но это тема отдельного топика и вероятно Сережа созреет для того, чтобы выложить свою работу на форуме). Меня же, чисто из прикладных соображений, заинтересовала возможность управлять RGB светодиодной лентой. За базу был взят вышеуказанный алгоритм. Сразу приношу извинения за возможные нерациональности в тексте программы. Я не программист и поэтому, вероятно, мне это простительно.

Схема несложная. Включение ленты делалось через сборку Дарлингтона. Для ленты самое то (при токах нагрузки до 1А на канал или при длине стандартной ленты до 2м). Она инвертирует сигнал, что как раз кстати для ленты с общим анодом (а таких в RGB варианте большинство). Для алгоритма это означает что включать свечение можно единицами.

scheme-RGB-ULN.spl7 - Схема контроллера RGB ленты на ULNULN2003.pdf - Даташит на сборку Дарлингтонов ULN2003

scheme-RGB-IRF.spl7 - Схема контроллера RGB ленты на IRFIRF640.pdf - Даташит на полевой транзистор IRF640

Печатную плату не делал - собрал на макетке. Но специально для Вас:), набросал в сплинте оба варианта для ULN и для IRF. PBC-RGB-ULN.lay - Печатка контроллера RGB ленты для ULNPBC-RGB-IRF.lay - Печатка контроллера RGB ленты для IRF

3 Алгоритм работы.

В самой программе алгоритм достаточно подробно описан в комментариях. Мне кажется все должно быть понятно. Дополнительно только скажу то, что ШИМ реализован программно, а поскольку программа не помещалась в память AtTiny2313A, то все коды кнопок пульта сразу были прописаны в алгоритме (без блока программирования кнопок). В программе также есть участок генерации случайных чисел. Я попытался в нем реализовать принцип М-последовательности. Похоже пока это лучший программный алгоритм генерации случайных чисел.RGB controller(ULN+IRF) - Исходник контроллера RGB ленты

4 Реализация.

За основу экспериментов был взят китайский пульт от похожего контроллера.

На картинке пульта приведены коды всех кнопок для того, чтобы было легче разобраться в программе. Если кому понадобятся пояснения в последовательности записи кнопок в базу данных - спрашивайте. Вы можете заменить коды в программе на свои, считанные с пульта через UART вот этим: 074-Преобразователь IR-to-UART на ATtiny2313..

5 Прошивка.

С прошивкой все как обычно - описывать нечего…RGB-Controller.hex - Прошивка контроллера RGB ленты для ATtiny2313FuseBits - Фьюз биты для контроллера RGB лентыДля Algorithm Builder и UniProf галочки ставятся как на картинке.Для PonyProg, AVR Studio, SinaProg галочки ставятся инверсно.Как правильно прошить AVR фьюзы

6 Демонстрация работы контроллера RGB ленты.

Видео демонстрирует как работает контроллер с лентой в различных режимах.

7 Заключение.

Хотел бы поблагодарить за помощь и подсказки в разработке соавтору Ghjuhfvvf и всем активным участникам форума, в особенности SVN и anatoliy.

В планах сделать контроллер на 3 ленты на AtTiny2313A, управляемых с одного пульта. Всех заинтересованных прошу отписываться здесь или мне на почту (Kolini1967*ukr.net * заменить на @). Спасибо.

(Visited 15 642 times, 2 visits today)

www.getchip.net

УПРАВЛЕНИЕ МОЩНЫМИ RGB СВЕТОДИОДАМИ

Всё больше людей внедряют у себя светодиодное освещение или подсветку с возможностью переключать разные цвета, поэтому тема LED драйверов очень актуальна. Предлагаемая схема такого устройства управляет RGB-светодиодами через Н-канальные МОП-транзисторы, которые позволяют контролировать светодиодные матрицы или лампы до 5 ампер на канал без применения теплоотводов.

Схема электрическая и описание

Входная мощность от блока питания должна соответствовать электрической мощности выходной нагрузки. Схема будет работать от напряжением питания в диапазоне от 10 до 24 вольт. Он продиктован требованиями входного напряжения микросхемы 78L05 и электролитических конденсаторов. Переключатель S2 не используется с данной прошивкой, он тут только потому, что в будущем возможно вы захотите поставить другую версию кода, который потребует двух переключателей. Здесь можете скачать варианты прошивок.

Во время тестирования контроллер подключался к 50 Вт на 12 В галогенным лампочкам, по одной на каждый канал. Температура МОСФЕТ транзисторов после 5 мин прогона составила чуть больше 50C. Теоретически общая нагрузка для всех трех каналов RGB не должна превышать 15 ампер.

Указанный транзистор STP36NF06L работает при низком напряжении на затворе. Вы можете использовать такие другие стандартные N-канальные полевые транзисторы, которые будут нормально работать при токах нагрузки до 5 ампер и не требовать слишком большого сигнала на входе для полного отпирания.

Подключение к печатной плате кабелей также должно соответствовать тому току, который они будут пропускать. Светодиоды, LED ленты и модули, подключенные к драйверу, должны иметь общий анод, как показано на схеме выше.

Вот один из вариантов реализации, который использует 20 светодиодов RGB типа Пиранья. Собрана лампа в коробе 25 х 50 х 1000 мм из алюминия. Позже она была приспособлена под настенную полку, чтобы осветить стол. Свет очень яркий и дает хорошее ровное освещение без какого-либо дополнительного рассеивателя.

elwo.ru

Контроллер для управления RGB светодиодной лентой на микроконтроллере PIC12F629

В этой статье описывается схема мощного RGB контроллера для управления светодиодной лентой на базе микроконтроллера PIC12F629. Достаточная мощность обеспечивается применением трех MOSFET транзисторов - по одному на каждый канал.

Описание RGB контроллера на PIC12f629

Управление светодиодами на микроконтроллере обеспечивается путем непрерывного изменения интенсивности свечения по каждому каналу. Поскольку цикл включения - выключения немного отличается у каждого из 3 каналов, то это позволило обеспечить отображение большого количества оттенков.

Система управления интенсивности свечения построена на ШИМ (широтно-импульсная модуляция). Этот метод очень эффективен, потому что выходные транзисторы работают в режиме насыщения, т.е. переключения, рассеивая очень мало энергии насебя, обеспечивая высокую производительность.

В схеме применен микроконтроллер Microchip PIC12F629. Поскольку программа написана без использования каких-либо специальных функций микроконтроллера (Таймер, АЦП и т.д..), программа может быть адаптирована под другой микроконтроллер Microchip с незначительными изменениями.

Переменный резистор позволяет регулировать скорость перехода цветов. Чтобы считывать значения переменного резистора была разработана специальная функция, которая измеряет время заряда конденсатора, подключенного к тому же выводу что и переменный резистор.

Микроконтроллер PIC12F629 имеет только восемь выводов: 2 для питания и 6 входов / выходов. Их 6 оставшихся выводов задействованы только 4: 3 выход для каждого из каналов и один для считывания значения переменного резистора.

Для успешной работы мощных MOSFET транзисторов, необходимо добавить еще три транзистора BC548. Схема питается от 12 вольт. Регулятор напряжения 78L05 обеспечивает питание микроконтроллера. При подключении длинных светодиодных лент возрастает нагрузка на MOSFET транзисторы, поэтому их желательно установить на теплоотвод.

Скачать прошивку и печатную плату (скачено: 1 091)

Источник

fornk.ru

Схема RGB контроллера | Уголок радиолюбителя

Устройство является простым драйвером трехцветных (RGB) светодиодов. Он предназначен для того, чтобы разукрасить кристалл, имитацию камня или другого подобного предмета.

Применение микроконтроллера позволяет разместить устройство на небольшой плате, получить простоту конструкции и добиться очень хорошего визуального эффекта, благодаря генерации всей палитры цветов. В схеме RGB контроллера применен микроконтроллер AT89C4051 и несколько вспомогательных элементов.

Устройство состоит из двух частей. Плата с процессором и светодиодами вставлена в основание кристалла, в то время как в корпусе адаптера электропитания размещен стабилизатор и двухкнопочная клавиатура, позволяющая регулировать скорость анимации.

На приведенном ниже рисунке показана схема контроллера:

Основным элементом схемы является процессор U1 (AT89C4051), работающий с кварцевым резонатором X (12MHz) и конденсаторами C1 (33пф) и C2 (33пф). Диод D1 защищает от неправильной полярности подключения питания. Конденсатор C4 (100мкф) фильтрует напряжение питания, а C3 (4,7мкф) работает в цепи сброса микроконтроллера и позволяет ему правильно начать работу после включения питания.

Разъем GP1обеспечивает соединение с блоком питания и кнопками. Резисторы R5 (180 Ом), R6 (180 Ом) и R7 (100 Ом) ограничивают ток светодиода D2 (LED, RGB), а резисторы R8 (180 Ом), R9 (180 Ом) и R10 (100 Ом) ограничивают ток светодиода D3 (LED, RGB). Элементы R7 и R10 имеют меньшие значения из-за низкого КПД красных светодиодов и необходимости питания их большим током. Диоды D2 и D3 подключены к разным выводам микроконтроллера, поскольку максимальный ток портов процессора мал.

Принципиальная схема источника питания показана ниже:

Микросхема U1 (7805) вместе с конденсаторами C1 (1000мкф) и C2 (47мкф) обеспечивает стабилизированное напряжение 5 В для микроконтроллера и сопутствующих элементов. Кнопки S1 (N. C.) и S2 (N. C.) служат для установки скорости изменения цветов. Светодиод D1 указывает состояние устройства, а резистор R1 (510R) ограничивает ток светодиода. Разъем GP1 обеспечивает соединение с платой драйвера.

Плата RGB контроллера выполнена методом ЛУТ. Сборка устройства очень проста. Следует обратить внимание на правильное подключение RGB светодиодов. Под микроконтроллер U1 необходимо установить панельку. Плату драйвера необходимо поместить в прозрачный матовый корпус, чтобы обеспечить оптимальные условия перемешивания цветов (лучшее, если это будет какой-нибудь кристалл).

Блок питания и кнопки спаяны навесным монтажом, без печатной платы и установлены в корпусе адаптера питания. Кнопки, используемые в системе, относятся к типу N. C. (нормально-замкнуты).

Скачать рисунок печатной платы и прошивку контроллера RGB (скачено: 46)

Источник

fornk.ru

Разноцветная светодиодная RGB лента – основной тренд 2018-2019 года. Разберем как ее правильно подключить, что такое RGB контроллер, усилитель и зачем они нужны.

Что такое RGB светодиодная лента

RGB (Red, Green, Blue – красный, зеленый, синий) – это светодиодная лента, способная при работе менять свой цвет. В каждом LED модуле находятся три светодиода – красный, синий и зеленый. Изменяя отдельно яркость свечения каждого кристалла, вы получаете любой цвет видимого спектра.


Внешне RGB led отличается от моноцветной только количеством выводов. Здесь их 4 – три из них для питания каждого отдельного кристалла и один общий плюс.

Существуют особые led ленты с пятью выводами. Маркируются они как LED RGB W (W – white). Пятый вывод отвечает за белый свет. Дело в том, что в трехцветном диоде белый цвет получается смешивая все три цвета в равных пропорциях. Такой «белый» отличается от чистого моно- света. Поэтому появился тип led с четвертым кристаллом белого цвета.

Эти ленты (как и моноцветные) имеют несколько классов пыле- влагозащиты:

  • IP20 – без защиты, боится влаги и пыли;
  • IP67-69 – не боится пыли, может быть использована во влажной среде (ванна, аквариум).

Что нужно для подключения RGB ленты

Разберемся как правильно подключить светодиодную RGB ленту. Для полноценной схемы освещения нам понадобится:

  • Светодиодная лента;
  • блок питания;
  • RGB-контроллер с пультом управления;
  • RGB-усилитель (опционально).

Блок питания

Питание для светодиодной ленты нужно подбирать с учетом предполагаемой нагрузки и его будущего места расположения. Рассмотрим на примере SMD5050 60 led. Потребляемая мощность – 14,4 Вт/м.

При длине в 5 метров, необходимая мощность БП будет:

5м * 14,4Вт * 1,25 (коэффициент запаса) = 90Вт


Разновидности блоков питания для led

Если длина 15 метров, то БП соответственно нужен в 3 раза мощнее – 270W. Если длина ленты 20, 25 и больше метров – целесообразно устанавливать несколько БП меньшей мощности.

Степень защиты зависит от расположения БП. Если располагается в сухом, закрытом помещении достаточно IP20. Если в ванной или других агрессивных условиях, то не ниже IP67.

RGB контроллер

Управление светом осуществляется через специальный контроллер. Он подключается между блоком питания и светодиодами, снабжается проводным или беспроводным пультом.


RGB контроллер

Контроллер, как и блок питания, подбирается в зависимости от суммарной мощности ленты. С тем отличием, что к необходимой мощности БП добавляют 25-30% запаса, а контроллер подбирают впритык по мощности.

Например . Нужно подключить 10 метров SMD5050 60 led. Мощность 1 метра – 14,4 Вт, соответственно нам нужен контроллер на 144 Вт.

По принципу управления различают: проводные – чаще монтируются на стену; беспроводные с управлением через:

  • Инфракрасный порт (ИК) – пульт должен находиться в зоне прямой видимости;
  • радио-канал – позволяет пользоваться в пределах дома;
  • Wi-Fi – позволяют как управлять с пульта, так и с приложения на смартфоне.

Управление освещением со смартфона

После установки и подключения, вы сможете:

  1. Устанавливать цвет вручную. Доступны как чистые цвета, так и смешанные оттенки.
  2. Регулировать яркость – аналогично обычному диммеру (подробнее про ).
  3. Автоматические режимы. К ним относится переключение цветов, быстрое мерцание, плавное изменение, плавные затухания и другие алгоритмы.

А если мощности RGB контроллера не хватает, чтобы подключить все освещение (больше 20 метров)? Можно установить 2 контроллера, но управлять светом одной комнаты придется с двух пультов, что не удобно и дорого. Второй (правильный) вариант — использовать RGB усилитель.

RGB усилитель (led amplifier)

Этот прибор позволяет усиливать и передавать дальше по цепи сигнал от контроллера. Таким образом, задействовав несколько усилителей, можно собрать контур освещения любой длины.


Rgb усилитель (led amplifier)

Усилитель устанавливается в разрыв ленты и имеет отдельное подключение к блоку питания (про подключение ниже). Мощность подбираем исходя из остатка ленты, которой не хватает мощности контроллера.

Некоторые думают, что усилитель нужен для увеличения яркости и его нужно использовать даже для отрезка до 5 метров. Это в корне не верно.

Наглядный пример . Нужно подключить 20м SMD 3528 (14,4 Вт/м), общей мощностью 288 Вт. В наличии у нас только контроллер с мощностью 216 Вт и блок питания на 300W. Соответственно нужен усилитель:

288 Вт — 216 Вт = 72 Вт

Мощность БП 300 Вт, его достаточно для питания контроллера и усилителя. В случае если мощности БП недостаточно (например 250W), нужен отдельный БП для усилителя.

Подключение светодиодной RGB ленты

Правильный порядок подключения элементов цепи выглядит следующим образом:

Правильный порядок подключения

Запомните. Участки ленты, длиной больше 5 метров, должны подключаться только параллельно.

Что будет, если подключить последовательно?

Во-первых, вы заметно потеряете в яркости на конце участка. Хотя светодиоды и имеют очень малое сопротивление, но потери есть. При такой протяженности на конце напряжение будет порядка 10В. Пониженное напряжение даст пониженную яркость, уже заметную для глаза.


Неправильное подключение
Правильное подключение

Во-вторых, токопроводящие дорожки ленты рассчитаны на максимальную длину 5м. Подключив последовательно еще 5, дорожки будут перегреваться и освещение скорее всего перегорит в самом начале участка.


Соединять ленту между собой можно с помощью пайки или клеммами. Для одноцветных вариантов продаются двухвыводные клеммы (коннекторы), для RGB – четырёх или пяти. Уточняйте этот момент при покупке.

Блок питания подключается в сеть 220В (клеммы AC, полярность не важна), преобразует переменное напряжение в постоянное 12В (клеммы V+, V-). При подключении следующих элементов цепи важно соблюдать полярность.


Клеммы подключения на БП

RGB контроллер подключается после блока питания (с соблюдением полярности), а в него подключается ргб лента. Каждый вывод на корпусе предназначен для конкретного вывода светодиодов. Если перепутаете местами, ничего страшного не произойдет, просто цвета будут перепутаны.


Клеммы подключения контроллера к светодиодам

В результате готовая схема в сборе должна иметь вид:


Усилитель внешне похож на контроллер, отдельно подключается к БП, только имеет не одну плашку с клеммами, а две. Маркируется чаще всего как Led Amplifier, устанавливается в разрыв ленты. Подключается по схеме:


Назначение клемм led amplifier

Разберем теперь схемы подключения лент разной длины с усилителем и без, с одним или несколькими блоками питания.

Схема подключения RGB светодиодной ленты без усилителя

Это простейшая схема включения rgb светодиодной ленты длиной до 5 метров через контроллер с пультом.


Электрическая схема подключения RGB освещения

Для подключения светодиодной RGB ленты длиной 10 или 15 метров, убедитесь, что хватает мощности контроллера и БП (с запасом), и подключайте по следующей схеме:


Схема подключения 10 или 15

Схема подключения ленты с RGB усилителем

Усилитель используем, если не хватает мощности контроллера. Если мощность блока питания позволяет подключить контроллер и усилитель, используем следующую схему:

Когда суммарная мощность контроллера и усилителя выше мощности БП или блок такой мощности использовать нерационально (большой, сильно греется или шумит), тогда подключаем led amplifier к отдельному питанию по схеме:


По такой схеме наращивать суммарную длину ленты можно сколько угодно. Вся она будет управляться с одного пульта.

Помимо последовательного подключения, как в примерах выше, усилители можно подключать параллельно.

Схема параллельного подключения нескольких RGB усилителей с одним блоком питания.


Схема с несколькими параллельными усилителями с отдельным питанием.


Схема: несколько параллельных усилителей с отдельными БП

Правильная схема подключения 20 метров RGB ленты показана на видео.

Типичный ошибки при подключении

Последовательное подключение более 5 метров ленты. Этого делать нельзя.

Скрутки вместо пайки проводов (или коннекторов). Если не хотите паять, используйте коннекторы, они копеечные.

Несоблюдение порядка подключения: блок питания ⇒ контроллер ⇒ лента ⇒ усилитель ⇒ лента.

Экономия на блоке питания, покупая «впритык» по мощности. К сожалению, светодиоды гуляют как в плюс так и минус по потребляемым Ваттам. Покупая БП без 20-25% запаса, он будет работать на износ и через год вы купите новый, но уже с запасом.

Покупка контроллера излишней мощности. Хуже не будет, но деньги переплатите. Правильно подбирать по мощности 1 к 1.

Выбор очень мощных лент и монтаж без теплоотвода. Например SMD5050 120 led/m потребляет 28,8 Вт/м. При такой мощности светодиоды греются достаточно сильно и конструкцию нужно монтировать на теплоотвод – алюминиевый профиль. В противном случае диоды начинают деградировать, терять мощность и перегорать.

Готовые RGB лампочки под цоколь с пультом управления

Отдельно стоит упомянуть про готовые RGB изделия под цоколь E14 или E27.

Такие лапочки бывают в совершенно корпусах и исполнениях. Внутри лампа содержит компактный драйвер для питания от сети 220В, контроллер и трехцветные светодиоды.

Для полноценного освещения комнаты она не подойдет, т.к. несколько ламп синхронизировать в одну систему не получится. Используется как ночник или декор. Потребление 1-3 Вт/ч. Стоимость стартует от 3$ за Китай.

Электронный контроллер довольно дорогостоящее изделие, поэтому есть смысл отремонтировать его самому.

Вскрывается корпус устройства с помощью плоской отвертки, разжиманием тонких боковых стенок в стороны. Освободив донышко контроллера от зацепления, можно добраться до печатной платы, которая обычно фиксируется лишь несколькими каплями силиконового клея.

После извлечения печатной платы, внимательно осмотрите её на наличие следов перегрева, оторванных гибких проводов или нарушения пайки коаксиального разъема питания.

После остается лишь проверить полевые транзисторы в силовых ключах. Две микросхемы контроллера и инфракрасного приемника выходят из строя очень редко, гораздо чаще перегорают именно транзисторы. Как уже говорилось, из-за подключения к контроллеру слишком длинной светодиодной ленты, когда через ключи идет недопустимо высокий ток.

Хотя применяемые в корпусных RGB-контроллерах полевые транзисторы по своим характеристикам рассчитаны на ток до 12 А, но устанавливаются они не на радиатор. Поэтому допустимый ток нагрузки для них ограничивается в 2 А. Дольше всего прослужит контроллер в пластмассовом корпусе, который не нагружается током свыше 1.5 А.

Разом все три силовых транзистора перегорают очень редко, чаще всего только тот, что находится посередине. Окруженный остальными двумя транзисторами, он охлаждается хуже всего.

Проверить работу транзисторов можно, имея самый простой мультиметр. При включенном режиме свечения белым цветом на затворе каждого транзистора должно быть напряжение 5 В, а на стоках, там где припаиваются провода на светодиодную ленту, напряжение должно составлять 12 В. Если какой-то транзистор не дает такие показания, то он подлежит замене.

Полевые транзисторы P3055LD, P3055LDG, PHD3355L и их аналоги в корпусе для поверхностного монтажа DPAK (ТО-252) можно найти на неисправных материнских платах компьютеров.

В случае, когда напрямую с ножки микросхемы, перед токоограничивающим резистором, нет напряжения 5 В на затвор силового транзистора, то испорченный микроконтроллер ремонтировать нецелесообразно. Пробитая микросхема стоит дорого, да и перепаивать её сложно.

Трёхфазные электродвигатели Принцип действия Самодельный бесперебойник для компьютера Самонаводящиеся солнечные панели с управлением от мобильника - Этап 9: привод наклона панелей