Как получаются сложные эфиры. Номенклатура и изомерия. Применение сложных эфиров

Важнейшими представителями сложных эфиров являются жиры.

Жиры, масла

Жиры – это сложные эфиры глицерина и высших одноатомных . Общее название таких соединений – триглицериды или триацилглицерины, где ацил – остаток карбоновой кислоты -C(O)R. В состав природных триглицеридов входят остатки насыщенных кислот (пальмитиновой C 15 H 31 COOH, стеариновой C 17 H 35 COOH) и ненасыщенных (олеиновой C 17 H 33 COOH, линолевой C 17 H 31 COOH). Высшие карбоновые кислоты, которые входят в состав жиров имеют всегда четное количество атомов углерода (С 8 – С 18) и неразветвленный углеводородный остаток. Природные жиры и масла – это смеси глицеридов высших карбоновых кислот.

Состав и строение жиров могут быть отражены общей формулой:

Этерификация — реакция образования сложных эфиров.

В состав жиров могут входить остатки как предельных, так и непредельных карбоновых кислот в различных сочетаниях.

В обычных условиях жиры, содержащие в своем составе остатки непредельных кислот, чаще всего бывают жидкими. Их называют маслами . В основном, это жиры растительного происхождения — льняное, конопляное, подсолнечное и другие масла (исключения пальмовое и кокосовое масла – твердые в обычных условиях). Реже встречаются жидкие жиры животного происхождения, например рыбий жир. Большинство природных жиров животного происхождения при обычных условиях – твердые (легкоплавкие) вещества и содержат в основном остатки предельных карбоновых кислот, например бараний жир.
Состав жиров определяет их физические и химические свойства.

Физические свойства жиров

Жиры нерастворимы в воде, не имеют четкой температуры плавления и значительно увеличиваются в объеме при плавлении.

Агрегатное состояние жиров твердое, это связано с тем, что в состав жиров входят остатки предельных кислот и молекулы жиров способны к плотной упаковке. В состав масел, входят остатки непредельных кислот в cis – конфигурации, следовательно плотная упаковка молекул невозможна, и агрегатное состояние – жидкое.

Химические свойства жиров

Жиры (масла) являются сложными эфирами и для них характерны реакции сложных эфиров.

Понятно, что для жиров, содержащих остатки ненасыщенных карбоновых кислот, характерны все реакции непредельных соединений. Они обесцвечивают бромную воду, вступают в другие реакции присоединения. Наиболее важная в практическом плане реакция – гидрирование жиров. Гидрированием жидких жиров получают твердые сложные эфиры. Именно эта реакция лежит в основе получения маргарина — твердого жира из растительных масел. Условно этот процесс можно описать уравнением реакции:

Все жиры, как и другие сложные эфиры, подвергаются гидролизу:

Гидролиз сложных эфиров- обратимая реакция. Чтобы в сторону образования продуктов гидролиза, его проводят в щелочной среде (в присутствие щелочей или Na 2 CO 3). В этих условиях гидролиз жиров протекает обратимо, и приводит к образованию солей карбоновых кислот, которые называются . жиров в щелочной среде называют омылением жиров .

При омылении жиров образуются глицерин и мыла – натриевые и калиевые соли высших карбоновых кислот:

Омыление – щелочной гидролиз жиров, получение мыла.

Мыла – смеси натриевых (калиевых) солей высших предельных карбоновых кислот (натриевое мыло – твердое, калиевое — жидкое).

Мыла являются поверхностно-активными веществами (сокращенно: ПАВами, детергентами). Моющее действие мыла связано с тем, что мыла эмульгируют жиры. Мыла образуют мицеллы с загрязняющими веществами (условно — это жиры с различными включениями).

Липофильная часть молекулы мыла растворяется в загрязняющем веществе, а гидрофильная часть оказывается на поверхности мицеллы. Мицеллы заряжены одноименно, следовательно отталкиваются, при этом загрязняющее вещество и вода превращается в эмульсию (практически – это грязная вода).

В воде также происходит мыла, при этом создается щелочная среда.

Мыла нельзя использовать в жесткой и морской воде, так как образующиеся при этом стеараты кальция (магния) в воде нерастворимы.

Номенклатура

Названия сложных эфиров производят от названия, углеводородного радикал а и названия кислоты, в котором вместо окончания "-овая кислота" используют суффикс "ат" (как и в названиях неорганических солей: карбонат натрия, нитрат хрома), например:



(Фрагменты молекул и соответствующие им фрагменты названий выделены одинаковым цветом.)


Сложные эфиры обычно рассматривают как продукты реакции между кислотой и спиртом, например, бутилпропионат можно воспринимать как результат взаимодействия пропионовой кислоты и бутанола.


Если используют тривиальное название исходной кислоты, то в название соединения включают слово «эфир» , например, С 3 Н 7 СООС 5 Н 11 – амиловый эфир масляной кислоты.

Гомологческий ряд

Изомерия

Для сложных эфиров характерны три вида изомерии:


1. Изомерия углеродной цепи, начинается по кислотному остатку с бутановой кислоты, по спиртовому остатку - с пропилового спирта, например:




2. Изомерия положения сложноэфирной группировки -СО-О- . Этот вид изомерии начинается со сложных эфиров, в молекулах которых содержится не менее 4 атомов углерода, на­пример:



3. Межклассовая изомерия, сложные эфиры (алкилалканоаты) изомерны предельным монокарбоновым кислотам; например:



Для сложных эфиров, содержащих непредельную кислоту или непредельный спирт, возможны еще два вида изомерии: изомерия положения кратной связи; цис-транс-изомерия.

Физические свойства

Сложные эфиры низших гомологов кислот и спиртов - бесцветные легкокипящие жидкости с приятным запахом; используются как ароматические добавки к пищевым продуктам и в парфюмерии. В воде сложные эфиры растворяются плохо.

Способы получения

1. Извлечение из природных продуктов


2. Взаимодействие кислот со спиртами (реакции этерификации); например:



Химические свойства

1. Наиболее характерны для сложных эфиров реакции кислотного или щелочного гидролиза (омыление). Это реакции, обратные реакциям этерификации. Например:




2. Восстановление (гидрирование) сложных зфиров, в результате которого образуются спирты (один или два); например:



Сло́жные эфи́ры - производные оксокислот (как карбоновых, так и минеральных) RkE(=O)l(OH)m, (l ≠ 0), формально являющиеся продуктами замещения атомов водорода гидроксилов -OH кислотной функции на углеводородный остаток (алифатический, алкенильный, ароматический или гетероароматический); рассматриваются также как ацилпроизводные спиртов. В номенклатуре IUPAC к сложным эфирам относят также ацилпроизводные халькогенидных аналогов спиртов (тиолов, селенолов и теллуролов)

Отличаются от простых эфиров, в которых два углеводородных радикала соединены атомом кислорода (R1-O-R2).

Общая формула сложных эфиров:

Номенклатура сложных эфиров.

Название создается следующим образом: вначале указывается группа R, присоединенная к кислоте, затем – название кислоты с суффиксом «ат» (как и в названиях неорганических солей: карбонат натрия, нитрат хрома). Примеры на рис. 2

Рис. 2. НАЗВАНИЯ СЛОЖНЫХ ЭФИРОВ . Фрагменты молекул и соответствующие им фрагменты названий выделены одинаковым цветом. Сложные эфиры обычно рассматривают как продукты реакции между кислотой и спиртом, например, бутилпропионат можно воспринимать как результат взаимодействия пропионовой кислоты и бутанола.

Если используют тривиальное название исходной кислоты, то в название соединения включают слово «эфир», например, С 3 Н 7 СООС 5 Н 11 – амиловый эфир масляной кислоты.

Гомологический ряд сложных эфиров.

Общая формула сложных эфиров R1--CO---R2, где R1 и R2 - углеводные радикалы. Сложные эфиры - это производные кислот, у которых Н в гидроксиле замещен на радикал. Сложные эфиры называют по кислотам и спиртам. которые участвуют в образовании

Н-СО-О-СН3-- метилформиат или метиловый эфир муравьиной кислоты или муравьинометиловый эфир.

СН3-СО-О-С2Н5- этилацетат или этиловый эфир уксусной кислот или, уксусноэтиловый эфир..

С3Н7-СО-О-СН3 - метиловый эфир масляной кислоты или метилбутират

С3Н7-СО-О-С2Н5 - этиловый эфир масляной кислоты.или этилбутират

Короче тебе надо таблицу карбоновых кислот списать. а к ним название соли (муравьиная- формиат,уксусная- ацетат, пропионовая-пропинат.масляная бутират, валериановая-валериат, капроновая-капронат., энантовая-энантонат, щавелевая - оксалат. малоновая - малонат. янтарная- сукцинат....Смотри как образуются названия эфиров.

СН3- СО-О (это уксусная кислота без Н) --С5Н11-(это одновалентный радикал пентил(амил)- таблица) вот получается название этого эфира.

Уксусноамиловый эфир,аминовый эфир уксусной кислоты.амилацетат. Ещё смотри.

СН3СН2СН2СН2-СО-О (пентановая или валериановая к-та) ---С4Н9(это бутил) - бутилвалериат, валерианобутиловый эфир, бутиловый эфир валериановой кислоты.

Изомерия.

Для сложных эфиров характерна изомерия углеводородного скелета. Например, изомерами являются пропилацетат и изопропилацетат. Поскольку в молекуле сложного эфира содержится два углеводородных радикала - в остатке кислоты и в остатке спирта - то возможна изомерия каждого из радикалов. Например, изомерами являются пропилацетат и изопропилацетат (изомерия в спиртовом радикале) или этилбутират и этилизобутират (изомерия в кислотном радикале).

Физические свойства. Сложные эфиры - бесцветные жидкости, малорастворимые или совсем не растворимые в воде, обладают специфическим запахом (в малых концентрациях - приятным, часто фруктовым или цветочным). Сложные эфиры высших спиртов и высших кислот - твердые вещества.

Химические свойства . Наиболее характерная реакция для сложных эфиров - гидролиз. Гидролиз происходит в присутствии кислот или щелочей. При гидролизе сложного эфира в присутствии кислот образуется карбоновая кислота и спирт:

При гидролизе сложного эфира в присутствии щелочей образуются соль карбоновой кислоты и спирт:

Способы получения.

Способы получения сложных эфиров. Основные продукты и области их применения. Условия проведения реакции этерификации органических кислот со спиртами. Катализаторы процесса. Особенности технологического оформления реакционного узла этерификации.

1. Взаимодействие кислот со спиртами:

Это наиболее распространенный способ получения сложных эфиров.

2. Синтез сложных эфиров методом конденсации альдегидов:

Синтез сложных эфиров из альдегидов (реакция Тищенко) осуществляется в присутствии алкоголята алюминия, активированного хлоридом железа или, что лучше, хлоридом алюминия и окисью цинка. Данный метод имеет промышленное значение.

3. Присоединение органических кислот к алкенам:

4. Синтез сложных эфиров путем дегидрогенизации спиртов:

5. Получение сложных эфиров методом переэтерификации.

Данная реакция имеет две разновидности: реакция обмена между эфиром и спиртом спиртовыми радикалами (реакция алкоголиза):

и реакция обмена кислотными радикалами у спиртовой группы эфира:

6. Синтез эфиров из ангидридов кислот и спиртов:

7. Взаимодействие кетонов со спиртами:

8. Взаимодействие между галоидангидридами и спиртами:

9. Реакция между серебряными или калиевыми солями кислот и алифатическими галоидными производными:

10. Взаимодействие кислот с алифатическими диазосоединениями

Применение.

Некоторые сложные эфиры используют как растворители (наибольшее практическое значение имеет этилацетат). Многие сложные эфиры благодаря приятному запаху применяются в пищевой и парфюмернокосметической промышленности. Сложные эфиры непредельных кислот используют для производства оргстекла, наиболее широко для этой цели используется метилметакрилат.

На тему

«Простые и сложные эфиры»

Выполнила:Манжиева А.А.

Если исходная кислота многоосновная, то возможно образование либо полных эфиров – замещены все НО-группы, либо кислых эфиров – частичное замещение. Для одноосновных кислот возможны только полные эфиры (рис.1).

Рис. 1. ПРИМЕРЫ СЛОЖНЫХ ЭФИРОВ на основе неорганической и карбоновой кислоты

Номенклатура сложных эфиров.

Название создается следующим образом: вначале указывается группа R, присоединенная к кислоте, затем – название кислоты с суффиксом «ат» (как и в названиях неорганических солей: карбонат натрия, нитрат хрома). Примеры на рис. 2

Рис. 2. НАЗВАНИЯ СЛОЖНЫХ ЭФИРОВ . Фрагменты молекул и соответствующие им фрагменты названий выделены одинаковым цветом. Сложные эфиры обычно рассматривают как продукты реакции между кислотой и спиртом, например, бутилпропионат можно воспринимать как результат взаимодействия пропионовой кислоты и бутанола.

Если используют тривиальное (см . ТРИВИАЛЬНЫЕ НАЗВАНИЯ ВЕЩЕСТВ) название исходной кислоты, то в название соединения включают слово «эфир», например, С 3 Н 7 СООС 5 Н 11 – амиловый эфир масляной кислоты.

Классификация и состав сложных эфиров.

Среди изученных и широко применяемых сложных эфиров большинство представляют соединения, полученные на основе карбоновых кислот. Сложные эфиры на основе минеральных (неорганических) кислот не столь разнообразны, т.к. класс минеральных кислот менее многочисленен, чем карбоновых (многообразие соединений – один из отличительных признаков органической химии).

Когда число атомов С в исходных карбоновой кислоте и спирте не превышает 6–8, соответствующие сложные эфиры представляют собой бесцветные маслянистые жидкости, чаще всего с фруктовым запахом. Они составляют группу фруктовых эфиров. Если в образовании сложного эфира участвует ароматический спирт (содержащий ароматическое ядро), то такие соединения обладают, как правило, не фруктовым, а цветочным запахом. Все соединения этой группы практически нерастворимы в воде, но легко растворимы в большинстве органических растворителей. Интересны эти соединения широким спектром приятных ароматов (табл. 1), некоторые из них вначале были выделены из растений, а позже синтезированы искусственно.

Табл. 1. НЕКОТОРЫЕ СЛОЖНЫЕ ЭФИРЫ , обладающие фруктовым или цветочным ароматом (фрагменты исходных спиртов в формуле соединения и в названии выделены жирным шрифтом)
Формула сложного эфира Название Аромат
СН 3 СООС 4 Н 9 Бутил ацетат грушевый
С 3 Н 7 СООСН 3 Метил овый эфир масляной кислоты яблочный
С 3 Н 7 СООС 2 Н 5 Этил овый эфир масляной кислоты ананасовый
С 4 Н 9 СООС 2 Н 5 Этил малиновый
С 4 Н 9 СООС 5 Н 11 Изоамил овый эфир изовалериановой кислоты банановый
СН 3 СООСН 2 С 6 Н 5 Бензил ацетат жасминовый
С 6 Н 5 СООСН 2 С 6 Н 5 Бензил бензоат цветочный

При увеличении размеров органических групп, входящих в состав сложных эфиров, до С 15–30 соединения приобретают консистенцию пластичных, легко размягчающихся веществ. Эту группу называют восками, они, как правило, не обладают запахом. Пчелиный воск содержит смесь различных сложных эфиров, один из компонентов воска, который удалось выделить и определить его состав, представляет собой мирициловый эфир пальмитиновой кислоты С 15 Н 31 СООС 31 Н 63 . Китайский воск (продукт выделения кошенили – насекомых Восточной Азии) содержит цериловый эфир церотиновой кислоты С 25 Н 51 СООС 26 Н 53 . Кроме того, воски содержат и свободные карбоновые кислоты и спирты, включающие большие органические группы. Воски не смачиваются водой, растворимы в бензине, хлороформе, бензоле.

Третья группа – жиры. В отличие от предыдущих двух групп на основе одноатомных спиртов ROH, все жиры представляют собой сложные эфиры, образованные из трехатомного спирта глицерина НОСН 2 –СН(ОН)–СН 2 ОН. Карбоновые кислоты, входящие в состав жиров, как правило, имеют углеводородную цепь с 9–19 атомами углерода. Животные жиры (коровье масло, баранье, свиное сало) – пластичные легкоплавкие вещества. Растительные жиры (оливковое, хлопковое, подсолнечное масло) – вязкие жидкости. Животные жиры, в основном, состоят из смеси глицеридов стеариновой и пальмитиновой кислоты (рис. 3А,Б). Растительные масла содержат глицериды кислот с несколько меньшей длиной углеродной цепи: лауриновой С 11 Н 23 СООН и миристиновой С 13 Н 27 СООН. (как и стеариновая и пальмитиновая – это насыщенные кислоты). Такие масла могут долго храниться на воздухе, не меняя своей консистенции, и потому называются невысыхающими. В отличие от них, льняное масло содержит глицерид ненасыщенной линолевой кислоты (рис. 3В). При нанесении тонким слоем на поверхность такое масло под действием кислорода воздуха высыхает в ходе полимеризации по двойным связям, при этом образуется эластичная пленка, не растворимая в воде и органических растворителях. На основе льняного масла изготавливают натуральную олифу.

Рис. 3. ГЛИЦЕРИДЫ СТЕАРИНОВОЙ И ПАЛЬМИТИНОВОЙ КИСЛОТЫ (А И Б) – компоненты животного жира. Глицерид линолевой кислоты (В) – компонент льняного масла.

Сложные эфиры минеральных кислот (алкилсульфаты, алкилбораты, содержащие фрагменты низших спиртов С 1–8) – маслянистые жидкости, эфиры высших спиртов (начиная с С 9) – твердые соединения.

Химические свойства сложных эфиров.

Наиболее характерно для эфиров карбоновых кислот гидролитическое (под действием воды) расщепление сложноэфирной связи, в нейтральной среде оно протекает медленно и заметно ускоряется в присутствии кислот или оснований, т.к. ионы Н + и НО – катализируют этот процесс (рис. 4А), причем гидроксильные ионы действуют более эффективно. Гидролиз в присутствии щелочей называют омылением. Если взять количество щелочи, достаточное для нейтрализации всей образующейся кислоты, то происходит полное омыление сложного эфира. Такой процесс проводят в промышленном масштабе, при этом получают глицерин и высшие карбоновые кислоты (С 15–19) в виде солей щелочных металлов, представляющих собой мыло (рис. 4Б). Содержащиеся в растительных маслах фрагменты ненасыщенных кислот, как и любые ненасыщенные соединения, могут быть прогидрированы, водород присоединяется к двойным связям и образуются соединения, близкие к животным жирам (рис. 4В). Этим способом в промышленности получают твердые жиры на основе подсолнечного, соевого или кукурузного масла. Из продуктов гидрирования растительных масел, смешанных с природными животными жирами и различными пищевыми добавками, изготавливают маргарин.

Основной способ синтеза – взаимодействие карбоновой кислоты и спирта, катализируемое кислотой и сопровождаемое выделением воды. Эта реакция обратна показанной на рис. 3А. Чтобы процесс шел в нужном направлении (синтез сложного эфира), из реакционной смеси дистиллируют (отгоняют) воду. Специальными исследованиями с применением меченых атомов удалось установить, что в процессе синтеза атом О, входящий в состав образующейся воды, отрывается от кислоты (отмечено красной пунктирной рамкой), а не от спирта (нереализующийся вариант выделен синей пунктирной рамкой).

По такой же схеме получают сложные эфиры неорганических кислот, например, нитроглицерин (рис. 5Б). Вместо кислот можно использовать хлорангидриды кислот, метод применим как для карбоновых (рис. 5В), так и для неорганических кислот (рис. 5Г).

Взаимодействие солей карбоновых кислот с галоидалкилами RCl также приводит к сложным эфирам (рис. 5Г), реакция удобна тем, что она необратима – выделяющаяся неорганическая соль сразу удаляется из органической реакционной среды в виде осадка.

Применение сложных эфиров.

Этилформиат НСООС 2 Н 5 и этилацетат Н 3 СООС 2 Н 5 используются как растворители целлюлозных лаков (на основе нитроцеллюлозы и ацетилцеллюлозы).

Сложные эфиры на основе низших спиртов и кислот (табл. 1) используют в пищевой промышленности при создании фруктовых эссенций, а сложные эфиры на основе ароматических спиртов – в парфюмерной промышленности.

Из восков изготавливают политуры, смазки, пропиточные составы для бумаги (вощеная бумага) и кожи, они входят и в состав косметических кремов и лекарственных мазей.

Жиры вместе с углеводами и белками составляют набор необходимых для питания пищевых продуктов, они входят в состав всех растительных и животных клеток, кроме того, накапливаясь в организме, играют роль энергетического запаса. Из-за низкой теплопроводности жировой слой хорошо предохраняет животных (в особенности, морских – китов или моржей) от переохлаждения.

Животные и растительные жиры представляют собой сырье для получения высших карбоновых кислот, моющих средств и глицерина (рис. 4), используемого в косметической промышленности и как компонент различных смазок.

Нитроглицерин (рис. 4) – известный лекарственный препарат и взрывчатое вещество, основа динамита.

На основе растительных масел изготавливают олифы (рис. 3), составляющие основу масляных красок.

Эфиры серной кислоты (рис. 2) используют в органическом синтезе как алкилирующие (вводящие в соединение алкильную группу) реагенты, а эфиры фосфорной кислоты (рис. 5) – как инсектициды, а также добавки к смазочным маслам.

Михаил Левицкий