Гидроэнергетические ресурсы. типы гидроэнергетических установок Источники гидроэнергии в Африке

Гидроэнергетические ресурсы

Гидроэнергети́ческие ресу́рсы

возобновляемые природные ресурсы, энергетические ресурсы текущей воды, используемые для выработки электроэнергии на гидроэлектростанциях (ГЭС). Доля гидроэнергетических ресурсов в мировом производстве электроэнергии достигает 15 %. Потенциальные гидроэнергетические ресурсы рек оцениваются величиной мощности 1000 МВт. Суммарно экономические гидроэнергетические ресурсы, использование которых в настоящее время оправданно, составляют 9800 млрд. кВт·ч. По этому показателю лидируют Россия, США, Демократическая Респ. Конго, Канада, Бразилия. На тер. России сосредоточено св. 8 % мировых гидроэнергетических ресурсов. По степени использования экономического гидропотенциала выделяются страны Европы, Сев. Америки, Япония. Преимущества гидроэнергетических ресурсов – низкая себестоимость электроэнергии, высокая маневренность ГЭС с точки зрения покрытия пиков нагрузки. Использование гидроэнергетических ресурсов значительно меньше, чем использование других видов энергетики, загрязняет окружающую среду. В то же время гидротехнические сооружения, гл. обр. плотины и водохранилища на реках, часто вызывают серьёзные экологические последствия – изменения климата, рельефа, почв, растительного и животного мира на прилегающих территориях. Плотины, препятствуя нересту рыбы, причиняют ущерб рыболовству.

География. Современная иллюстрированная энциклопедия. - М.: Росмэн . Под редакцией проф. А. П. Горкина . 2006 .


Смотреть что такое "гидроэнергетические ресурсы" в других словарях:

    гидроэнергетические ресурсы - Энергетический потенциал речного стока (по отношению к уровню морей), морских приливов и отливов. [СО 34.21.308 2005] Тематики гидротехника EN water power resources … Справочник технического переводчика

    гидроэнергетические ресурсы - Общий объем гидроэнергоресурсов, который может быть освоен на данном уровне технико экономического развития страны. Syn.: гидроэнергетический потенциал; гидроэнергоресурсы … Словарь по географии

    гидроэнергетические ресурсы - 3.7.2 гидроэнергетические ресурсы: Энергетический потенциал речного стока (по отношению к уровню морей), морских приливов и отливов. Источник: СО 34.21.308 2005: Гидротехника. Основные понятия. Термины и определения … Словарь-справочник терминов нормативно-технической документации

    Гидроэнергетические ресурсы СССР - … Географический атлас

    Все карты - Физическая карта полушарий Антлантический океан. Физическая карта Арктика. Физическая карта Тихий и Индийский океаны. Физическая карта … Географический атлас

    Европа - (Europe) Европа – это плотнонаселенная высокоурбанизированная часть света названная в честь мифологической богини, образующая вместе с Азией континент Евразия и имеющая площадь около 10,5 миллионов км² (примерно 2 % от общей площади Земли) и … Энциклопедия инвестора

    ТЕМАТИЧЕСКИЕ КАРТЫ - Атлас включает группу карт разнообразной тематики, состоя­щую из карт природных явлений и социально экономических: ми­ра, материков, зарубежных стран, СССР и его частей. Одновре­менное использование общегеографических и тематических карт на… … Географический атлас

    Раздел энергетики, связанный с использованием потенциальной энергии водных ресурсов. Человек ещё в глубокой древности обратил внимание на реки как на доступный источник энергии. Для использования этой энергии научились строить… … Большая советская энциклопедия

    Австрийская Республика, гос во в Центр. Европе. В IX в. при адм. устройстве пограничных земель Франк, гос ва Карла Великого в Подунавье была образована Восточная марка франк. Marchia Austriaca (марка граница, пограничная земля). В конце X в.… … Географическая энциклопедия

    У этого термина существуют и другие значения, см. Конго. Конго Река Конго возле Малуку Характеристика Дли … Википедия

Гидроэнергетические ресурсы на Земле оцениваются величиной 33000 ТВт ч в год, но по техническим и экономическим соображениям из всех запасов доступны от 4 до 25%. Общий гидропотенциал рек России исчисляется в 4000 млн. МВт ч (450 тыс. МВт среднегодовой установленной мощности), что составляет приблизительно 10-12% от мирового.

В табл. 1.13 приводятся данные о гидроресурсах в различных странах мира.

Известно, что первоисточником гидроэнергии является солнечная энергия. Вода океанов и морей, испарясь под действием солнечной радиации, конденсируется в высоких слоях атмосферы в виде капелек, собирающихся в облака. Вода облаков падает в виде дождя в моря, океаны и на сушу или образует мощный снеговой покров гор. Дождевая вода дает начало рекам, питающимся подземными источниками. Круговорот воды в природе происходит под влиянием солнечной радиации , благодаря которой появляются начальные процессы круговорота - испарение воды и движение облаков. Таким образом, кинетическая энергия движущейся в реках воды есть, образно говоря, освобожденная энергия Солнца.

Гидроресурсы различных стран

Таблица 1.13

Страна

Мощность, ГВт

Страна

Мощность, ГВт

(обеспеченность - 50%)

минималь

расходах

воды

(обеспеченность - 95%)

при среднегодовых расходах воды

(обеспеченность - 50%)

минималь

расходах

воды

(обеспеченность - 95%)

Россия

Франция

Италия

Канада

Швейцария

Япония

Испания

Норвегия

Германия

Швеция

Англия

В отличие от невозобновляемой химической энергии, запасенной в органическом топливе, кинетическая энергия движущейся в реках воды возобновляема - на гидроэлектростанциях она превращается в электрическую энергию.

Свойство возобновляемости гидроэнергии является важным преимуществом ГЭС. К их преимуществам относятся также:

  • 1) небольшая стоимость эксплуатации и отсюда низкая себестоимость энергии, вырабатываемой на ГЭС;
  • 2) большая надежность работы, объясняемая отсутствием высоких температур и давлений в гидротурбинах и относительно невысокими скоростями вращения этих турбин и гидрогенераторов;
  • 3) высокая маневренность, определяемая небольшим временем, требующимся для включения в работу, набора нагрузки, а также останова ГЭС (это время составляет всего несколько минут).

Строительство ГЭС во многих случаях решает также задачи снабжения водой городов, промышленности и сельского хозяйства (орошение).

Работа ГЭС, в отличие от ТЭС, не ухудшает санитарного состояния воздушной среды и качество воды в водоемах. Недостатками ГЭС являются их более высокая стоимость и большой срок строительства в сравнении с ТЭС. Однако эти недостатки обычно компенсируются преимуществами ГЭС.

Энергия приливов и отливов. К использованию этих видов энергии в последнее время проявляется значительный интерес.

Наибольшей высоты приливы достигают в некоторых заливах и окраинных морях Атлантического океана - 14-18 м. В Тихом океане у побережья России максимальные приливы бывают в Пенжинской губе Охотского моря - 12,9 м. У берегов Кольского полуострова в Баренцевом море они не превышают 7 м, но в Белом море, в Мензенской губе, достигают 10 м. В окраинных морях Северного Ледовитого океана приливы не велики - 0,2-0,3 м, редко 0,5 м. Во внутренних морях - Средиземном, Балтийском, Черном - приливы почти незаметны.

Доступный для использования потенциал приливов в европейской части России оценивается в 40 млн. МВт (16 тыс. МВт среднегодовой установленной мощности), а на Дальнем Востоке - в 170 млн. МВт.

Течения и волнения в Мировом океане велики и чрезвычайно разнообразны. Скорости течений достигают высоких значений, например, у Гольфстрима - 2,57 м/с (9,2 км/ч) при глубине 700 м и ширине 30 км. Правда, чаще они не превышают нескольких сантиметров в секунду.

Максимальные параметры волнений: высота волн -15м, длина - 800 м, скорость - 38 м/с, период - 23 с. В толще вод возникают и внутренние волны, обнаруженные впервые Ф. Нансеном в 1902 г., амплитуда их - от 35 до 200 м. При амплитуде же в 1 м, ширине 5 м и скорости распространения 10 м/с энергия волны достигает 267 кВт. Отсюда видно, как велики запасы энергии в этих источниках энергии.

В настоящее время сооружено несколько мощных электростанций, использующих энергию приливов. Однако большая стоимость сооружения таких станций, трудности, связанные с неравномерностью их работы (пульсирующий характер выдачи мощности), не позволяют пока считать приливные станции достаточно эффективными, в связи с чем развитие их идет медленно. Общая мощность приливных волн оценивается в 2-3 ТВт, однако мощность приливов в местах, удобных для ее использования, значительно меньше.

Контрольные вопросы

  • 1. Перечислите основные возобновляемые и невозобновляемые энергетические ресурсы.
  • 2. Назовите элементарный состав твердого топлива и виды массы топлива.
  • 3. Что является основной характеристикой любого вида топлива?
  • 4. Что такое условное топливо?
  • 5. Назовите основной принцип получения тепловой энергии на атомных станциях.

Гидроэнергетические ресурсы обладают массой достоинств, благодаря которым именно в них и нуждается множество предприятий. Они выступают в роли достаточно дешевого источника энергии, который обладает способностью возобновляться. Такие ресурсы используются на гидроэлектростанциях, с их помощью происходит выработка электроэнергии. Для ее получения принято использовать разные способы и методы, но именно гидроэнергетика позволяет получить весомую часть электроэнергии, производимой во всем мире. Многих привлекают эти ресурсы благодаря их низкой себестоимости, они оказывают меньшее влияние на загрязнение и состояние окружающей среды.

Гидроэлектростанции нуждаются в постоянной модернизации и в совершенствовании, им необходимы инвестиции. Появляется необходимость в использовании новых агрегатов, замене турбин, в том, чтобы появились собственные очистные сооружения.

Гидроэнергетику принято относить к одной из самых развитых областей хозяйственной деятельности, которая позволяет трансформировать водные потоки в самую настоящую электрическую энергию. Исландия является той страной, в которой данная отрасль развита больше всего. Она одерживает пальму первенства по показателям выработки гидроэнергии. В ряде других стран гидроэнергетика также занимает солидное место. Например, в Швеции и в Канаде.

Эта отрасль обладает рядом своих достоинств и недостатков. Она позволяет получать очень дешевую электроэнергию, при этом производственная деятельность не сопровождается выбросами, которые очень вредны для окружающей среды. Подразумевается использование возобновляемой электроэнергии. От момента подключения станции до того момента, как она может начать работать на полную мощность, проходит совсем не много времени. Но когда происходят технологические процессы с использованием воды, следует обязательно подумать про системы водоподготовки. Они помогают очистить воду от разных примесей.

Среди недостатков отрасли гидроэнергетики можно выделить вероятность затопления пахотных земель, что может нанести немалый ущерб сельскому хозяйству. Нежелательно создавать такие конструкции на реках, которые располагаются в горах, ведь, как известно, такие районы отличаются сейсмичностью. Редко встречаются ГЭС на территории Африки и Южной Америки – там их развитие только начинается.

На тепловых электростанциях для получения энергии используют природный источник энергии, и является их основным ресурсом: на атомных электростанциях основным ресурсом является ядерное топливо, для гидроэлектростанций основным ресурсом является гидроэнергетические ресурсы.

Основные ресурсы тепловых электростанций

Приведем характеристику основных типов природного топлива.

Торф - геологически молодая среди топлива ископаемое. Образовался из накоплений болотных растений в условиях повышенной влажности и недостаточной аэрации. Торф - очень гидрофильная вещество. В процессе сушки объемная усадка достигает 50% первоначального объема. Но вода в торфе не только заполняет капилляры, она частично связана с ним. Это мешает сушке и препятствует механическому удалению влаги. Содержание углерода в торфе растет с повышением степени разложения растений. Зола торфа состоит, главным образом, с Са, Fe2О3, Ад2О3 и SiO2.

Уголь бурый - смесь в разной степени преобразованных остатков высших наземных растений, водорослей и организмов планктона. Содержание минеральных примесей (зольность) бурого угля более 30%, содержание влаги около 20%. От торфа, из которого оно образовалось, отличается большей однородностью и отсутствием остатков растений, не разложились. Основные буро-угольные бассейны Украины - Львовско-Волынский и Днепровский.

Уголь каменный - по запасам тепловой энергии, содержащейся в нем (вместе с близкими ему антрацитами), занимает основное место среди горючих ископаемых. Каменный уголь является одним из членов генетического ряда твердых горючих ископаемых: торф - бурый уголь - каменный уголь - антрацит. Содержание гигроскопической влаги в каменном угле снижается с ростом его метаморфизма от 7-9% до 0,2-0,4%.

Если зольность угля более 40%, то такой уголь называют топливными сланцами. Основные составляющие золы каменного угля - оксиды кремния, Fe, Al, встречаются некоторые редкие элементы - германий, ванадий, вольфрам, титан и драгоценные металлы - Au, Ag.

Основные каменноугольные бассейны Украины - Донецкий, Западный Донбасс и Южный Донбасс.

Нефть - топливная ископаемое, смесь углеводородов с другими органическими соединениями (сернистыми, азотистыми, кислородными). Нефть - важнейший источник жидкого топлива, а также сырья для химической промышленности. Мазут - остаток после отгона из нефти бензина и керосина.

Газы природные топливные - природные смеси углеводородов различного состава. По способу добычи подразделяются на:

Собственно природные газы, добываемые из чисто газовых месторождений, практически не содержат нефти;

Попутные газы, растворенные в нефти, добываемых вместе с ней;

В газы конденсатных месторождений;

Природное топливо классифицируется:

По агрегатному состоянию (твердые, жидкие, газообразные)

По происхождению (природные и искусственные, получаемые в процессе переработки природных - кокс, моторные топлива, газ коксовый и др.)

В золе топлива содержатся минимальные количества ванадия (0,001%) и натрия (0,0005%), которые являются основными коррозионными агентами. Для сравнения различных видов топлив принята условная единица - условное топливо - 1 т.уп = 7 106 ккал - 2,93 104МДж. Очевидно, что протекание процесса горения зависит как от свойств топлив, так и от организации самого процесса горения.

Свойства топлива определяются его химическим составом, топливной массой и балластом. Химический состав топлива принято записывать символами элементов: С, Н, O, N, S (табл.2.2). Для содержания золы и влаги приняты обозначения А и W. Индексы справа сверху показывают, к которому топлива относятся данные: г. - до рабочего топлива, с - к сухому, г - к горючей массы, в - в органической массы. Топливная масса - основные топливные составляющие: углерод (теплота сгорания 34,4 МДж / кг), водород (143 МДж / кг), сера (9,3 МДж / кг).

Таблица 2.2

Характеристики твердых и жидких топлив

Сера содержится в топливе в 3-х видах: органическая (в составе сложных соединений), колчеданная (в соединениях с Fe и другими металлами) и сульфатная.

Вещества, не сгорают, вместе с влагой топлива образуют балласт топлива. Минеральные примеси, характеризующие зольность, присутствующие в виде силикатов (кремнезем, глинозем, глина), сульфидов (Fe), карбонатов (Са, Mg, Fe), сульфатов (Са, Mg), оксидов металлов, фосфатов, хлоридов и других солей щелочных металлов в различных сочетаниях, характерных для различных месторождений.

Важнейшая характеристика топлива - теплота сгорания. Высшая теплота сгорания топлива - количество теплоты, выделяющейся в процессе полного сгорания твердого, жидкого или газообразного топлива, когда вся влага топлива переходит в продукты реакции горения. Низшая теплота сгорания меньше высшей на то количество тепла, которое затрачивается на испарение воды, образующейся в процессе сгорания топлива, а также влаги, содержащейся в нем.

Основные ресурсы атомных электростанций

Энергетически выгодными являются реакции синтеза легких ядер и деления тяжелых. В реакции синтеза ядер гелия из дейтерия

2Н + 2Н = 4 Не

выделяется 17,6 МэВ на каждый акт синтеза, дает энергию в 23,6 МВт / м сгоревшего дейтерия. Содержание дейтерия в природной водные 0,015% и 4 1013т в гидросфере Земли. Запасы безграничны, но нет управляемого синтеза, является взрывное протекания реакции в термоядерной (водородной) бомбы с инициированием реакции ядерным взрывом (Т ~ 10й К). Исследования по управляемому термоядерному синтезу велись в установках "токомак".

К тяжелым делящихся ядер, относятся природные изотопы 235U 232Th и искусственные 233U 239Рu и 241Pu. Единственный природный изотоп 235U, что делится под действием нейтронов любой энергии, называется первичным ядерным топливом, другие изотопы - вторичное ядерное топливо. Деление ядер урана сопровождается выделением около 200 МэВ в результате 1 реакции или 20 МВт / ч горючего.

Первая АЭС построена и запущена в СССР в г. Обнинске мощностью 5МВт в 1954 году. Это АЭС на тепловых (медленных) нейтронах. Ее действие основано на реакции

В процессе деления образуются вторичные нейтроны, вступают в новые реакции, поддерживая протекания цепной реакции деления ядер. Обломки, образующиеся неустойчивые и делятся сами к образованию устойчивого ядра. Такие реакторы используют примерно 1,5% энергии топлива. В процессе взаимодействия ядерного топлива с быстрыми нейтронами используется до 50% энергии топлива, одновременно создается искусственное ядерное топливо. Первая АЭС на быстрых нейтронах построена в 1973 году в М.Шевченко на Мангышлаке. В таком реакторе топливо используется медленнее, чем производится новое топливо (239Ры или 233U) (такой реактор называется реактор-размножитель или бридеров):

Для работы электростанции мощностью 1000 МВт в течение 1 суток нужно 750 Т угля, 400 т нефти или 250 г 235U.

Урановая руда состоит из трех изотопов: урана-233, -235, и - 238; и только уран-235 подходит как топливо для ядерных электростанций. В процессе производства энергетического топлива сначала в состав руды входит не более 0,7% урана-235. В процессе обогащения руды концентрация этого изотопа увеличивается до 90%.

Гидроэнергетические ресурсы

Гидроэнергетические ресурсы - это запасы потенциальной энергии речных потоков и водоемов. Технически целесообразными для использования на территории Украины могут быть гидроэнергетические ресурсы Днепра - 46%; Днестра и Тисы - по 20% и на все другие реки Украины - 14%. Особенно большое значение ГЭС Днепровского каскада имеют для водоснабжения маловодных районов Центра и Юга страны. В целом из ресурсов искусственных накопителей воды на Днепре обеспечивается 35% промышленной и коммунально-бытовой потребности страны.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

(ГОУ ВПО «ВГТУ»)

КОНТРОЛЬНАЯ РАБОТА

по дисциплине «Гидравлика»

Общие сведения

Человек еще в глубокой древности обратил внимание на реки как на доступный источник энергии. Для использования этой энергии люди научились строить водяные колеса, которые вращала вода; этими колесами приводились в движение мельничные постава и другие установки. Водяная мельница является ярким примером древнейшей гидроэнергетической установки, сохранившейся во многих странах до нашего времени почти в первозданном виде. До изобретения паровой машины водная энергия была основной двигательной силой на производстве. По мере совершенствования водяных колес увеличивалась мощность гидравлических установок, приводящих в движение станки и т.д. В 1-й половине XIX века была изобретена гидротурбина, открывшая новые возможности по использованию гидроэнергоресурсов. С изобретением электрической машины и способа передачи электроэнергии на значительные расстояния началось освоение водной энергии путем преобразования ее в электрическую энергию на гидроэлектростанциях (ГЭС).

Гидроэнергоресурсы - это запасы энергии текущей воды речных потоков и водоемов, расположенных выше уровня моря (а также энергии морских приливов). экологический баланс гидроэнергетический

Существенную особенность в оценку гидроэнергоресурсов вносит то обстоятельство, что поверхностные воды - важнейшая составляющая часть экологического баланса планеты. Если все остальные виды первичных энергоресурсов используются преимущественно для выработки энергии, то гидравлические ресурсы должны оцениваться и с точки зрения возможностей осуществления промышленного и общественного водоснабжения, развития рыбного хозяйства, ирригации, судоходства и т.д.

Характерна для гидроэнергоресурсов и та особенность, что преобразование механической энергии воды в электрическую происходит на ГЭС без промежуточного производства тепла.

Энергия рек возобновляема, причем цикличность ее воспроизводства полностью зависит от речного стока, поэтому гидроэнергоресурсы неравномерно распределяются в течение года, кроме того их величина меняется из года в год. В обобщенном виде гидроэнергоресурсы характеризуются среднемноголетней величиной (как и водные ресурсы).

В естественных условиях энергия рек тратится на размыв дна и берегов русла, перенос и переработку твердого материала, выщелачивание и перенос солей. Эта эрозионная деятельность может приводить и к вредным последствиям (нарушение устойчивости берегов, наводнения и др.), и иметь полезный эффект как, например, при выносе из горной породы руды и минеральных веществ, формирование, вынос и накопление различных стройматериалов (галечник, песок). Поэтому использование гидроресурсов для выработки электроэнергии наносит ущерб формированию других важных ресурсов.

Использование гидроэнергетических ресурсов занимает значительное место в мировом балансе электроэнергии. В 70-80-х годах вес гидроэнергии находился на уровне примерно 26 % всей выработки электроэнергии мира, достигнув значительной абсолютной величины. Выработка электроэнергии ГЭС мира после 2-й Мировой войны росла большими темпами: с 200 млрд. квт-ч в 1946 г. до 860 млрд. квт-ч в 1965 г. и 975 млрд. квт-ч в 1978 г. А сейчас в мире вырабатывается 2100 млрд. квт-ч гидроэергии в год, а к 2000 г. эта величина еще вырастет. Ускоренное развитие гидроэнергетики во многих государствах мира объясняется перспективой нарастания топливно-энергетических и экологических проблем, связанных с продолжением нарастания выработки электроэнергии на традиционных (тепловых и атомных) электростанциях при слабо разработанной технологической основе использования нетрадиционных источников энергии. Основная часть мировой выработки ГЭС падает на Северную Америку, Европу, Россию и Японию, в которых производится до 80 % электроэнергии ГЭС мира.

В ряде стран с высокой степенью использования гидроэнергоресурсов наблюдается снижение удельного веса гидроэнергии в электробалансе. Так, за последние 40 лет удельный вес гидроэнергии снизился в Австрии с 80 до 70 %, во Франции с 53 до очень малой величины (за счет увеличения производства электроэнергии на АЭС), в Италии с 94 до 50 % (это объясняется тем, что наиболее пригодные к эксплуатации гидроэнергоресурсы в этих странах уже почти исчерпаны). Одно из самых больших снижений произошло в США, где выработка электроэнергии на ГЭС в 1938 г. составляла 34 %, а уже в 1965 г. - только 17 %. В то же время в энергетике Норвегии эта доля составляет 99,6 %, Швейцарии и Бразилии - 90 %, Канады - 66 %.

1. Гидроэнергетический потенциал и его распределение по континентам и странам

Несмотря на значительное развитие гидроэнергетики в мире в учете мировых гидроэнергоресурсов до сих пор нет полного единообразия и отсутствуют материалы, дающие сопоставимую оценку гидроэнергоресурсов мира. Кадастровые подсчеты запасов гидроэнергии различных стран и отдельных специалистов отличаются друг от друга рядом показателей: полнотой охвата речной системы отдельной страны и отдельных водотоков, методологией определения мощности; в одних странах учитываются потенциальные гидроэнергоресурсы, в других вводятся различные поправочные коэффициенты и т.д.

Попытка упорядочить учет и оценку мировых гидроэнергоресуров была сделана на Мировых энергетических конференциях (МИРЭК).

Было предложено следующее содержание понятия гидроэнергетического потенциала - совокупность валовой мощности всех отдельных участков водотока, которые используются в настоящее время или могут быть энергетически использованы. Валовая мощность водотока, характеризующая собой его теоретическую мощность, определяется по формуле:

N квт = 9,81 QH,

где Q - расход водотока, м3/с; H - падение, м.

Мощность определяется для трех характерных расходов: Q = 95 % - расход, обеспеченностью 95 % времени; Q = 50 % - обеспеченностью 50 % времени; Qср - среднеарифметический.

Существенным недостатком этих предложений было то, что они предусматривали учет гидроэнергоресурсов не по всему водотоку, а только по тем его участкам, которые представляют энергетический интерес. Отбор же этих участков не мог быть твердо регламентирован, что на практике приводило к внесению в подсчеты элементы субъективизма. В табл. 1 приводятся подсчитанные для шестой сессии МИРЭК данные по гидроэнергоресурсам отдельных стран.

Вопросу упорядочения учета гидроэнергоресурсов было уделено большое внимание в работе Комитета по электроэнергии Европейской экономической комиссии ООН, которая установила определенные рекомендации по данному вопросу. Этими рекомендациями устанавливалась следующая классификация в определении потенциала:

Теоретический валовой (брутто) потенциал гидроэнергетический потенциал (или общие гидроэнергетические ресурсы):

1. поверхностный, учитывающий энергию стекающих вод на территории целого района или отдельно взятого речного бассейна;

2. речной, учитывающий энергию водотока.

Эксплуатационный чистый (или нетто) гидроэнергетический потенциал:

1. технический (или технические гидроэнергоресурсы) - часть теоретического валового речного потенциала, которая технически может быть использована или уже используется (мировой технический потенциал оценивается приблизительно в 12300 млрд. квт-ч);

2. экономический (или экономические гидроэнергоресурсы) - часть технического потенциала, использование которой в существующих реальных условиях экономически оправдано (т.е. экономически выгодно для использования); экономические гидроэнергоресурсы в отдельных странах.

Приведенные расчеты в свое время внесли существенные изменения в прежние представления о распределении гидроэнергоресурсов по континентам. Особенно большие изменения были получены по Африке и Азии. Эти данные показывают, что на Азиатском континенте сосредоточено почти 36 % мировых запасов гидроэнергии, в то время как в Африке, которая считалась наиболее богатой гидроэнергоресурсами, сосредоточено около 19 %. Приводится сопоставление данных, характеризующих распределение гидроэнергоресурсов по континентам, полученных по разным подсчетам. Табл.3 Насыщенность гидроэнергоресурсами территории континентов, тыс. квт-ч на 1 кв. км

Если даже учесть то, что прежние представления о распределении гидроэнергоресурсов основывались на данных, подсчитанных по стоку 95%-й обеспеченности, то все же нельзя не обратить внимание на исключительную завышенность в прежних представлениях потенциальных ресурсов Африки, исходивших из преувеличенных представлений о стоке рек этого континента. Если годовой сток бассейна реки Конго прежде оценивался в 500-570 мм слоя, то в настоящее время он оценивается всего в 370 мм. Для реки Нигер принимался слой стока 567 мм, а фактически он составляет около 300 мм. То же получается с данными о средней величине слоя стока, являющимися хорошими показателями гидроэнергетического потенциала отдельных континентов. Из этой таблицы видно, что по высоте континента и величине стока, т.е. по основным энергетическим показателям, Африка стоит далеко позади Азии и почти на одном уровне с Северной Америкой.

Т.о., распределение гидроресурсов связано в большей мере с географическими особенностями крупнейших рек и их бассейнов. Примерно 50 % мирового водостока приходится на 50 крупнейших рек, бассейны которых охватывают около 40 % суши. Пятнадцать рек из этого числа имеют сток в объеме 10 тыс. км3/с или больше. Девять из них находятся в Азии, три - в Южной и две - в Северной Америке, одна - в Африке.

В гидроэнергоресурсах мира большая часть (около 60 %) приходится на восточное полушарие, которое превосходит западное и по удельному (на единицу площади) показателю гидроресурсной обеспеченности (соответственно 17 и 15 кВт/км2.

Благодаря высокому уровню промышленного развития, страны Западной Европы и Северной Америки в течение длительного времени опережали все другие страны по степени освоения гидроэнергоресурсов. Уже в середине 20-х годов гидропотенциал был освоен в Западной Европе примерно на 6 %, а в Северной Америке, располагавшей в этот период наибольшими гидроэнергетическими мощностями, - на 4 %. Через полвека соответствующие показатели составляли для Западной Европы около 60 %, а для Северной Америки - примерно 35 %. Уже в середине 70-х годов абсолютные мощности ГЭС Западной Европы превосходили таковые в любом другом регионе мира.

В развивающихся странах относительно высокие темпы использования гидроэнергии в значительной мере обусловлены крайне низким исходным уровнем. При более чем 50-кратном увеличение за полвека установленных гидроэнергетических можностей развивающиеся страны в середине 70-х годов более чем в 4,5 раза отставали от развитых стран и по мощности электростанций, и по выработке на них электроэнергии. И если в развитых странах гидропотенциал в середине 70-х использовался примерно на 45 %, то в развивающихся странах - только на 5 %. Для всего мира этот показатель в целом составляет 18 %. Таким образом пока еще для мира характерно использование лишь небольшой части гидроэнергетического потенциала.

В связи с исчерпанием в ряде стран экономических гидроэнергоресурсов в этих странах значительно повысился интерес к сооружению гидроаккумулирующих электростанций (ГАЭС). В Европе стали сооружать специальные ГАЭС еще в 20-30-х годах, но большое развитие они получили начиная с середины 50-х годов. В настоящее время более половины ГАЭС мира находятся в странах ЕС. В США и Канаде гидроаккумулирующие установки в прошлом получили меньшее распространение, чем в Европе, т.к. эти страны располагали большими запасами экономических гидроэнергоресурсов. Однако за последние годы в США и Канаде также повысился интерес к ГАЭС. Также большой интерес в мире в последнее время представляет использование энергии морских приливов для получения электроэнергии, это перспективное направление в гидроэнергетике, т.к. энергия морских приливов возобновляема и практически неисчерпаема - это огромный источник энергии. Во многих странах уже действуют приливные электростанции (ПЭС). Дальше всех в этом направлении пока продвинулась Франция.

2. Экологический аспект в использовании гидроэнергоресурсов

При использовании гидроэнергоресурсов очень важен экологический аспект. Строительство ГЭС во многих случаях сопровождается сооружением водохранилищ, которые подчас оказывают негативное влияние на экологическую обстановку, вносят ряд изменений в природу. Гидроэнергетика будущего должна при минимальном негативном воздействии на природную среду максимально удовлетворять потребности людей в электроэнергии. Поэтому проблемами сохранения природной и социальной среды при гидротехническом строительстве уделяется сегодня все большее внимание. В современных условиях особенно важен верный прогноз последствий подобного строительства. Результатом прогноза должны стать рекомендации по смягчению и преодолению неблагоприятных экологических ситуаций при строительстве ГЭС, сравнительная оценка экологической эффективности созданных или проектируемых гидроузлов. Таким образом, можно говорить о целесообразности образования новой, более узкой и сложной категории гидроэнергетических ресурсов - экологически эффективной части, дифференцированной по степени экологической нагрузки, вызванной использованием определенной доли гидроэнергопотенциала. К сожалению, на настоящий момент разработка методов определения экологического энергопотенциала практически не ведется, но очевидно, что развитие гидроэнергетики без детальных экологических экспертиз гидроэнергетических проектов способно подорвать и без того хрупкое экологическое равновесие в мире.

Список литературы

1. Авакян А.Б. "Комплексное использование и охрана водных ресурсов", М: 1990.

2. Бабурин В.Н. "Гидроэнергетика и комплексное использование водных ресурсов", М: Наука, 1986.

3. Большая Советская Энциклопедия, М: Сов. Энциклопедия, 1971. - том 6.

4. Гидроэнергетические ресурсы СССР, М: Наука, 1967.Краткая географическая энциклопедия, М: Сов. Энциклопедия, 1959. - том 2.

5. Обрезков В.И. "Гидроэнергетика", учебник для ВУЗов, М: 1989.

6. Топливно-энергетические ресурсы капиталистических и развивающихся стран, М: Наука, 1978.

7. Энергетик, М: 1993, ј5.

8. Энергия, М: 1994, ј4.

9. Энергия, М: 1995, ј2.

Размещено на Allbest.ru

...

Подобные документы

    Оценка снегонакопления в бассейне реки Хемчик. Гидроэнергетические ресурсы Кемеровской области. Некоторые особенности динамики пойменных ландшафтов таежной зоны Западной Сибири. Районирование акваторий пресноводных водоемов по состоянию их экосистемы.

    учебное пособие , добавлен 22.09.2015

    Понятие объектов экологического права. Окружающая среда, понятие и сущность, природные ресурсы, объекты эколого-правового регулирования. Субъекты экологического права. Применение норм об ответственности за нарушения экологического законодательства.

    реферат , добавлен 01.08.2010

    Принципы правовой охраны окружающей природной среды. Законодательство, роль судебной и арбитражной практики в регулировании экологических отношений. Понятие экологического правоотношения и его виды. Объекты и субъекты собственности на природные ресурсы.

    шпаргалка , добавлен 15.01.2010

    Экологический аудит как инструмент для систематической проверки внутрифирменного экологического потенциала и потенциального экологического риска, его функции и методы реализации, цели и разновидности. Результаты экологического аудита и их применение.

    реферат , добавлен 09.11.2010

    История формирования экологического права в России. Источники и принципы экологического права. Право собственности на природные ресурсы. Экономический механизм охраны окружающей среды. Юридическая ответственность за экологические правонарушения.

    контрольная работа , добавлен 28.11.2009

    Общее понятие источников экологического права. Классификация источников экологического права. Основные источники экологического права. Российское законодательство как источник экологического права. Проблемы развития законодательства.

    курсовая работа , добавлен 21.09.2007

    Сущность, объект, предмет, основные меры и средства рационального природопользования. Классификация и характеристика природных ресурсов. Принципы экологического нормирования. Состав показателей и нормативы качества окружающей среды и пределы их изменений.

    презентация , добавлен 08.02.2014

    Главные цели экологического аудирования видов деятельности, связанных с использованием водных ресурсов. Экологические последствия деятельности предприятия, оценка их воздействия на водные ресурсы. Обеспечение экологической безопасности производства.

    доклад , добавлен 20.12.2010

    Природные ресурсы и их классификация: космические ресурсы, климатические ресурсы, водные ресурсы. Энергетические ресурсы: возобновимые и невозобновимые. Общие инженерные принципы природопользования. Очистка газов от пыли: принципы, методы и схемы.

    реферат , добавлен 25.10.2007

    Оценка экологического состояния среды в Томской области: атмосферного воздуха, земельных, водных, лесных ресурсов, радиационной обстановки, животного мира. Математические модели и методы анализа экологических рисков аварий на магистральных трубопроводах.