Использование энергии ядерной реакции. Ядерная энергия и радиоактивность Как можно использовать энергию ядра атома

Атом состоит из ядра, вокруг которого вращаются частицы, называемые электронами.

Ядра атомов это мельчайшие частицы. Они - основа для всего вещества и материи.

В них заложен большой запас энергии.

Эта энергия высвобождается в виде радиации, когда распадаются некоторые радиоактивные элементы. Радиация опасна для всего живого на земле, но вместе с тем её используют для производства электричества и в медицине.

Радиоактивность — это свойство ядер не-стабильных атомов излучать энергию. Большая часть тяжелых атомов нестабильна, а у атомов, что полегче имеются радиоизотопы, т.е. радиоактивные изотопы. Причиной появления радиоактивности служит то, что атомы стремятся получить стабильность. На сегодня известно три типа радиоактивного излучения: альфа, бета и гамма. Назвали их так по первым буквам греческого алфавита. Первыми ядро излучает альфа или бета-лучи. Но если оно все еще остается нестабильным, тогда исходят гамма-лучи. Нестабильными могут быть три атомных ядра и каждое из них может излучать какой-либо из типов лучей.


На рисунке изображены три атомных ядра.

Они нестабильны и каждый из них излучает один из трех типов лучей.

Альфа-частицы имеют в составе два протона и два нейтрона. Абсолютно таким же составом обладает и ядро атома гелия. Двигаются альфа-частицы медленно и поэтому их может задержать любой материал толще, чем бумажный лист. Они мало чем отличаются от ядер атомов гелия. Большинство учёных выдвигают версию о том, что гелий на Земле имеет естественное радиоактивное происхождение.

Бета-частицы - это электроны, обладающие огромной энергией. Их образование происходит при распаде нейтронов. Бета-частицы также не особо быстры, могут пролетать по воздуху до одного метра. Поэтому препятствием на их пути может стать медный лист миллиметровой толщины. А если выставить заслон из свинца в 13 мм или из слоя воздуха в 120 метров, то можно уменьшить гамма-излучение вдвое.

Гамма-лучи - это электромагнитное излучение обладающее огромной энергией. Его скорость движения равна скорости света.

Транспортировку радиоактивных веществ производят в специальных свинцовых контейнерах с толстыми стенами для предотвращения утечки радиации.

Воздействие радиации крайне опасно на человека.

Она вызывает ожоги, катаракту, провоцирует развитие рака.

Измерить уровень радиации помогает специальный прибор - счётчик Гейгера, который издаёт щёлкающие звуки при появлении источника радиации.

Когда ядро испускает частицы, то оно превращается в ядро другого элемента, изменив при этом свой атомный номер. Это называется периодом распада элемента. Но если вновь образовавшийся элемент по-прежнему нестабилен, то процесс распада продолжается. И так до тех пор, пока элемент не станет стабилен. У многих радиоактивных элементов этот период занимает десятки, сотни и даже тысячи лет, поэтому принято измерять период полураспада. Взять, к примеру, атом плутония-2 с массой 242. После излучения им альфа-частиц с относительной атомной массой 4, он становится атомом урана-238 с такой же атомной массой.

Ядерные реакции.

Ядерные реакции делятся на два вида: ядерный синтез и деление(расщепление) ядра.

Синтез или иначе "соединение" подразумевает под собой соединение двух ядер в одно большое под воздействием очень высокой температуры. В этот момент выделяется большое количество энергии.

При делении и расщеплении происходит процесс деления ядра, освобождая при этом ядерную энергию.

Происходит это тогда, когда ядро бомбардируется нейтронами в специальном устройстве по д названием "ускоритель частиц".

При делении ядра и излучения нейтронов, выделяется просто колоссальное количество энергии.

Известно, что для получения большого количества электроэнергии необходима лишь единица массы радио топлива. Ни одна другая электростанция ничем подобным похвастаться не может.

Ядерная энергия.

Таким образом, энергию, что высвобождается при ядерной реакции, используют для получения электричества или как источник энергии в подводных и надводных судах. Процесс получения электричества на атомной станции основан на делении ядер в ядерных реакторах. В огромном резервуаре находятся стержни из радиоактивного вещества (например, урана).

Они атакуются нейтронами и расщепляются, выделяя энергию. Новые нейтроны расщепляются дальше и дальше. Это называется цепной реакцией. Эффективность подобного метода получения электричества невероятно высока, но меры безопасности и условия захоронения чересчур дорогостоящие.

Однако человечество использует ядерную энергию не только в мирных целях. В середине 20-го века было испытано и опробовано ядерное оружие.

Его действие заключается в выбросе огромного потока энергии, который приводит к взрыву. Когда заканчивалась Вторая мировая война, США, применили против Японии ядерное оружие. Они сбросили на города Хиросиму и Нагасаки атомные бомбы.

Последствия были просто катастрофическими.

Одних человеческих жертв было несколько сотен тысяч.

Но на этом учёные не остановились и разработали водородное оружие.

Их отличи в том, что ядерные бомбы основаны на реакциях деления ядер, а водородные на реакции синтеза.

Радиоуглеродный метод.

Для получения информации о времени смерти организма, применяют метод радиоуглеродного анализа. Известно, что в живой ткани содержится некоторое количество углерода-14, который является радиоактивным изотопом углерода. Период полураспада, которого равен 5700 лет. После смерти организма запасы углерода-14 в тканях уменьшаются, изотоп распадается, и по оставшемуся его количеству определяют время смерти организма. Так, например, можно узнать, как давно случилось извержение вулкана. Это можно узнать по застывшим в лаве насекомым и пыльце.

Каким образом ещё используется радиоактивность.

Радиацию используют и в промышленной сфере.

Гамма-лучами облучают продукты питания, чтобы сохранить их свежесть.

В медицине применяют радиацию при исследовании внутренних органов.

Также есть методика под названием радиотерапия. Это когда больного облучают малыми дозами, уничтожая раковые клетки в его организме.


Введение

В 1939 году впервые удалось расщепить атом урана. Прошло еще 3 года, и в США был создан реактор для осуществления управляемой ядерной реакции. Затем в 1945г. была изготовлена и испытана атомная бомба, а в 1954г. в нашей стране была пущена в эксплуатацию первая в мире атомная электростанция. Во всех этих случаях использовалась огромная энергия распада атомного ядра. Еще большее количество энергии выделяется в результате синтеза атомных ядер. В 1953 году в СССР впервые была испытана термоядерная бомба, и человек научился воспроизводить процессы, происходящие на солнце. Пока использовать для мирных целей ядерный синтез нельзя, но, если это станет возможным, то люди обеспечат себя дешевой энергией на миллиарды лет. Эта проблема - одно из важнейших направлений современной физики на протяжении последних 50 лет.

Ядерная энергия выделяется при распаде или синтезе атомных ядер. Любая энергия - физическая, химическая, или ядерная проявляется своей способностью выполнять работу, излучать высокую температуру или радиацию. Энергия в любой системе всегда сохраняется, но она может быть передана другой системе или изменена по форме.

Приблизительно до 1800 года основным топливом было дерево. Энергия древесины получена из солнечной энергии, запасенной в растениях в течение их жизни. Начиная с Индустриальной революции, люди зависели от полезных ископаемых - угля и нефти, энергия которых также происходила из запасенной солнечной энергии. Когда топливо типа угля сжигается, атомы водорода и углерода, содержащиеся в угле, объединяются с атомами кислорода воздуха. При возникновении водного или углеродистого диоксида происходит выделение высокой температуры, эквивалентной приблизительно 1.6 киловатт-час на килограмм или приблизительно 10 электрон-вольт на атом углерода. Это количество энергии типично для химических реакций, приводящих к изменению электронной структуры атомов. Части энергии, выделенной в виде высокой температуры, достаточно для поддержания продолжения реакции.

Атом состоит из маленького, массивного, положительно заряженного ядра, окруженного электронами. Ядро составляет основную часть массы атома. Оно состоит из нейтронов и протонов (общее название нуклоны), связанных между собой очень большими ядерными силами, намного превышающими электрические силы, которые связывают электроны с ядром. Энергия ядра определяется тем, насколько сильно его нейтроны и протоны удерживаются ядерными силами. Энергия нуклона - это энергия, требуемая, чтобы удалить один нейтрон или протон из ядра. Если два легких ядра соединяются, чтобы сформировать более тяжелое ядро или если тяжелое ядро распадается на два более легких, то в обоих случаях выделяется большое количество энергии.

Ядерная энергия, измеренная в миллионах электрон-вольт, образуется в результате синтеза двух легких ядер, когда, два изотопа водорода, (дейтерия) объединяются в результате следующей реакции:

При этом образуется атом гелия с массой 3 а.е.м. , свободный нейтрон, и 3.2 Мэв, или 5.1 * 10 6 Дж (1.2 * 10 3 кал).

Ядерная энергия также образуется, когда происходит расщепление тяжелого ядра (к примеру ядра изотопа урана-235) вследствие поглощения нейтрона:

В итоге распадаясь на цезий-140, рубидий-93, три нейтрона, и 200 Мэв, или 3.2 10 16 Дж (7.7 10 8 кал). Ядерная реакция распада выпускает в 10 миллионов раз больше энергии чем при аналогичной химической реакции.

Ядерный Синтез


Выделение ядерной энергии может происходить в нижнем конце кривой энергии при соединение двух легких ядер в одно более тяжелое. Энергия, излучаемая звездами подобно солнцу, является результатом таких же реакций синтеза в их недрах.

При огромном давлении и температуре 15 миллионов градусов C 0 . Существующие там водородные ядра объединяется согласно уравнению (1) и в результате их синтеза образуется энергия солнца.

Ядерный синтез был впервые достигнут на Земле в начале 30-ых годов. В циклотроне - ускорителе элементарных частиц - производили бомбардировку ядер дейтерия. При этом происходило выделение высокой температуры, однако, эту энергию не удавалось использовать. В 1950-ых годах первый крупномасштабный, но не контролируемый процесс выделения энергии синтеза был продемонстрирован в испытаниях термоядерного оружия Соединенными Штатами, СССР, Великобританией и Францией. Однако это была кратковременная и неуправляемая реакция, которая не могла быть использована для получения электроэнергии.

В реакциях распада нейтрон, который не имеет никакого электрического заряда, может легко приближаться и реагировать с расщепляемым ядром, например урана-235. В типичной реакции синтеза, однако, реагирующие ядра имеют положительный электрический заряд и поэтому по закону Кулона отталкиваются, таким образом силы, возникающие вследствие закона Кулона, должны быть преодолены до того, как ядра смогут соединиться. Это происходит, когда температура реагирующего газа - достаточно высока от 50 до 100 миллионов градусов C 0 . В газе тяжелых водородных изотопов дейтерия и трития при такой температуре происходит реакция синтеза:

выделяя приблизительно 17.6 Мэв. Энергия появляется сначала, как кинетическая энергия гелия-4 и нейтрона, но скоро проявляется в виде высокой температуры в окружающих материалах и газе.

Если при такой высокой температуре, плотность газа составляет 10 -1 атмосфер (т.е. почти вакуум), то активный гелий-4 может передавать свою энергию окружающему водороду. Таким образом, поддерживается высокая температура и создаются условия для протекания самопроизвольной реакции синтеза. При этих условиях происходит «ядерное воспламенение ».

Достижению условий управляемого термоядерного синтеза препятствуют несколько основных проблем. Во-первых, нужно нагреть газ до очень высокой температуры. Во-вторых, необходимо контролировать количество реагирующих ядер в течение достаточно долгого времени. В-третьих, количество выделяемой энергии должно быть больше, чем было затрачено для нагревания и ограничения плотности газа. Следующая проблема - накопление этой энергии и преобразование ее в электричество.

При температурах даже 100000 C 0 все атомы водорода полностью ионизируются. Газ состоит из электрически нейтральной структуры: положительно заряженных ядер и отрицательно заряженных свободных электронов. Это состояние называется плазмой.

Плазма, достаточно горяча для синтеза, но не может находиться в обычных материалах. Плазма охладилась бы очень быстро, и стенки сосуда были бы разрушены при перепаде температур. Однако, так как плазма состоит из заряженных ядер и электронов, которые двигаются по спирали вокруг силовых линий магнитного поля, плазма может содержаться в ограниченной магнитным полем области без того, чтобы реагировать со стенками сосуда.

В любом управляемом устройстве синтеза выделение энергии должно превышать энергию, требуемую, для ограничения и нагрева плазмы. Это условие может быть выполнено, когда время заключения плазмы t и ее плотность n превышает приблизительно 10 14 . Отношения tn > 10 14 называются критерием Лоусона.

Многочисленные схемы магнитного заключения плазмы были испытаны начиная с 1950 в Соединенных Штатах, СССР, Великобритании, Японии и в других местах. Термоядерные реакции наблюдали, но критерий Лоусона редко превышал 10 12 . Однако одно устройство “Токамак” (это название – сокращение русских слов: ТОроидальная КАмера с МАгнитными Катушками), первоначально предложенное в СССР Игорем Таммом и Андреем Сахаровым начало давать хорошие результаты в начале 1960-ых.

Токамак - это тороидальная вакуумная камера, на которую надеты катушки, создающие сильное тороидальное магнитное поле. Тороидальное магнитное поле равное приблизительно 50000 Гаусс поддерживается внутри этой камеры мощными электромагнитами. Продольный поток нескольких миллионов ампер создается в плазме катушками трансформатора. Замкнутые магнитные полевые линии устойчиво ограничивают плазму.

Основанные на успешном действии экспериментального маленького "Tокамака" в нескольких лабораториях в начале 1980-ых были построены два больших устройства, один в Принстонском Университете в Соединенных Штатах и один в СССР. В "Tокамаке" высокая плазменная температура возникает в результате выделения тепла при сопротивлении мощного тороидального потока, а также путем дополнительного нагревания при введении нейтрального луча, что в совокупности должно приводить к воспламенению.

Другой возможный путь получить энергию синтеза - также инерционного свойства. В этом случае топливо - тритий или дейтерий содержится в пределах крошечного шарика, бомбардируемого с нескольких сторон импульсным лазерным лучом. Это приводит к взрыву шарика, с образованием термоядерной реакции, которая зажигает топливо. Несколько лабораторий в Соединенных Штатах и в других местах в настоящее время исследуют эту возможность. Прогресс исследования синтеза был многообещающим, но задача создания практических систем для устойчивой реакции синтеза, которая производит большее количество энергии чем потребляет, пока остается не решенной и потребует еще много времени и сил.

Атомная энергия - энергия, выделяющаяся в процессе превращения атомных ядер. Источником атомной энергии является внутренняя энергия атомного ядра.

Более точное название атомной энергии - ядерная энергия. Различают два получения ядерной энергии:
- осуществление ядерной цепной реакции деления тяжелых ядер;
- осуществление термоядерной реакции синтеза легких ядер.

Мифы об атомной энергии

Мировые запасы урана иссякают. Об истощении природных ресурсов в наше время знает даже ребёнок. И действительно, запасы многих полезных ископаемых стремительно иссякают. Запасы урана в настоящее время оцениваются как "относительно ограниченные", но это не так уж и мало. Для сравнения, урана столько же, сколько олова и в 600 раз больше, чем золота. По предварительной оценке учёных, запасов этого радиоактивного метала должно хватить человечеству на ближайшие 500 лет. К тому же современные реакторы могут использовать в качестве топлива торий, а его мировые запасы в свою очередь превышают запасы урана в 3 раза.

Атомная энергия крайне отрицательно воздействует на окружающую среду. Представители различных антиатомных кампаний часто заявляют, что атомная энергия содержит "скрытые эмиссии" газов, которые оказывают отрицательное воздействие на окружающую среду. Но по всем современным сведениям и подсчетам атомная энергия даже по сравнению с солнечной или гидроэнергией, которые считаются практически экологически безвредными, содержит достаточно низкий уровень углерода.

Ветровая и энергия волн гораздо менее вредны с точки зрения экологии. В действительности же ветряные станции строятся или уже построены на важнейших прибрежных участках, и само строительство уже определенно загрязняет окружающую среду. А строительство волновых станций еще является экспериментальным, и его влияние на окружающую среду точно не известно, поэтому их сложно назвать намного более экологически устойчивыми по сравнению с атомной энергией.

На территории нахождения атомных реакторов выше уровень заболевания лейкемией. Уровень заболевания лейкемией среди детей в близости от АЭС не выше чем, например, в районах около так называемых, органических ферм. Территория распространения этого заболевания может охватить как территорию вокруг атомной станции, так и национальный парк, степень опасности абсолютно одинакова.

Атомные реакторы производят слишком много отходов. На самом деле атомная энергия производит минимальное количество отходов, вопреки заявлениям защитников окружающей среды. Земля вовсе не заполнена радиоактивными отходами. Современные технологии производства атомной энергии позволят свести к минимуму долю от общего количества радиоактивных отходов в течение ближайших 20-40 лет.

Атомная энергия способствует распространению в мире оружия. Увеличение количества атомных станций приведет как раз к сокращению распространения оружия. Атомные боеголовки производят реакторное топливо очень хорошего качества, а реакторные боеголовки производят около 15% мирового ядерного топлива. Возрастающий спрос на реакторное топливо, как предполагается, "отвлечет" подобные боеголовки от потенциальных террористов.

Террористы выбирают атомные реакторы в качестве мишеней. После трагедии 11 сентября 2001 года был проведен ряд научных исследований с целью определения вероятности нападения на атомные объекты. Однако последние британские исследование доказали, что атомные станции вполне способны "выдержать" даже налет Боинга 767-400. Новое поколение атомных реакторов будет сконструировано с усиленным уровнем защиты от потенциальных атак всех существующих самолетов, а также планируется введение специальных функций систем безопасности, которые могут активизироваться без вмешательства человека или компьютерного контроля.

Атомная энергия является очень дорогостоящей. Спорное утверждение. По данным британского министерства торговли и промышленности, расходы на производство электричества атомными станциями, превышают лишь цены на газ, и в 10-20 раз меньше энергии, произведенной береговыми ветряными станциями. Кроме этого, 10% от общей стоимости атомной энергии приходится на уран, и атомная энергия не настолько подвержена постоянным колебаниям цен на такие виды топлива, как газ или нефть.

Вывод атомной станции из эксплуатации обходится очень дорого. Подобное высказывание распространяется только на атомные станции, построенные ранее. Многие из существующих ныне атомных реакторов были построены без расчета на последующий вывод их из эксплуатации. Но при строительстве новых атомных станций этот момент уже будет учитываться. Однако стоимость вывода АЭС из эксплуатации будет входить в стоимость электричества, за которое платят потребители. Современные реакторы рассчитаны на работу в течение 40 лет, и сумма за вывод их из эксплуатации будет выплачиваться в течение этого длительного срока, а потому будет незначительно сказываться на цене электричества.

Строительство АЭС занимает слишком долгое время. Это, пожалуй, самое немотивированное из всех заявлений антиатомных кампаний. Строительство АЭС занимает от 4 до 6 лет, что сопоставимо со сроками возведения "традиционных" электростанций. Модульное строение новых АЭС может несколько ускорить процесс возведения атомных электростанций.

университет управления”
Кафедра управления инновациями
по дисциплине:”Концепции современного естествознания”
Презентация на тему: Ядерная
энергия: её сущность и
использование в технике и
технологиях

План презентации

Введение
Ядерная энергия.
История открытия ядерной энергии
Ядерный реактор: история создания, строение,
основные принципы, классификация реакторов
Сферы использования ядерной энергии
Заключение
Используемые источники

Введение

Энергетика - важнейшая отрасль народного хозяйства,
охватывающая энергетические ресурсы, выработку, преобразование,
передачу и использование различных видов энергии. Это основа
экономики государства.
В мире идет процесс индустриализации, который требует
дополнительного расхода материалов, что увеличивает энергозатраты.
С ростом населения увеличиваются энергозатраты на обработку почвы,
уборку урожая, производство удобрений и т.д.
В настоящее время многие природные легкодоступные ресурсы
планеты исчерпываются. Добывать сырье приходится на большой
глубине или на морских шельфах. Ограниченные мировые запасы
нефти и газа, казалось бы, ставят человечество перед перспективой
энергетического кризиса.
Однако использование ядерной энергии дает человечеству
возможность избежать этого, так как результаты фундаментальных
исследований физики атомного ядра позволяют отвести угрозу
энергетического кризиса путем использования энергии, выделяемой
при некоторых реакциях атомных ядер

Ядерная энергия

Ядерная энергия (атомная энергия) - это энергия,
содержащаяся в атомных ядрах и выделяемая
при ядерных реакциях. Атомные электростанции,
вырабатывающие эту энергию, производят 13–14%
мирового производства электрической энергии. .

История открытия ядерной энергии

1895 г. В.К.Рентген открывает ионизирующее излучение (X- лучи)
1896 г. А.Беккерель обнаруживает явления радиоактивности.
1898 г. М.Склодовская и П.Кюри открывают радиоактивные элементы
Po (Полоний) и Ra (Радий).
1913 г. Н.Бор разрабатывает теорию строения атомов и молекул.
1932 г. Дж.Чадвик открывает нейтроны.
1939 г. О.Ган и Ф.Штрассман исследуют деление ядер U под действием
медленных нейтронов.
Декабрь 1942 г. - Впервые получена самоподдерживающаяся
управляемая цепная реакция деления ядер на реакторе СР-1 (Группа
физиков Чикагского университета, руководитель Э.Ферми).
25 декабря 1946 г. - Первый советский реактор Ф-1 введен в
критическое состояние (группа физиков и инженеров под руководством
И.В.Курчатова)
1949 г. - Введен в действие первый реактор по производству Pu
27 июня 1954 г. - Вступила в строй первая в мире атомная
электростанция электрической мощностью 5 МВт в Обнинске.
К началу 90-х годов в 27 странах мира работало более 430 ядерных
энергетических реакторов общей мощностью ок. 340 ГВт.

История создания ядерного реактора

Энрико Ферми (1901-1954)
Курчатов И.В. (1903-1960)
1942г. в США под руководством Э.Ферми был построен первый
ядерный реактор.
1946г. был запущен первый советский реактор под руководством
академика И.В.Курчатова.

Конструкция реактора АЭС (упрощенно)

Основные элементы:
Активная зона с ядерным топливом и
замедлителем;
Отражатель нейтронов, окружающий
активную зону;
Теплоноситель;
Система регулирования цепной реакции,
в том числе аварийная защита
Радиационная защита
Система дистанционного управления
Основная характеристика реактора -
его выходная мощность.
Мощность в 1 МВт - 3·1016 делений
в 1 сек.
Схематическое устройство АЭС
Разрез гетерогенного реактора

Строение ядерного реактора

Коэффициент размножения нейтронов

Характеризует быстроту роста числа
нейтронов и равен отношению числа
нейтронов в одном каком-либо поколении
цепной реакции к породившему их числу
нейтронов предшествующего поколения.
k=Si/ Si-1
k<1 – Реакция затухает
k=1 – Реакция протекает стационарно
k=1.006 – Предел управляемости
реакции
k>1.01 – Взрыв (для реактора на
тепловых нейтронах энерговыделение
будет расти в 20000 раз в секунду).
Типичный для урана ход цепной реакции;

10. Управление реактором осуществляется при помощи стержней, содержащих кадмий или бор.

Выделяют следующие типы стержней (по цели применения):
Компенсирующие стержни – компенсируют изначальный избыток
реактивности, выдвигаются по мере выгорания топлива; до 100
штук
Регулирующие стержни – для поддержания критического
состояния в любой момент времени, для остановки, пуска
реактора; несколько штук
Примечание:Выделяют следующие типы стержней (по цели
применения):
Регулирующие и компенсирующие стержни не обязательно
представляют собой различные элементы по конструктивному
оформлению
Аварийные стержни - сбрасываются под действием силы тяжести
в центральную часть активной зоны; несколько штук. Может
дополнительно сбрасываться и часть регулирующих стержней.

11. Классификация ядерных реакторов по спектру нейтронов

Реактор на тепловых нейтронах («тепловой реактор»)
Необходим замедлитель быстрых нейтронов (вода, графит, бериллий) до тепловых
энергий (доли эВ).
Небольшие потери нейтронов в замедлителе и конструкционных материалах =>
природный и слабообогащённый уран может быть использован в качестве топлива.
В мощных энергетических реакторах может использоваться уран с высоким
обогащением - до 10 %.
Необходим большой запас реактивности.
Реактор на быстрых нейтронах («быстрый реактор»)
Используются карбид урана UC, PuO2 и пр. в качестве замедлителя и замедление
нейтронов гораздо меньше (0,1-0,4 МэВ).
В качестве топлива может использоваться только высокообогащенный уран. Но
при этом эффективность использования топлива в 1.5 раз больше.
Необходим отражатель нейтронов (238U, 232Th). Они возвращают в активную зону
быстрые нейтроны с энергиями выше 0,1 МэВ. Нейтроны, захваченные ядрами 238U, 232Th,
расходуются на получение делящихся ядер 239Pu и 233U.
Выбор конструкционных материалов не ограничивается сечением поглощения, Запас
реактивности гораздо меньше.
Реактор на промежуточных нейтронах
Быстрые нейтроны перед поглощением замедляются до энергии 1-1000 эВ.
Высокая загрузка ядерного топлива по сравнению с реакторами на тепловых
нейтронах.
Невозможно осуществить расширенное воспроизводство ядерного топлива, как в
реакторе на быстрых нейтронах.

12. По размещению топлива

Гомогенные реакторы - топливо и замедлитель представляют однородную
смесь
Ядерное горючее находится в активной зоне реактора в виде
гомогенной смеси: растворы солей урана; суспензии окислов урана в
легкой и тяжелой воде; твердый замедлитель, пропитанный ураном;
расплавленные соли. Предлагались варианты гомогенных реакторов с
газообразным горючим (газообразные соединения урана) или взвесью
урановой пыли в газе.
Тепло, выделяемое в активной зоне, отводится теплоносителем (водой,
газом и т. д.), движущимся по трубам через активную зону; либо смесь
горючего с замедлителем сама служит теплоносителем,
циркулирующим через теплообменники.
Нет широкого применения (Высокая коррозия конструкционных
материалов в жидком топливе, сложность конструкции реакторов на
твердых смесях, больше загрузки слабообогащённого уранового
топлива и др.)
Гетерогенные реакторы – топливо размещается в активной зоне дискретно в
виде блоков, между которыми находится замедлитель
Основной признак - наличие тепловыделяющих элементов
(ТВЭЛов). ТВЭЛы могут иметь различную форму (стержни, пластины
и т. д.), но всегда существует четкая граница между горючим,
замедлителем, теплоносителем и т. д.
Подавляющее большинство используемых сегодня реакторов -
гетерогенные, что обусловлено их конструктивными преимуществами по
сравнению с гомогенными реакторами.

13. По характеру использования

Название
Назначение
Мощность
Экспериментальные
реакторы
Изучение различных физических величин,
значения которых необходимы для
проектирования и эксплуатации ядерных
реакторов.
~103Вт
Исследовательские
реакторы
Потоки нейтронов и γ-квантов, создаваемые в
активной зоне, используются для
исследований в области ядерной физики,
физики твердого тела, радиационной химии,
биологии, для испытания материалов,
предназначенных для работы в интенсивных
нейтронных потоках (в т. ч. деталей ядерных
реакторов), для производства изотопов.
<107Вт
Выделяющаяс
я энергия, как
правило, не
используется
Изотопные реакторы
Для наработки изотопов, используемых в
ядерном вооружении, например, 239Pu, и в
промышленности.
~103Вт
Энергетические
реакторы
Для получения электрической и тепловой
энергии, используемой в энергетике, при
опреснении воды, для привода силовых
установок кораблей и т. д.
До 3-5 109Вт

14. Сборка гетерогенного реактора

В гетерогенном реакторе ядерное топливо распределено в активной
зоне дискретно в виде блоков, между которыми находится
замедлитель нейтронов

15. Тяжеловодный ядерный реактор

Достоинства
Меньшее сечение поглощения
нейтронов => Улучшенный
нейтронный баланс =>
Использование в качестве
топлива природного урана
Возможность создания
промышленных тяжеловодных
реакторов для производства
трития и плутония, а также
широкого спектра изотопной
продукции, в том числе и
медицинского назначения.
Недостатки
Высокая стоимость дейтерия

16. Природный ядерный реактор

В природе при условиях, подобных
искусственному реактору, могут
создаваться зоны природного
ядерного реактора.
Единственный известный природный
ядерный реактор существовал 2 млрд
лет назад в районе Окло (Габон).
Происхождение: в очень богатую жилу урановых руд попадает вода с
поверхности, которая играет роль замедлителя нейтронов. Случайный
распад запускает цепную реакцию. При активном ее ходе вода выкипает,
реакция ослабевает – саморегуляция.
Реакция продолжалась ~100000 лет. Сейчас такое невозможно из-за
истощенных природным распадом запасов урана.
Проводятся изыскания на местности с целью исследования миграции
изотопов – важно для разработки методик подземного захоронения
радиоактивных отходов.

17. Сферы использования ядерной энергии

Атомная электростанция
Схема работы атомной электростанции на двухконтурном
водо-водяном энергетическом реакторе (ВВЭР)

18.

Кроме АЭС, ядерные реакторы используются:
на атомных ледоколах
на атомных подводных лодках;
при работе ядерных ракетных
двигателей (в частности на АМС).

19. Ядерная энергия в космосе

Космический зонд
«Кассини», созданный по
проекту НАСА и ЕКА,
запущен 15.10.1997 для
исследования ряда
объектов Солнечной
системы.
Выработка электроэнергии
осуществляется тремя
радиоизотопными
термоэлектрическими
генераторами: "Кассини"
несет на борту 30 кг 238Pu,
который, распадаясь,
выделяет тепло,
преобразуемое в
электричество

20. Космический корабль «Прометей 1»

НАСА разрабатывает ядерный реактор,
способный работать в условиях
невесомости.
Цель – электроснабжение космического
корабля «Прометей 1» по проекту
поиска жизни на спутниках Юпитера.

21. Бомба. Принцип неуправляемой ядерной реакции.

Единственная физическая необходимость – получение критической
массы для k>1.01. Разработки систем управления не требуется –
дешевле, чем АЭС.
Метод «пушки»
Два слитка урана докритических масс при объединении превышают
критическую. Степень обогащения 235U – не менее 80%.
Такого типа бомба «малыш» были сброшены на Хиросиму 06/08/45 8:15
(78-240 тыс. убитых, 140 тыс. умерло в течении 6 мес.)

22. Метод взрывного обжима

Бомба на основе плутония, который с помощью сложной
системы одновременного подрыва обычного ВВ сжимается до
сверхкритического размера.
Бомба такого типа «Толстяк» была сброшена на Нагасаки
09/08/45 11:02
(75 тыс. убитых и раненых).

23. Заключение

Энергетическая проблема - одна из важнейших проблем, которые
сегодня приходится решать человечеству. Уже стали привычными такие
достижения науки и техники, как средства мгновенной связи, быстрый
транспорт, освоение космического пространства. Но все это требует
огромных затрат энергии.
Резкий рост производства и потребления энергии выдвинул новую
острую проблему загрязнения окружающей среды, которое представляет
серьезную опасность для человечества.
Мировые энергетические потребности в ближайшее десятилетия
будут интенсивно возрастать. Какой-либо один источник энергии не
сможет их обеспечить, поэтому необходимо развивать все источники
энергии и эффективно использовать энергетические ресурсы.
На ближайшем этапе развития энергетики (первые десятилетия XXI в)
наиболее перспективными останутся угольная энергетика и ядерная
энергетика с реакторами на тепловых и быстрых нейтронах. Однако можно
надеяться, что человечество не остановится на пути прогресса,
связанного с потреблением энергии во всевозрастающих количествах.