Инфляция во вселенной, экспоненциальное расширение вселенной. Большой взрыв Инфляционно большая вселенная появление жизни гипотеза

Инфляцио́нная моде́ль Вселе́нной (лат. inflatio «вздутие») - гипотеза о физическом состоянии и законе расширения Вселенной на ранней стадии Большого взрыва (при температуре выше 10 28 ), предполагающая период ускоренного по сравнению со стандартной моделью горячей Вселенной расширения.

Первый вариант теории был предложен в 1981 году Аланом Гутом , однако ключевой вклад в её создание внесли советские и экс-советские астрофизики Алексей Старобинский , Андрей Линде , Вячеслав Муханов и ряд других.

Недостатки модели горячей Вселенной

p ≪ ε = ρ c 2 , {\displaystyle p\ll \varepsilon =\rho c^{2},}

где ρ {\displaystyle \rho } - средняя плотность Вселенной .

Недостатком такой модели являются крайне высокие требования к однородности и изотропности начального состояния, отклонение от которых приводит к ряду проблем.

Проблема крупномасштабной однородности и изотропности Вселенной

Размер наблюдаемой области Вселенной l 0 {\displaystyle l_{0}} по порядку величины совпадает с хаббловским расстоянием r H = c / H 0 ≈ 10 28 {\displaystyle r_{H}=c/H_{0}\approx 10^{28}} см (где H - постоянная Хаббла), то есть в силу конечности скорости света и конечности возраста Вселенной можно наблюдать лишь области (и находящиеся в них объекты и частицы), находящиеся сейчас друг от друга на расстоянии l ≤ l 0 {\displaystyle l\leq l_{0}} . Однако в планковскую эпоху Большого взрыва расстояние между этими частицами составляло:

l ′ = l 0 R (t P l a n c k) / R (t 0) ≈ 10 − 3 {\displaystyle l"=l_{0}R(t_{\mathrm {Planck} })/R(t_{0})\approx 10^{-3}} см,

а размер причинно-связанной области (горизонта) определялся расстоянием:

l P l a n c k = c t P l a n c k ≈ 10 − 33 {\displaystyle l_{\mathrm {Planck} }=ct_{\mathrm {Planck} }\approx 10^{-33}} см,

(планковское время ( t P l a n c k ≈ 10 − 43 {\displaystyle t_{\mathrm {Planck} }\approx 10^{-43}} сек), то есть, в объёме l ′ {\displaystyle l"} содержалось ~10 90 таких планковских областей, причинная связь (взаимодействие) между которыми отсутствовала . Идентичность начальных условий в таком количестве причинно несвязанных областей представляется крайне маловероятной. Кроме того, и в более поздние эпохи Большого взрыва проблема идентичности начальных условий в причинно несвязанных областях не снимается: так, в эпоху рекомбинации, наблюдаемые сейчас фотоны реликтового излучения , приходящие к нам с близких направлений (отличающихся на угловые секунды), должны были взаимодействовать с областями первичной плазмы , между которыми, согласно стандартной модели горячей Вселенной , не успела установиться причинная связь за всё время их существования от t P l a n c k . {\displaystyle t_{\mathrm {Planck} }.} Таким образом, можно было бы ожидать существенной анизотропности реликтового излучения , однако наблюдения показывают, что оно в высокой степени изотропно (отклонения не превышают ~10 −4).

Проблема плоской Вселенной

Согласно данным наблюдений, средняя плотность Вселенной ρ {\displaystyle \rho } близка к т. н. критической плотности , при которой кривизна пространства Вселенной равна нулю. Однако, согласно расчётным данным, отклонение плотности ρ {\displaystyle \rho } от критической плотности ρ c r i t {\displaystyle \rho _{\mathrm {crit} }} со временем должно увеличиваться, и для объяснения наблюдаемой пространственной кривизны Вселенной в рамках стандартной модели горячей Вселенной приходится постулировать отклонение плотности в планковскую эпоху ρ P l a n c k {\displaystyle \rho _{\mathrm {Planck} }} от ρ c r i t {\displaystyle \rho _{\mathrm {crit} }} не более, чем на 10 −60 .

Проблема крупномасштабной структуры Вселенной

Инфляционная модель предполагает замену степенного закона расширения R (t) ∼ t 1 / 2 {\displaystyle R(t)\sim t^{1/2}} на экспоненциальный закон:

R (t) ∼ e H (t) t , {\displaystyle R(t)\sim e^{H(t)t},}

где H (t) = (1 / R) d R / d t {\displaystyle H(t)=(1/R)dR/dt} - постоянная Хаббла инфляционной стадии, в общем виде зависящая от времени.

Значение постоянной Хаббла на стадии инфляции составляет 10 42 сек −1 > H > 10 36 сек −1 , то есть гигантски превосходит её современное значение. Такой закон расширения может быть обеспечен состояниями физических полей («инфлатонного поля»), соответствующих уравнению состояния p = − ε {\displaystyle p=-\varepsilon } , то есть отрицательному давлению; эта стадия получила название инфляционной (

Помимо вопроса о происхождении Вселенной, современные космологи сталкиваются с рядом других проблем. Чтобы стандартная теория большого взрыва могла предсказать то распределение материи, которое мы наблюдаем, ее исходное состояние должно характеризоваться очень высокой степенью организованности. Сразу же возникает вопрос: каким образом такая структура могла образоваться? Физик А. Гут из Массачусетского технологического института предложил свою версию теории большого взрыва, которая объясняет спонтанное возникновение этой организации, устраняя необходимость искусственно вводить точные параметры в уравнения, описывающие исходное состояние Вселенной. Его модель была названа «инфляционной Вселенной». Суть ее в том, что внутри быстро расширяющейся, пере гретой Вселенной небольшой участок пространства охлаждается и начинает расширяться сильнее, подобно тому, как переохлажденная вода стремительно замерзает, расширяясь при этом. Эта фаза быстрого расширения позволяет устранить некоторые проблемы, присущие стандартным теориям большого взрыва.

Однако модель Гута тоже не лишена недостатков. Чтобы уравнения Гута правильно описывали инфляционную Вселенную, ему пришлось очень точно задавать исходные параметры для своих уравнений. Таким образом, он столкнулся с той же проблемой, что и создатели других теорий. Он надеялся избавиться от необходимости задавать точные параметры условий большого взрыва, но для этого ему пришлось вводить собственную параметризацию, оставшуюся необъясненной. Гут и его соавтор П. Штайнгарт признают, что в их модели «расчеты приводят к приемлемым предсказаниям только в том случае, если заданные исходные параметры уравнений варьируют в очень узком диапазоне. Большинство теоретиков (включая и нас самих) считают подобные исходные условия маловероятными». Далее авторы говорят о своих надеждах на то, что когда-нибудь будут разработаны новые математические теории, которые позволят им сделать свою модель более правдоподобной.

Эта зависимость от еще не открытых теорий - другой недостаток модели Гута. Теория единого поля, на которой основывается модель инфляционной Вселенной, полностью гипотетична и «плохо поддается экспериментальной проверке, так как большую часть ее предсказаний невозможно количественно проверить в лабораторных условиях». (Теория единого поля - это достаточно сомнительная попытка ученых связать воедино некоторые основные силы Вселенной.)

Другой недостаток теории Гута - это то, что в ней ничего не говорится о происхождении перегретой и расширяющейся материи. Гут проверил совместимость своей инфляционной теории с тремя гипотезами происхождения Вселенной. Сначала он рассмотрел стандартную теорию большого взрыва. В этом случае, по мнению Гута, инфляционный эпизод должен был произойти на одной из ранних стадий эволюции Вселенной. Однако эта модель ставит перед нами неразрешимую проблему сингулярности. Вторая гипотеза постулирует, что Вселенная возникла из хаоса. Некоторые ее участки были горячими, другие - холодными, одни расширялись, а другие сжимались. В этом случае инфляция должна была начаться в перегретой и расширяющейся области Вселенной. Правда, Гут признает, что эта модель не может объяснить происхождение первичного хаоса.

Третья возможность, которой Гут отдает предпочтение, заключается в том, что перегретый расширяющийся сгусток материи возникает квантово-механическим путем из пустоты. В статье, появившейся в журнале «Сайентифик Америкэн» в 1984 году, Гут и Штайнгарт утверждают: «Инфляционная модель Вселенной дает нам представление о возможном механизме, при помощи которого наблюдаемая Вселенная могла появиться из бесконечно малого участка пространства. Зная это, трудно удержаться от соблазна сделать еще один шаг и прийти к выводу, что Вселенная возникла буквально из ничего».

Однако какой бы привлекательной ни была эта идея для ученых, готовых ополчиться на любое упоминание о возможности существования высшего сознания, создавшего Вселенную, при внимательном рассмотрении она не выдерживает критики. «Ничто», о котором говорит Гут, - это гипотетический квантово-механический вакуум, описываемый еще не разработанной теорией единого поля, которая должна объединить уравнения квантовой механики и общей теории относительности.

Другими словами, в данный момент этот вакуум невозможно описать даже теоретически.

Надо отметить, что физики описали более простой тип квантово-механического вакуума, который представляет собой море так называемых «виртуальных частиц», фрагментов атомов, которые «почти существуют». Время от времени некоторые из этих субатомных частиц переходят из вакуума в мир материальной реальности. Это явление получило название вакуумных флуктуаций. Вакуумные флуктуации невозможно наблюдать непосредственно, однако теории, постулирующие их существование, были подтверждены экспериментально. Согласно этим теориям, частицы и античастицы без всякой причины возникают из вакуума и практически сразу исчезают, аннигилируя друг друга. Гут и его коллеги допустили, что в какой-то момент вместо крошечной частицы из вакуума появилась целая Вселенная, и вместо того, чтобы сразу исчезнуть, эта Вселенная каким-то образом просуществовала миллиарды лет. Авторы этой модели решили проблему сингулярности, постулировав, что состояние, в котором Вселенная появляется из вакуума, несколько отличается от состояния сингулярности.

Однако у этого сценария есть два основных недостатка. Во-первых, можно только удивляться смелости фантазии ученых, распространивших достаточно ограниченный опыт с субатомными частицами на целую Вселенную. С. Хоукинг и Г. Эллис мудро предостерегают своих излишне увлекающихся коллег: «Предположение о том, что законы физики, открытые и изученные в лаборатории, будут справедливы в других точках пространственно-временного континуума, безусловно, очень смелая экстраполяция». Во-вторых, строго говоря, квантово-механический вакуум нельзя называть «ничто». Описание квантово-механического вакуума даже в самой простой из существующих теорий занимает множество страниц в высшей степени абстрактных математических выкладок. Такая система, несомненно, представляет собой «нечто», и сразу же встает все тот же упрямый вопрос: «Как возник столь сложно организованный "вакуум"?»

Вернемся к изначальной проблеме, для решения которой Гут создал инфляционную модель: проблеме точной параметризации исходного состояния Вселенной. Без такой параметризации невозможно получить наблюдаемое распределение материи во Вселенной. Как мы убедились, решить эту проблему Гуту не удалось. Более того, сомнительной представляется сама возможность того, что какая-нибудь версия теории большого взрыва, включая версию Гута, может предсказать наблюдаемое распределение материи во Вселенной. Высокоорганизованное исходное состояние в модели Гута, по его же словам, в конце концов, превращается во «Вселенную» диаметром 10 сантиметров, наполненную однородным сверхплотным, перегретым газом. Она будет расширяться и остывать, но нет никаких оснований предполагать, что она когда-нибудь превратится в нечто большее, чем однородное облако газа. По сути дела, к этому результату приводят все теории большого взрыва. Если Гуту пришлось пускаться на многие ухищрения и делать сомнительные допущения, чтобы в конце концов получить Вселенную в виде облака однородного газа, то можно представить себе, каким должен быть математический аппарат теории, приводящей ко Вселенной в том виде, в каком мы ее знаем! Хорошая научная теория дает возможность предсказывать многие сложные природные явления, исходя из простой теоретической схемы. Но в теории Гута (и любой другой версии теории большого взрыва) все наоборот: в результате сложных математических выкладок мы получаем расширяющийся пузырь однородного газа. Несмотря на это, научные журналы печатают восторженные статьи об инфляционной теории, сопровождающиеся многочисленными красочными иллюстрациями, которые должны создать у читателя впечатление, что Гут наконец достиг заветной цели - нашел объяснение происхождения Вселенной. Мы бы не стали торопиться с такими заявлениями. Честнее было бы просто открыть постоянную рубрику в научных журналах, чтобы публиковать в ней теорию происхождения Вселенной, модную в этом месяце.

Трудно даже представить себе всю сложность исходного состояния и условий, необходимых для возникновения нашей Вселенной со всем многообразием ее структур и организмов. В случае нашей Вселенной степень этой сложности такова, что ее едва ли можно объяснить с помощью одних физических законов. Теоретики прибегают к помощи так называемого «антропического принципа».

По их гипотезе, квантово-механический вакуум производит вселенные миллионами. Но в большинстве из них нет условий, необходимых для возникновения жизни, поэтому никто не может исследовать эти миры.

В то же время в других вселенных, включая нашу собственную, сложились подходящие условия для появления исследователей, поэтому нет ничего удивительного в том, что в этих вселенных царит такой неправдоподобный порядок. Иначе говоря, сторонники антропического принципа принимают сам факт существования человека за объяснение упорядоченной структуры Вселенной, которая создала условия для возникновения человека. Однако подобные логические увертки ничего не объясняют.

Другой формой псевдонаучной казуистики является утверждение о том, что Вселенная появилась по воле слепого случая. Эти слова тоже ровным счетом ничего не объясняют. Сказать, что нечто, появившееся один раз, появилось случайно - значит просто сказать, что оно появилось. Такого рода утверждения нельзя считать научным объяснением, так как они не содержат в себе никакой новой информации. Другими словами, эти «объяснения» ни на шаг не приблизили ученых к решению проблемы происхождения Вселенной.

Да простят нас теоретики, но мы осмелимся предположить, что методы, которыми они пользуются, неадекватны поставленной задаче. Два основных интеллектуальных инструмента, используемых космологами для описания эволюции Вселенной, - это общая теория относительности и квантовая механика. Однако, вдобавок ко всем трудностям, уже описанным нами, обе эти теории сами не без изъянов. Спору нет, эти теории достаточно хорошо описывают некоторые физические явления, однако это еще не доказывает, что они совершенны во всех отношениях.

Общая теория относительности описывает искривленное пространство время и является неотъемлемой частью любой современной теории происхождения Вселенной. Поэтому если общая теория относительности нуждается в пересмотре, то любая космологическая теория, основанная на ней, тоже нуждается в поправках.

Применение общей теории относительности, так же как и более ранней теории Эйнштейна, частной теории относительности, сопряжено с одной трудностью: в обеих понятие времени переосмыслено. В ньютоновой физике время рассматривается как переменная, независимая от пространства. Благодаря этому мы можем описать траекторию движения объекта в пространстве и времени: в данный момент времени объект находится в определенной точке пространства, а со временем его положение меняется. Но теория относительности Эйнштейна объединяет пространство и время в четырехмерный континуум, так что про объект уже нельзя сказать, что в определенный момент времени он занимает определенное положение в пространстве. Релятивистское описание объекта показывает его положение в пространстве и времени как единое целое, от начала и до конца существования объекта. Например, человек, с точки зрения теории относительности, представляет собой пространственно-временное единство, от зародыша во чреве матери до трупа (так называемый «пространственно-временной червь»). Этот «червь» не может сказать: «Сейчас я взрослый, а раньше был ребенком». Течения времени не существует. Вся жизнь человека представляет собой единое целое. Такой взгляд на человека обесценивает наше личное восприятие прошлого, настоящего и будущего, вынуждая нас поставить под сомнение саму реальность этого восприятия.

В своем письме к М. Бессо Эйнштейн писал: «Ты должен согласиться с тем, что субъективное время с его акцентом на настоящем не имеет объективного смысла»." После смерти Бессо, Эйнштейн выразил свое соболезнование его вдове следующим образом: «Майкл немного опередил меня, покинув этот странный мир. Однако это не имеет значения. Для нас, убежденных физиков, различие между прошлым, настоящими будущим - хоть и навязчивая, но всего лишь иллюзия». « По сути дела, эти представления отрицают сознание, которое подчеркивает реальность переживаемого момента. Наше нынешнее тело мы ощущаем как реальное, тогда как наше детское тело сохранилось только в памяти. Для нас нет никаких сомнений в том, что мы занимаем определенное место в пространстве в данный момент времени. Теория относительности превращает серии событий в единые пространственно-временные структуры, но мы ощущаем их как последовательность определенных этапов во времени.

Следовательно, любая модель происхождения Вселенной, построенная на основе теории относительности, не способна объяснить наше восприятие времени, и потому все эти модели в их современном виде несовершенны и неприемлемы.

Сразу после зарождения Вселенная расширялась невероятно быстро.

С 30-х годов XX века астрофизики уже знали, что, согласно закону Хаббла , Вселенная расширяется, а значит, она имела свое начало в определенный момент в прошлом. Задача астрофизиков, таким образом, внешне выглядела простой: отследить все стадии хаббловского расширения в обратной хронологии, применяя на каждой стадии соответствующие физические законы, и, пройдя этот путь до конца — точнее, до самого начала, — понять, как именно всё происходило.

В конце 1970-х годов, однако, оставались нерешенными несколько фундаментальных проблем, связанных с ранней Вселенной, а именно:

  • Проблема антивещества . Согласно законам физики, вещество и антивещество имеют равное право на существование во Вселенной (см. Античастицы), однако Вселенная практически полностью состоит из вещества. Почему так произошло?
  • Проблема горизонта. По фоновому космическому излучению (см. Большой взрыв) мы можем определить, что температура Вселенной везде примерно одинакова, однако отдельные ее части (скопления галактик) не могли находиться в контакте (как принято говорить, они были за пределами горизонта друг друга). Как же получилось, что между ними установилось тепловое равновесие?
  • Проблема распрямления пространства. Вселенная, судя по всему, обладает именно той массой и энергией, которые необходимы для того, чтобы замедлить и остановить хаббловское расширение. Почему из всех возможных масс Вселенная имеет именно такую?

Ключом к решению этих проблем послужила идея, что сразу после своего рождения Вселенная была очень плотной и очень горячей. Всё вещество в ней представляло собой раскаленную массу кварков и лептонов (см. Стандартная модель), у которых не было никакой возможности объединиться в атомы. Действующим в современной Вселенной различным силам (таким, как электромагнитные и гравитационные силы) тогда соответствовало единое поле силового взаимодействия (см. Универсальные теории). Но когда Вселенная расширилась и остыла, гипотетическое единое поле распалось на несколько сил (см. Ранняя Вселенная).

В 1981 году американский физик Алан Гут осознал, что выделение сильных взаимодействий из единого поля, случившееся примерно через 10 -35 секунды после рождения Вселенной (только задумайтесь — это 34 нуля и единица после запятой!), стало поворотным моментом в ее развитии. Произошел фазовый переход вещества из одного состояния в другое в масштабах Вселенной — явление, подобное превращению воды в лед. И как при замерзании воды ее беспорядочно движущиеся молекулы вдруг «схватываются» и образуют строгую кристаллическую структуру, так под влиянием выделившихся сильных взаимодействий произошла мгновенная перестройка, своеобразная «кристаллизация» вещества во Вселенной.

Кто видел, как лопаются водопроводные трубы или трубки автомобильного радиатора на сильном морозе, стоит только воде в них превратиться в лед, тот на собственном опыте знает, что вода при замерзании расширяется. Алану Гуту удалось показать, что при разделении сильных и слабых взаимодействий во Вселенной произошло нечто подобное — скачкообразное расширение. Это расширение, которое называется инфляционным , во много раз быстрее обычного хаббловского расширения. Примерно за 10 -32 секунды Вселенная расширилась на 50 порядков — была меньше протона, а стала размером с грейпфрут (для сравнения: вода при замерзании расширяется всего на 10%). И это стремительное инфляционное расширение Вселенной снимает две из трех вышеназванных проблем, непосредственно объясняя их.

Решение проблемы распрямления пространства нагляднее всего демонстрирует следующий пример: представьте координатную сетку, нарисованную на тонкой эластичной карте, которую затем смяли как попало. Если теперь взять и сильно встряхнуть эту смятую в комок эластичную карту, она снова примет плоский вид, а координатные линии на ней восстановятся, независимо от того, насколько сильно мы деформировали ее, когда скомкали. Аналогичным образом, не важно, насколько искривленным было пространство Вселенной на момент начала ее инфляционного расширения, главное — по завершении этого расширения пространство оказалось полностью распрямленным. А поскольку из теории относительности мы знаем, что кривизна пространства зависит от количества материи и энергии в нем, становится понятно, почему во Вселенной находится ровно столько материи, сколько необходимо, чтобы уравновесить хаббловское расширение.

Объясняет инфляционная модель и проблему горизонта , хотя не так прямо. Из теории излучения черного тела мы знаем, что излучение, испускаемое телом, зависит от его температуры. Таким образом, по спектрам излучения удаленных участков Вселенной мы можем определить их температуру. Такие измерения дали ошеломляющие результаты: оказалось, что в любой наблюдаемой точке Вселенной температура (с погрешностью измерения до четырех знаков после запятой) одна и та же. Если исходить из модели обычного хаббловского расширения, то вещество сразу же после Большого взрыва должно было разлететься слишком далеко, чтобы температуры могли уравняться. Согласно же инфляционной модели, вещество Вселенной до момента t = 10 -35 секунды оставалось гораздо более компактным, чем при хаббловском расширении. Этого чрезвычайно краткого периода было вполне достаточно, чтобы установилось термическое равновесие, которое не было нарушено на стадии инфляционного расширения и сохранилось до сих пор.

Американский физик, специалист в области элементарных частиц и космологии. Родился в Нью-Брюнсвике, штат Нью-Джерси. Докторскую степень получил в Массачусетском технологическом институте, куда в 1986 году и вернулся, став профессором физики. Свою теорию инфляционного расширения Вселенной Гут разработал еще в Стэнфордском университете, занимаясь теорией элементарных частиц . Известен его отзыв о Вселенной как о «бескрайней скатерти-самобранке».

Узнав о теории Большого взрыва, я задал себе вопрос, откуда же взялось то, что взорвалось?
Вопрос о происхождении Вселенной со всеми ее известными и пока неведомыми свойствами испокон веков волнует человека. Но только в ХХ веке, после обнаружения космологического расширения, вопрос об эволюции Вселенной стал понемногу прояснятся. Последние научные данные позволили сделать вывод, что наша Вселенная родилась 15 миллионов лет назад в результате Большого взрыва. Но что именно взорвалось в тот момент и что, собственно, существовало до Большого взрыва, по-прежнему оставалось загадкой. Созданная в ХХ веке инфляционная теория появления нашего мир позволила существенно продвинутся в разрешении этих вопросов, общая картина первых мгновений Вселенной сегодня уже неплохо прорисована, хотя многие проблемы еще ждут своего часа.
До начала прошлого века было всего два взгляда на происхождение нашей Вселенной. Ученые полагали, что она вечна и неизменна, а богословы говорили, что Мир сотворен и у него будет конец. Двадцатый век, разрушив очень многое из того, что было создано в предыдущие тысячелетия, сумел дать свои ответы на большинство вопросов, занимавших умы ученых прошлого. И быть может, одним из величайших достижений ушедшего века является прояснение вопроса о том, как возникла Вселенная, в которой мы живем, и какие существуют гипотезы по поводу ее будущего. Простой астрономический факт - расширение нашей Вселенной - привел к полному пересмотру всех космогонических концепций и разработке новой физики - физики возникающих и исчезающих миров. Всего 70 лет назад Эдвин Хаббл обнаружил, что свет от более далеких галактик «краснее» света от более близких. Причем скорость разбегания оказалась пропорциональна расстоянию от Земли (закон расширения Хаббла). Обнаружить это удалось благодаря эффекту Доплера (зависимости длины волны света от скорости источника света). Поскольку более далекие галактики кажутся более «красными», то предположили, что и удаляются они с большей скоростью. Кстати, разбегаются не звезды и даже не отдельные галактики, а скопления галактик. Ближайшие от нас звезды и галактики связаны друг с другом гравитационными силами и образуют устойчивые структуры. Причем в каком направлении ни посмотри, скопления галактик разбегаются от Земли с одинаковой скоростью, и может показаться, что наша Галактика является центром Вселенной, однако это не так. Где бы ни находился наблюдатель, он будет везде видеть все ту же картину - все галактики разбегаются от него. Но такой разлет вещества обязан иметь начало. Значит, все галактики должны были родиться в одной точке. Расчеты показывают, что произошло это примерно 15 млрд. лет назад. В момент такого взрыва температура была очень большой, и должно было появиться очень много квантов света. Конечно, со временем все остывает, а кванты разлетаются по возникающему пространству, но отзвуки Большого взрыва должны были сохраниться до наших дней. Первое подтверждение факта взрыва пришло в 1964 году, когда американские радиоастрономы Р. Вильсон и А. Пензиас обнаружили реликтовое электромагнитное излучение с температурой около 3° по шкале Кельвина (–270°С). Именно это открытие, неожиданное для ученых, убедило их в том, что Большой взрыв действительно имел место и поначалу Вселенная была очень горячей. Теория Большого взрыва позволила объяснить множество проблем, стоявших перед космологией. Но, к сожалению, а может, и к счастью, она же поставила и ряд новых вопросов. В частности: Что было до Большого взрыва? Почему наше пространство имеет нулевую кривизну и верна геометрия Евклида, которую изучают в школе? Если теория Большого взрыва справедлива, то отчего нынешние размеры нашей Вселенной гораздо больше предсказываемого теорией 1 сантиметра? Почему Вселенная на удивление однородна, в то время как при любом взрыве вещество разлетается в разные стороны крайне неравномерно? Что привело к начальному нагреву Вселенной до невообразимой температуры более 10 13 К?
Все это указывало на то, что теория Большого взрыва неполна. Долгое время казалось, что продвинуться далее уже невозможно. Только четверть века назад благодаря работам российских физиков Э. Глинера и А. Старобинского, а также американца А.Гуса было описано новое явление - сверхбыстрое инфляционное расширение Вселенной. Описание этого явления основывается на хорошо изученных разделах теоретической физики - общей теории относительности Эйнштейна и квантовой теории поля. Сегодня считается общепринятым, что именно такой период, получивший название «инфляция», предшествовал Большому взрыву.
При попытке дать представление о сущности начального периода жизни Вселенной приходится оперировать такими сверхмалыми и сверхбольшими числами, что наше воображение с трудом их воспринимает. Попробуем воспользоваться некоей аналогией, чтобы понять суть процесса инфляции.
Представим себе покрытый снегом горный склон, в который вкраплены разнородные мелкие предметы - камешки, ветки и кусочки льда. Кто-то, находящийся на вершине этого склона, сделал небольшой снежок и пустил его катиться с горы. Двигаясь вниз, снежок увеличивается в размерах, так как на него налипают новые слои снега со всеми включениями. И чем больше размер снежка, тем быстрее он будет увеличиваться. Очень скоро из маленького снежка он превратится в огромный ком. Если склон заканчивается пропастью, то он полетит в нее со все более увеличивающейся скоростью. Достигнув дна, ком ударится о дно пропасти и его составные части разлетятся во все стороны (кстати, часть кинетической энергии кома при этом пойдет на нагрев окружающей среды и разлетающегося снега).
Теперь опишем основные положения теории, используя приведенную аналогию. Прежде всего физикам пришлось ввести гипотетическое поле, которое было названо «инфлатонным» (от слова «инфляция»). Это поле заполняло собой все пространство (в нашем случае - снег на склоне). Благодаря случайным колебаниям оно принимало разные значения в произвольных пространственных областях и в различные моменты времени. Ничего существенного не происходило, пока случайно не образовалась однородная конфигурация этого поля размером более 10 -33см. Что же касается наблюдаемой нами Вселенной, то она в первые мгновения своей жизни, по-видимому, имела размер 10 -27 см. Предполагается, что на таких масштабах уже справедливы основные законы физики, известные нам сегодня, поэтому можно предсказать дальнейшее поведение системы. Оказывается, что сразу после этого пространственная область, занятая флуктуацией (от лат. fluctuatio - «колебание», случайные отклонения наблюдаемых физических величин от их средних значений), начинает очень быстро увеличиваться в размерах, а инфлатонное поле стремится занять положение, в котором его энергия минимальна (снежный ком покатился). Такое расширение продолжается всего 10 -35 секунды, но этого времени оказывается достаточно для того, чтобы диаметр Вселенной возрос как минимум в 10 27 раз и к окончанию инфляционного периода наша Вселенная приобрела размер примерно 1 см. Инфляция заканчивается, когда инфлатонное поле достигает минимума энергии - дальше падать некуда. При этом накопившаяся кинетическая энергия переходит в энергию рождающихся и разлетающихся частиц, иначе говоря, происходит нагрев Вселенной. Как раз этот момент и называется сегодня Большим взрывом.
Гора, о которой говорилось выше, может иметь очень сложный рельеф-несколько разных минимумов, долины внизу и всякие холмы и кочки. Снежные комья (будущие вселенные) непрерывно рождаются наверху горы за счет флуктуаций поля. Каждый ком может скатиться в любой из минимумов, породив при этом свою вселенную со специфическими параметрами. Причем вселенные могут существенно отличаться друг от друга. Свойства нашей Вселенной удивительнейшим образом приспособлены к тому, чтобы в ней возникла разумная жизнь. Другим вселенным, возможно, повезло меньше.
Еще раз хотелось бы подчеркнуть, что описанный процесс рождения Вселенной «практически из ничего» опирается на строго научные расчеты. Тем не менее у всякого человека, впервые знакомящегося с инфляционным механизмом, описанным выше, возникает немало вопросов.
Сегодня наша Вселенная состоит из большого числа звезд, не говоря уж о скрытой массе. И может показаться, что полная энергия и масса Вселенной огромны. И совершенно непонятно, как это все могло поместиться в первоначальном объеме 10-99см3. Однако во Вселенной существует не только материя, но и гравитационное поле. Известно, что энергия последнего отрицательна и, как оказалось, в нашей Вселенной энергия гравитации в точности компенсирует энергию, заключенную в частицах, планетах, звездах и прочих массивных объектах. Таким образом, закон сохранения энергии прекрасно выполняется, и суммарная энергия и масса нашей Вселенной практически равны нулю. Именно это обстоятельство отчасти объясняет, почему зарождающаяся Вселенная тут же после появления не превратилась в огромную черную дыру. Ее суммарная масса была совершенно микроскопична, и вначале просто нечему было коллапсировать. И только на более поздних стадиях развития появились локальные сгустки материи, способные создавать вблизи себя такие гравитационные поля, из которых не может вырваться даже свет. Соответственно, и частиц, из которых «сделаны» звезды, на начальной стадии развития просто не существовало. Элементарные частицы начали рождаться в тот период развития Вселенной, когда инфлатонное поле достигло минимума потенциальной энергии и начался Большой взрыв.
Область, занятая инфлатонным полем, разрасталась со скоростью, существенно большей скорости света, однако это нисколько не противоречит теории относительности Эйнштейна. Быстрее света не могут двигаться лишь материальные тела, а в данном случае двигалась воображаемая, нематериальная граница той области, где рождалась Вселенная (примером сверхсветового движения является перемещение светового пятна по поверхности Луны при быстром вращении освещающего ее лазера).
Причем окружающая среда совсем не сопротивлялась расширению области пространства, охваченного все более быстро разрастающимся инфлатонным полем, поскольку ее как бы не существует для возникающего Мира. Общая теория относительности утверждает, что физическая картина, которую видит наблюдатель, зависит от того, где он находится и как движется. Так вот, описанная выше картина справедлива для «наблюдателя», находящегося внутри этой области. Причем этот наблюдатель никогда не узнает, что происходит вне той области пространства, где он находится. Другой «наблюдатель», смотрящий на эту область снаружи, никакого расширения вовсе не обнаружит. В лучшем случае он увидит лишь небольшую искорку, которая по его часам исчезнет почти мгновенно. Даже самое изощренное воображение отказывается воспринимать такую картину. И все-таки она, по-видимому, верна. По крайней мере, так считают современные ученые, черпая уверенность в уже открытых законах Природы, правильность которых многократно проверена.
Надо сказать, что это инфлатонное поле и сейчас продолжает существовать и флуктуировать. Но только мы, внутренние наблюдатели, не в состоянии этого увидеть - ведь для нас маленькая область превратилась в колоссальную Вселенную, границ которой не может достигнуть даже свет.
Итак, сразу после окончания инфляции гипотетический внутренний наблюдатель увидел бы Вселенную, заполненную энергией в виде материальных частиц и фотонов. Если всю энергию, которую мог бы измерить внутренний наблюдатель, перевести в массу частиц, то мы получим примерно 10 80 кг. Расстояния между частицами быстро увеличиваются из-за всеобщего расширения. Гравитационные силы притяжения между частицами уменьшают их скорость, поэтому расширение Вселенной после завершения инфляционного периода постепенно замедляется.
Сразу после рождения Вселенная продолжала расти и охлаждаться. При этом охлаждение происходило в том числе и благодаря банальному расширению пространства. Электромагнитное излучение характеризуется длиной волны, которую можно связать с температурой - чем больше средняя длина волны излучения, тем меньше температура. Но если пространство расширяется, то будут увеличиваться и расстояние между двумя «горбами» волны, и, следовательно, ее длина. Значит, в расширяющемся пространстве и температура излучения должна уменьшаться. Что и подтверждает крайне низкая температура современного реликтового излучения.
По мере расширения меняется и состав материи, наполняющей наш мир. Кварки объединяются в протоны и нейтроны, и Вселенная оказывается заполненной уже знакомыми нам элементарными частицами - протонами, нейтронами, электронами, нейтрино и фотонами. Присутствуют также и античастицы. Свойства частиц и античастиц практически идентичны. Казалось бы, и количество их должно быть одинаковым сразу после инфляции. Но тогда все частицы и античастицы взаимно уничтожились бы и строительного материала для галактик и нас самих не осталось бы. И здесь нам опять повезло. Природа позаботилась о том, чтобы частиц было немного больше, чем античастиц. Именно благодаря этой небольшой разнице и существует наш мир. А реликтовое излучение - это как раз последствие аннигиляции (то есть взаимоуничтожения) частиц и античастиц. Конечно, на начальном этапе энергия излучения была очень велика, но благодаря расширению пространства и как следствие - охлаждению излучения эта энергия быстро убывала. Сейчас энергия реликтового излучения примерно в десять тысяч раз (104 раз) меньше энергии, заключенной в массивных элементарных частицах.
Постепенно температура Вселенной упала до 1010 К. К этому моменту возраст Вселенной составлял примерно 1 минуту. Только теперь протоны и нейтроны смогли объединяться в ядра дейтерия, трития и гелия. Это происходило благодаря ядерным реакциям, которые люди уже хорошо изучили, взрывая термоядерные бомбы и эксплуатируя атомные реакторы на Земле. Поэтому можно уверенно предсказывать, сколько и каких элементов может появиться в таком ядерном котле. Оказалось, что наблюдаемое сейчас обилие легких элементов хорошо согласуется с расчетами. Это означает, что известные нам физические законы одинаковы во всей наблюдаемой части Вселенной и были таковыми уже в первые секунды после появления нашего мира. Причем около 98% существующего в природе гелия образовалось именно в первые секунды после Большого взрыва.
Сразу после рождения Вселенная проходила инфляционный период развития - все расстояния стремительно увеличивались (с точки зрения внутреннего наблюдателя). Однако плотность энергии в разных точках пространства не может быть в точности одинаковой - какие-то неоднородности всегда присутствуют. Предположим, что в какой-то области энергия немного больше, чем в соседних. Но раз все размеры быстро растут, то и размер этой области тоже должен расти. После окончания инфляционного периода эта разросшаяся область будет иметь чуть больше частиц, чем окружающее ее пространство, да и ее температура будет немного выше.
Поняв неизбежность возникновения таких областей, сторонники инфляционной теории обратились к экспериментаторам: «необходимо обнаружить флуктуации температуры…» - констатировали они. И в 1992 году это пожелание было выполнено. Практически одновременно российский спутник «Реликт-1» и американский «COBE» обнаружили требуемые флуктуации температуры реликтового излучения. Как уже говорилось, современная Вселенная имеет температуру 2,7 К, а найденные учеными отклонения температуры от среднего составляли примерно 0,00003 К. Неудивительно, что такие отклонения трудно было обнаружить раньше. Так инфляционная теория получила еще одно подтверждение.
С открытием колебаний температуры появилась еще одна захватывающая возможность - объяснить принцип формирования галактики. Ведь чтобы гравитационные силы сжимали материю, необходим исходный зародыш - область с повышенной плотностью. Если материя распределена в пространстве равномерно, то гравитация, подобно Буриданову ослу, не знает, в каком направлении ей действовать. Но как раз области с избытком энергии и порождает инфляция. Теперь гравитационные силы знают, на что воздействовать, а именно, на более плотные области, созданные во время инфляционного периода. Под действием гравитации эти изначально чуть-чуть более плотные области будут сжиматься и именно из них в будущем образуются звезды и галактики.
Современный нам момент эволюции Вселенной крайне удачно приспособлен для жизни, и длиться он будет еще много миллиардов лет. Звезды будут рождаться и умирать, галактики вращаться и сталкиваться, а скопления галактик - улетать все дальше друг от друга. Поэтому времени для самосовершенствования у человечества предостаточно. Правда, само понятие «сейчас» для такой огромной Вселенной, как наша, плохо определено. Так, например, наблюдаемая астрономами жизнь квазаров, удаленных от Земли на 10-14 млрд. световых лет, отстоит от нашего «сейчас» как раз на те самые 10-14 млрд. лет. И чем дальше в глубь Вселенной мы заглядываем с помощью различных телескопов, тем более ранний период ее развития мы наблюдаем.
Сегодня ученые в состоянии объяснить большинство свойств нашей Вселенной, начиная с момента в 10 -42 секунды и до настоящего времени и даже далее. Они могут также проследить образование галактик и довольно уверенно предсказать будущее Вселенной. Тем не менее ряд «мелких» непонятностей еще остается. Это прежде всего - сущность скрытой массы (темной материи) и темной энергии. Кроме того, существует много моделей, объясняющих, почему наша Вселенная содержит гораздо больше частиц, чем античастиц, и хотелось бы определиться в конце концов с выбором одной правильной модели.
Как учит нас история науки, обычно именно «мелкие недоделки» и открывают дальнейшие пути развития, так что будущим поколениям ученых наверняка будет чем заняться. Кроме того, более глубокие вопросы тоже уже стоят на повестке дня физиков и математиков. Почему наше пространство трехмерно? Почему все константы в природе словно «подогнаны» так, чтобы возникла разумная жизнь? И что же такое гравитация? Ученые уже пытаются ответить и на эти вопросы.
Ну и конечно, оставим место для неожиданностей. Не надо забывать, что такие основополагающие открытия, как расширение Вселенной, наличие реликтовых фотонов и энергия вакуума, были сделаны, можно сказать, случайно и не ожидались ученым сообществом.

Инфляционная модель Вселенной – научная космологическая теория о законе и состоянии расширения Вселенной на раннем этапе Большого взрыва. В отличие от стандартной модели горячей Вселенной, данная теория предполагает ускоренный период расширения Вселенной на раннем этапе при температуре выше 10 28 Кельвинов.

Инфляционная модель Вселенной была разработана относительно недавно. Еще в 30-х годах 20 века ученые знали, что наша Вселенная непрестанно расширяется. Важную роль в этом сыграло открытие , который указывал на данный факт. Ученые поняли, что процессу расширения Вселенной предшествовало свое начало. По этой причине они решили, применяя физико-математические законы, теоретически воссоздать процесс формирования Вселенной и понять, что именно послужило толчком к ее расширению.

Создавая теорию формирования Вселенной, ученые столкнулись с рядом вопросом, например: почему во Вселенной так мало антивещества, если оно должно состоять с веществом в примерно равных пропорциях; как получилось, что температура всех областей Вселенной примерно одинакова, если отдельные ее части никак не могли контактировать друг с другом; почему Вселенная обладает именно такой массой и энергией, которая способна замедлить хаббловское и многое другое. Занимаясь поиском ответов на эти вопросы, ученые вывели стандартную модель горячей Вселенной, которая гласит, что в самом начале своего зарождения Вселенная была очень плотной и горячей, и в ней существовало единое поле взаимодействия между всеми частицами. Впоследствии, когда Вселенная расширилась и остыла, это поле распалось на электромагнитное, гравитационное, сильное и слабое взаимодействие, которое позволили частицам, из которых состояла первобытная Вселенная, объединяться в атомы и другие сложные структуры.

В 1981 году американский ученый Алан Гут понял, что выделение сильных взаимодействий из единого поля, а также фазовый переход первобытного вещества Вселенной из одного состояния в другое произошел примерно через 10 –35 секунды после рождения Вселенной. Этот период можно условно назвать «первоначальной кристаллизацией Вселенной» или «экстренным расширением Вселенной». В чем-то этот процесс напоминает процедуру замерзания воды и превращения ее в лед. Всем известно, что вода при замерзании расширяется. Алану Гут предположил, что на самом начальном этапе формирования Вселенной произошло ее скачкообразное расширение, благодаря которому Вселенная за крохотные доли секунды расширилась в 50 раз. Свою теорию ученый назвал инфляционной моделью Вселенной (инфляция от англ. Inflate – раздувать, накачивать). При помощи этой модели можно объяснить, почему Вселенная обладает такой массой и энергией, которая позволяет замедлить хаббловское расширение, а также, почему температура всех областей нашей Вселенной примерно одинакова.

Проблема крупномасштабной однородности и изотропности Вселенной

Хаббловское расстояние совпадает с наблюдаемой нами Вселенной. Это говорит нам о том, что из-за конечности возраста нашей Вселенной и скорости света можно наблюдать сейчас только те области Вселенной, которые находятся на равном или меньшем расстоянии горизонта наблюдений.