Графические задачки. Решение графических задач по физике. Алгоритм решения задач на тепловые явления

Часто графическое представление физического процесса делает его более наглядным и тем самым облегчает понимание рассматриваемого явления. Позволяя порой значительно упростить расчеты, графики широко используются на практике для решения различных задач. Умение строить и читать их сегодня является обязательным для многих специалистов.

К графическим задачам мы относим задачи:

  • на построение, где очень помогают, рисунки, чертежи;
  • схемы, решаемые с помощью векторов, графиков, диаграмм, эпюр и номограмм.

1) Мячик бросают с земли вертикально вверх с начальной скоростью v о. Постройте график зависимости скорости мячика от времени, считая удары о землю абсолютно упругими. Сопротивлением воздуха пренебречь. [решение ]

2) Пассажир, опоздавший к поезду, заметил, что предпоследний вагон прошел мимо него за t 1 = 10 c , а последний — за t 2 = 8 с . Считая движение поезда равноускоренным, определите время опоздания. [решение ]

3) В комнате высотой H к потолку одним концом прикреплена легкая пружина жесткостью k , имеющая в недеформированном состоянии длину l о (l о < H ). На полу под пружиной размещают брусок высотой x с площадью основания S , изготовленный из материала плотностью ρ . Построить график зависимости давления бруска на пол от высоты бруска. [решение ]

4) Букашка ползет вдоль оси Ox . Определите среднюю скорость ее движения на участке между точками с координатами x 1 = 1,0 м и x 2 = 5,0 м , если известно, что произведение скорости букашки на ее координату все время остается постоянной величиной, равной c = 500 см 2 /с . [решение ]

5) К бруску массой 10 кг , находящемуся на горизонтальной поверхности, приложена сила. Учитывая, что коэффициент трения равен 0,7 , определите:

  • cилу трения для случая, если F = 50 Н и направлена горизонтально.
  • cилу трения для случая, если F = 80 Н и направлена горизонтально.
  • построить график зависимости ускорения бруска от горизонтально приложенной силы.
  • с какой минимальной силой нужно тянуть за веревку, чтобы равномерно перемещать брусок? [решение ]

6) Имеются две трубы, подсоединенных к смесителю. На каждой из труб имеется кран, которым можно регулировать поток воды по трубе, изменяя его от нуля до максимального значения J o = 1 л/с . В трубах течет вода с температурами t 1 = 10° C и t 2 = 50° C . Постройте график зависимости максимального потока воды, вытекающей из смесителя, от температуры этой воды. Тепловыми потерями пренебречь. [решение ]

7) Поздним вечером молодой человек ростом h идет по краю горизонтального прямого тротуара с постоянной скоростью v . На расстоянии l от края тротуара стоит фонарный столб. Горящий фонарь закреплен на высоте H от поверхности земли. Постройте график зависимости скорости движения тени головы человека от координаты x . [решение ]

Решение графических задач по физике

В графических задачах объектом исследования являются графики зависимости физических величин. Графики могут быть даны в условии задачи или их надо построить в процессе решения задачи. Чтобы успешно решать графические задачи, их нужно уметь «читать», видеть характер зависимости между величинами. Рассмотрим решение некоторых графических задач.

Задача №1 (Задание из варианта ЕГЭ)

На рисунке приведен график зависимости проекции скорости тела от времени.

Проекция ускорения тела в интервале времени от 12 до 16 с представлена графиком

Чтобы успешно и быстро решить подобное задание, нужно знать формулу ускоренияа = . Выделите указанный участок на графике. За 4 с скорость изменилась от значения -10 м/с до значения 0 м/с. Значит, а = (0м/с – (-10 м/с))/4 с = 2,5 м/с 2 .

а 0, значит верный ответ №4.

Задача №2 (Задание из варианта ЕГЭ)

На графике показана зависимость скорости тела от времени. Каков путь, пройденный телом к моменту времени t = 4 c?

1) 7 м; 2) 6 м; 3) 5 м; 4) 4 м.

Не нужно «искать» путь за 4 с движения по формулам кинематики. Это отнимает много времени. Найдём путь как площадь полученной трапеции. Верхнее основание трапеции это отрезок времени 4 с, нижнее – 2 с. Высота трапеции 2 м/с. Далее находим площадь:S = = 6 м.

Аналогично решаются некоторые задачи по термодинамике.

Задача №3

Рабочий цикл тепловой машины изображен на рисунке.

Дано: ν=1 моль, P 2 =6P 1 , T 4 =2T 1 , T 1 =300К

А? (за весь цикл)

Сначала найдем работу, совершенную в каждом процессе.

A 1-2 =0, A 3-4 =0,

A 2-3 =P 2 (V 2 –V 1),

A 4-1 =P 1 (V 1 –V 2). Работа за весь цикл равна:

A =A 2-3 +A 4-1 = P 2 (V 2 –V 1)+ P 1 (V 1 –V 2)=

P 2 (V 2 –V 1)- P 1 (V 2 –V 1)= (V 2 –V 1)(P 2 - P 1)=

= (V 2 –V 1)5 P 1 .

Запишем уравнение

Менделеева-Клапейрона.

    состояние (параметры в точке 1:P 1 ,V 1 ,T 1):

P 1 V 1 =νRT 1 ;

2 состояние (точка 4): P 1 V 2 =νRT 4 ;Решая систему уравнений, получим:

(V 2 –V 1)P 1 = νRT 4 - νRT 1 .

(V 2 –V 1)P 1 = νR(T 4 -T 1)= νRT 1 .

(V 2 –V 1)= νRT 1 /P 1 .

A= (V 2 –V 1)5P 1 =(νRT 1 /P 1) ∙5P 1 =5∙νRT 1 .

Найдём работу как площадь фигуры (прямоугольника): А = (P 2 – P 1)·(V 2 – V 1) = 5 P 1 · νRT 1 /P 1 , т.к. P 1 V 1 =νRT 1 ;P 1 V 2 =νRT 4 , откуда (V 2 –V 1)= νRT 1 /P 1 .

Задача №4

Сравните графики движения тел и определите, какое из них имеет наибольшую скорость.


Можно вычислить скорости движения всех тел и затем их сравнить. Но есть более быстрый способ выполнения этого задания. Чем больше угол наклона графика к оси времени, тем больше скорость тела. Это согласуется с формулой скорости: v = , т.к. отношение изменения координаты (х –х 0) к отрезку времени t показывает тангенс угла наклона графика движения к оси времени. Ответ очевиден: наибольшая скорость соответствует графику 2.

Графические головоломки

  1. Соединить четыре точки тремя линиями, не отрывая руки и вернуться в исходную точку.

. .

  1. Соединить девять точек четырьмя линиями, не отрывая руки.

. . .

. . .

. . .

  1. Покажите, как нужно разрезать прямоугольник со строками 4 и 9 единиц на две равные части, чтобы при сложении их получился квадрат.
  1. Куб, окрашенный со всех сторон, распилили, как показано на рис.

а) Сколько получится кубиков

Совсем не окрашенных?

б) У скольких кубиков окрашенной

Будет одна грань?

в) У скольких кубиков будут

Окрашены две грани?

г) У скольких кубиков окрашенными

Будут три грани?

д) У скольких кубиков окрашенными

Будут четыре грани?

Ситуативные, конструкторские

И технологические задачи

Задача. Шарики трех размеров под действием собственного веса непрерывным потоком скатываются по наклонному лотку. Как осуществить непрерывную сортировку шариков на группы в зависимости от размеров?

Решение. Необходимо разработать конструкцию калибрующего приспособления.

Шарики, покинув лоток, скатываются далее по клиновидному калибру. В том месте, где ширина щели совпадает с диаметром шарика, он проваливается в соответствующий приемник.

Задача. Герои одного фантастического рассказа берут в полет вместо тысяч необходимых запчастей синтезатор-машину, умеющую делать все. При посадке на другую планету корабль повреждается. Нужно 10 одинаковых деталей для ремонта. Тут выясняется, что синтезатор делает все в одном экземпляре. Как найти выход из этой ситуации?

Решение. Необходимо заказать синтезатору произвести самого себя. Второй синтезатор выдает им еще один и т.д.

Ответы на графические головоломки.

1. . .

2. . . .

. . .

. . .

К задачам этого типа относятся такие, в которых все или часть данных заданы в виде графических зависимостей меж­ду ними. В решении таких задач можно выделить следующие этапы:

2 этап - выяснить из приведенного графика, между какими величинами представлена связь; выяснить, какая физическая величина является независимой, т. е. аргументом; какая величина является зависимой, т. е. функцией; определить по виду графика, какая это зависимость; выяснить, что требуется - определить функцию или аргумент; по возможности, записать уравнение, которое описывает приведенный график;

3 этап - отметить на оси абсцисс (или ординат) заданное значение и восстановить перпендикуляр до пересечения с графиком. Опустить перпендикуляр из точки пересечения на ось ординат (или абсцисс) и определить значение искомой величины;

4 этап - оценить полученный результат;

5 этап - записать ответ.

Прочитать график координаты – это значит, что из графика следует определить: начальную координату и скорость движения; записать уравнение координаты; определить время и место встречи тел; определить, в какой момент времени тело имеет данную координату; определить координату, которую тело имеет в указанный момент времени.

Задачи четвертого типа - экспериментальные . Это задачи, в которых для нахождения неизвестной величины требуется часть данных измерить опытным путем. Предлагается следующий порядок работы:

2 этап - определить, какое явление, закон лежат в основе опыта;

3 этап - продумать схему опыта; определить перечень приборов и вспомогательных предметов или оборудования для проведения эксперимента; продумать последовательность проведения эксперимента; в случае необходимости разработать таблицу для регистрации результатов эксперимента;

4 этап - выполнить эксперимент и результаты записать в таблицу;

5 этап - сделать необходимые расчеты, если это требуется согласно условию задачи;

6 этап - обдумать полученные результаты и записать ответ.

Частные алгоритмы для решения задач по кинематике и динамике имеют следующий вид.

Алгоритм решения задач по кинематике:

2 этап - выписать численные значения заданных величин; выразить все величины в единицах «СИ»;

3 этап - сделать схематический чертеж (траекторию движения, векторы скорости, ускорения, перемещения и т.д.);

4 этап - выбрать систему координат (при этом следует выбрать такую систему, чтобы уравнения были несложными);


5 этап - составить для данного движения основные уравнения, которые отражают математическую связь между изображенными на схеме физическими величинами; число уравнений должно быть равно числу неизвестных величин;

6 этап - решить составленную систему уравнений в общем виде, в буквенных обозначениях, т.е. получить расчетную формулу;

7 этап - выбрать систему единиц измерения («СИ»), подставить в расчетную формулу вместо букв наименования единиц, произвести действия с наименованиями и проверить, получается ли о результате единица измерения искомой величины;

8 этап - выразить все заданные величины в избранной системе единиц; подставить в расчетные формулы и вычислить значения искомых величин;

9 этап - проанализировать решение и сформулировать ответ.

Сравнение последовательности решения задач по динамике и кинематике дает возможность увидеть, что некоторые пункты являются общими для обоих алгоритмов, это помогает лучше их запомнить и более успешно применять при решении задач.

Алгоритм решения задач по динамике:

2 этап - записать условие задачи, выразив все величины в единицах «СИ»;

3 этап - сделать чертеж с указанием все сил, действующих на тело, векторы ускорений и системы координат;

4 этап - записать уравнение второго закона Ньютона в векторном виде;

5 этап - записать основное уравнение динамики (уравнение второго закона Ньютона) в проекциях на оси координат с учетом направления осей координат и векторов;

6 этап - найти все величины, входящие в эти уравнения; подставить в уравнения;

7 этап - решить задачу в общем виде, т.е. решить уравнение или систему уравнений относительно неизвестной величины;

8 этап - проверить размерность;

9 этап - получить численный результат и соотнести его с реальными значениями величин.

Алгоритм решения задач на тепловые явления:

1 этап - внимательно прочитать условие задачи, выяснить, сколько тел участвует в теплообмене и какие физические процессы происходят (например, нагревание или охлаждение, плавление или кристаллизация, парообразование или конденсация);

2 этап - кратко записать условие задачи, дополняя необходимыми табличными величинами; все величины выразить в системе «СИ»;

3 этап - записать уравнение теплового баланса с учетом знака количества теплоты (если тело получает энергию, то ставят знак «+», если тело отдает - знак «-»);

4 этап - записать необходимые формулы для расчета количества теплоты;

5 этап - записать полученное уравнение в общем виде относительно искомых величин;

6 этап - произвести проверку размерности полученной величины;

7 этап - вычислить значения искомых величин.


РАСЧЕТНО-ГРАФИЧЕСКИЕ РАБОТЫ

Работа № 1

ВВЕДЕНИЕ. ОСНОВНЫЕ ПОНЯТИЯ МЕХАНИКИ

Основные положения:

Механическое движение – изменение положения тела относительно других тел или изменение положения частей тела со временем.

Материальная точка – тело, размерами которого можно пренебречь в данной задаче.

Физические величины бывают векторные и скалярные.

Вектором называется величина, характеризующаяся числовым значением и направлением (сила, скорость, ускорение и т.д.).

Скаляром называется величина, характеризующаяся только числовым значением.(масса, объем, время и т.д.).

Траектория - линия, вдоль которой движется тело.

Пройденный путь - длина траектории движущегося тела, обозначение - l , единица измерения в системе СИ: 1 м, скаляр (имеет модуль, но не имеет направления), однозначно не определяет конечное положение тела.

Перемещение - вектор, соединяющий начальное и последующее положения тела, обозначение - S, единица измерения в СИ: 1 м, вектор (имеет модуль и направление), однозначно определяет конечное положение тела.

Скорость – векторная физическая величина, равная отношению перемещения тела к промежутку времени, за которое это перемещение произошло.

Механическое движение бывает поступательным, вращательным и колебательным.

Поступательным движением называют движение, при котором любая прямая, жестко связанная с телом, перемещается, оставаясь параллельной самой себе. Примерами поступательного движения являются движение поршня в цилиндре двигателя, движение кабин «чертова колеса» и т.д. При поступательном движении все точки твердого тела описывают одинаковые траектории и в каждый момент времени имеют одинаковые скорости и ускорения.

Вращательным движением абсолютно твердого тела называют такое движение, при котором все точки тела движутся в плоскостях, перпендикулярных к неподвижной прямой, называемой осью вращения , и описывают окружности, центры которых лежат на этой оси (роторы турбин, генераторов и двигателей).

Колебательное движение – это движение, периодически повторяющееся в пространстве с течением времени.

Системой отсчета называется совокупность тела отсчета, системы координат и способа измерения времени.

Тело отсчета – любое тело, выбираемое произвольно и условно считаемое неподвижным, относительно которого изучается расположение и движение других тел.

Система координат состоит из выделенных в пространстве направлений – осей координат, пересекающихся в одной точке, называемой началом отсчета и выбранного единичного отрезка (масштаба). Система координат нужна для количественного описания движения.

В декартовой системе координат положение точки А в данный момент времени по отношению к этой системе определяется тремя координатами х, у и z, или радиусом-вектором .

Траекторией движения материальной точки называется линия, описываемая этой точкой в пространстве. В зависимости от формы траектории движение может быть прямолинейным и криволинейным .

Движение называется равномерным, если скорость материальной точки с течением времени не изменяется.

Действия с векторами:

Скорость – векторная величина, показывающая направление и быстроту перемещения тела в пространстве.

Всякому механическому движению присущ абсолютный и относительный характер .

Абсолютный смысл механического движения состоит в том, что если два тела сближаются или удаляются друг от друга, то они будут сближаться или удаляться в любой системе отсчета.

Относительность механического движения заключается в том, что:

1) бессмысленно говорить о движении, не указав тело отсчета;

2) в разных системах отсчета одно и то же движение может выглядеть по-разному.

Закон сложения скоростей : Скорость тела относительно неподвижной системы отсчета равна векторной сумме скорости этого же тела относительно подвижной системы отсчета и скорости подвижной системы относительно неподвижной.

Контрольные вопросы

1. Определение механического движения (примеры).

2. Виды механического движения (примеры).

3. Понятие материальной точки (примеры).

4. Условия, при выполнении которых тело можно считать материальной точкой.

5. Поступательное движение (примеры).

6. Что включает в себя система отсчета?

7. Что такое равномерное движение (примеры)?

8. Что называется скоростью?

9. Закон сложения скоростей.

Выполните задания:

1. Улитка проползла прямолинейно 1 м, затем сделала поворот, описав четверть окружности радиусом 1 м, и проползла далее перпендикулярно первоначальному направлению движения еще 1 м. Сделать чертеж, рассчитать пройденный путь и модуль перемещения, на чертеже не забыть показать вектор перемещения улитки.

2. Движущийся автомобиль сделал разворот, описав половину окружности. Сделать чертеж, на котором указать путь и перемещение автомобиля за треть времени разворота. Во сколько раз путь, пройденный за указанный промежуток времени, больше модуля вектора соответствующего перемещения?

3. Может ли спортсмен на водных лыжах двигаться быстрее катера? Может ли катер двигаться быстрее лыжника?

Если в задаче линейного программирования имеется только две переменные, то ее можно решить графическим методом.

Рассмотрим задачу линейного программирования с двумя переменными и :
(1.1) ;
(1.2)
Здесь , есть произвольные числа. Задача может быть как на нахождение максимума (max), так и на нахождение минимума (min). В системе ограничений могут присутствовать как знаки , так и знаки .

Построение области допустимых решений

Графический метод решения задачи (1) следующий.
Вначале мы проводим оси координат и и выбираем масштаб. Каждое из неравенств системы ограничений (1.2) определяет полуплоскость, ограниченную соответствующей прямой.

Так, первое неравенство
(1.2.1)
определяет полуплоскость, ограниченную прямой . С одной стороны от этой прямой , а с другой стороны . На самой прямой . Чтобы узнать, с какой стороны выполняется неравенство (1.2.1), мы выбираем произвольную точку, не лежащую на прямой. Далее подставляем координаты этой точки в (1.2.1). Если неравенство выполняется, то полуплоскость содержит выбранную точку. Если неравенство не выполняется, то полуплоскость расположена с другой стороны (не содержит выбранную точку). Заштриховываем полуплоскость, для которой выполняется неравенство (1.2.1).

Тоже самое выполняем для остальных неравенств системы (1.2). Так мы получим заштрихованных полуплоскостей. Точки области допустимых решений удовлетворяют всем неравенствам (1.2). Поэтому, графически, область допустимых решений (ОДР) является пересечением всех построенных полуплоскостей. Заштриховываем ОДР. Она представляет собой выпуклый многоугольник, грани которого принадлежат построенным прямым. Также ОДР может быть неограниченной выпуклой фигурой, отрезком, лучом или прямой.

Может возникнуть и такой случай, что полуплоскости не содержат общих точек. Тогда областью допустимых решений является пустое множество. Такая задача решений не имеет.

Можно упростить метод. Можно не заштриховывать каждую полуплоскость, а вначале построить все прямые
(2)
Далее выбрать произвольную точку, не принадлежащую ни одной из этих прямых. Подставить координаты этой точки в систему неравенств (1.2). Если все неравенства выполняются, то область допустимых решений ограничена построенными прямыми и включает в себя выбранную точку. Заштриховываем область допустимых решений по границам прямых так, чтобы оно включало в себя выбранную точку.

Если хотя бы одно неравенство не выполняется, то выбираем другую точку. И так далее, пока не будет найдены одна точка, координаты которой удовлетворяют системе (1.2).

Нахождение экстремума целевой функции

Итак, мы имеем заштрихованную область допустимых решений (ОДР). Она ограничена ломаной, состоящей из отрезков и лучей, принадлежащих построенным прямым (2). ОДР всегда является выпуклым множеством. Оно может быть как ограниченным множеством, так и не ограниченным вдоль некоторых направлений.

Теперь мы можем искать экстремум целевой функции
(1.1) .

Для этого выбираем любое число и строим прямую
(3) .
Для удобства дальнейшего изложения считаем, что эта прямая проходит через ОДР. На этой прямой целевая функция постоянна и равна . такая прямая называется линией уровня функции . Эта прямая разбивает плоскость на две полуплоскости. На одной полуплоскости
.
На другой полуплоскости
.
То есть с одной стороны от прямой (3) целевая функция возрастает. И чем дальше мы отодвинем точку от прямой (3), тем больше будет значение . С другой стороны от прямой (3) целевая функция убывает. И чем дальше мы отодвинем точку от прямой (3) в другую сторону, тем меньше будет значение . Если мы проведем прямую, параллельную прямой (3), то новая прямая также будет линией уровня целевой функции, но с другим значением .

Таким образом, чтобы найти максимальное значение целевой функции, надо провести прямую, параллельную прямой (3), максимально удаленную от нее в сторону возрастания значений , и проходящую хотя бы через одну точку ОДР. Чтобы найти минимальное значение целевой функции, надо провести прямую, параллельную прямой (3) и максимально удаленную от нее в сторону убывания значений , и проходящую хотя бы через одну точку ОДР.

Если ОДР неограниченна, то может возникнуть случай, когда такую прямую провести нельзя. То есть как бы мы ни удаляли прямую от линии уровня (3) в сторону возрастания (убывания) , то прямая всегда будет проходить через ОДР. В этом случае может быть сколь угодно большим (малым). Поэтому максимального (минимального) значения нет. Задача решений не имеет.

Рассмотрим случай, когда крайняя прямая, параллельная произвольной прямой вида (3), проходит через одну вершину многоугольника ОДР. Из графика определяем координаты этой вершины. Тогда максимальное (минимальное) значение целевой функции определяется по формуле:
.
Решением задачи является
.

Также может встретиться случай, когда прямая параллельна одной из граней ОДР. Тогда прямая проходит через две вершины многоугольника ОДР. Определяем координаты и этих вершин. Для определения максимального (минимального) значения целевой функции, можно использовать координаты любой из этих вершин:
.
Задача имеет бесконечно много решений. Решением является любая точка, расположенная на отрезке между точками и , включая сами точки и .

Пример решения задачи линейного программирования графическим методом

Условие задачи

Фирма выпускает платья двух моделей А и В. При этом используется ткань трех видов. На изготовление одного платья модели А требуется 2 м ткани первого вида, 1 м ткани второго вида, 2 м ткани третьего вида. На изготовление одного платья модели В требуется 3 м ткани первого вида, 1 м ткани второго вида, 2 м ткани третьего вида. Запасы ткани первого вида составляют 21 м, второго вида - 10 м, третьего вида - 16 м. Выпуск одного изделия типа А приносит доход 400 ден. ед., одного изделия типа В - 300 ден. ед.

Составить план производства, обеспечивающий фирме наибольший доход. Задачу решить графическим методом.

Решение

Пусть переменные и означают количество произведенных платьев моделей А и В, соответственно. Тогда количество израсходованной ткани первого вида составит:
(м)
Количество израсходованной ткани второго вида составит:
(м)
Количество израсходованной ткани третьего вида составит:
(м)
Поскольку произведенное количество платьев не может быть отрицательным, то
и .
Доход от произведенных платьев составит:
(ден. ед.)

Тогда экономико-математическая модель задачи имеет вид:


Решаем графическим методом.
Проводим оси координат и .

Строим прямую .
При .
При .
Проводим прямую через точки (0; 7) и (10,5; 0).

Строим прямую .
При .
При .
Проводим прямую через точки (0; 10) и (10; 0).

Строим прямую .
При .
При .
Проводим прямую через точки (0; 8) и (8; 0).



Заштриховываем область, чтобы точка (2; 2) попала в заштрихованную часть. Получаем четырехугольник OABC.


(П1.1) .
При .
При .
Проводим прямую через точки (0; 4) и (3; 0).

Далее замечаем, что поскольку коэффициенты при и целевой функции положительны (400 и 300), то она возрастает при увеличении и . Проводим прямую, параллельную прямой (П1.1), максимально удаленную от нее в сторону возрастания , и проходящую хотя бы через одну точку четырехугольника OABC. Такая прямая проходит через точку C. Из построения определяем ее координаты.
.

Решение задачи: ;

Ответ

.
То есть, для получения наибольшего дохода, необходимо изготовить 8 платьев модели А. Доход при этом составит 3200 ден. ед.

Пример 2

Условие задачи

Решить задачу линейного программирования графическим методом.

Решение

Решаем графическим методом.
Проводим оси координат и .

Строим прямую .
При .
При .
Проводим прямую через точки (0; 6) и (6; 0).

Строим прямую .
Отсюда .
При .
При .
Проводим прямую через точки (3; 0) и (7; 2).

Строим прямую .
Строим прямую (ось абсцисс).

Область допустимых решений (ОДР) ограничена построенными прямыми. Чтобы узнать, с какой стороны, замечаем, что точка принадлежит ОДР, поскольку удовлетворяет системе неравенств:

Заштриховываем область по границам построенных прямых, чтобы точка (4; 1) попала в заштрихованную часть. Получаем треугольник ABC.

Строим произвольную линию уровня целевой функции, например,
.
При .
При .
Проводим прямую линию уровня через точки (0; 6) и (4; 0).
Поскольку целевая функция увеличивается при увеличении и , то проводим прямую, параллельную линии уровня и максимально удаленную от нее в сторону возрастания , и проходящую хотя бы через одну точку треугольника АВC. Такая прямая проходит через точку C. Из построения определяем ее координаты.
.

Решение задачи: ;

Ответ

Пример отсутствия решения

Условие задачи

Решить графически задачу линейного программирования. Найти максимальное и минимальное значение целевой функции.

Решение

Решаем задачу графическим методом.
Проводим оси координат и .

Строим прямую .
При .
При .
Проводим прямую через точки (0; 8) и (2,667; 0).

Строим прямую .
При .
При .
Проводим прямую через точки (0; 3) и (6; 0).

Строим прямую .
При .
При .
Проводим прямую через точки (3; 0) и (6; 3).

Прямые и являются осями координат.

Область допустимых решений (ОДР) ограничена построенными прямыми и осями координат. Чтобы узнать, с какой стороны, замечаем, что точка принадлежит ОДР, поскольку удовлетворяет системе неравенств:

Заштриховываем область, чтобы точка (3; 3) попала в заштрихованную часть. Получаем неограниченную область, ограниченную ломаной ABCDE.

Строим произвольную линию уровня целевой функции, например,
(П3.1) .
При .
При .
Проводим прямую через точки (0; 7) и (7; 0).
Поскольку коэффициенты при и положительны, то возрастает при увеличении и .

Чтобы найти максимум, нужно провести параллельную прямую, максимально удаленную в сторону возрастания , и проходящую хотя бы через одну точку области ABCDE. Однако, поскольку область неограниченна со стороны больших значений и , то такую прямую провести нельзя. Какую бы прямую мы не провели, всегда найдутся точки области, более удаленные в сторону увеличения и . Поэтому максимума не существует. можно сделать сколь угодно большой.

Ищем минимум. Проводим прямую, параллельную прямой (П3.1) и максимально удаленную от нее в сторону убывания , и проходящую хотя бы через одну точку области ABCDE. Такая прямая проходит через точку C. Из построения определяем ее координаты.
.
Минимальное значение целевой функции:

Ответ

Максимального значения не существует.
Минимальное значение
.