Чем отличается резистор от варистора. Варистор варистору рознь: надежная защита от скачков напряжения. Варистор. Что это такое

Что такое варистор и для чего он применяется, рассмотрен принцип действия варистров, их вольт-амперная характеристика, приведены основные параметры варисторов отечественного производства, а также параметры для дисковых варисторов серии TVR. Как выглядит из себя варистор который применяется в бытовой радиоаппаратуре, а также внешний вид мощных варистров.

Принцип работы варистора

Варисторы , Varistors (название образовано от двух слов Variable Resistors — изменяющиеся сопротивления) — это полупроводниковые (металлооксидные или оксидноцинковые) резисторы, обладающие свойством резко уменьшать свое сопротивление с 1000 МОм до десятков Ом при увеличении на них напряжения выше пороговой величины.

В этом случае сопротивление становится тем меньше, чем больше действует напряжение. Типичная вольт-амперная характеристика варистора имеет резко выраженную нелинейную симметричную форму (рисунок 1), то есть он может работать и на переменном напряжении.

Рис. 1. Вольт-амперная характеристика варистора.

Варисторы подсоединяют параллельно нагрузке, и при броске входного напряжения основной ток помехи протекает через них, а не через аппаратуру.

Таким образом, варисторы рассеивают энергию помехи в виде тепла. Так же, как и газоразрядник, варистор является элементом многократного действия, но значительно быстрее восстанавливает свое высокое сопротивление после снятия напряжения.

Достоинством варисторов, по сравнению с газоразрядниками, являются:

  • большее быстродействие;
  • безынерционное отслеживание перепадов напряжений;
  • выпускаются на более широкий диапазон рабочих напряжений (от 12 до 1800 В); о длительный срок эксплуатации;
  • имеют более низкую стоимость.

Варисторы широко применяются в промышленном оборудовании и приборах бытового назначения:

  • для защиты полупроводниковых приборов: тиристоров, симисторов, транзисторов, диодов, стабилитронов;
  • для электростатической защиты входов радиоаппаратуры;
  • для защиты от электромагнитных всплесков в мощных индуктивных элементах;
  • как элемент искрогашения в электромоторах и переключателях.

Виды варисторов

Типовое значение времени срабатывания варисторов при воздействии перенапряжения составляет не более 25 наносекунд (нс), но для защиты некоторых видов оборудования его может оказаться недостаточно (для электростатической защиты необходимо не более 1 нс).

Поэтому совершенствование технологии изготовления варисторов во всем мире направлено на повышение их быстродействия.

Так, например, фирме “S+M Epcos”, благодаря применению при изготовлении варисторов многослойной структуры SIOV-CN и их SMD-исполнения (безвыводная конструкция для поверхностного монтажа), удается добиться времени срабатывания менее 0,5 нс (при расположении таких элементов на печатной плате для получения указанного быстродействия уже необходимо минимизировать индуктивности внешних соединительных проводников).

В дисковой конструкции варисторов за счет индуктивности выводов время срабатывания увеличивается до нескольких наносекунд.

Малое время срабатывания, высокая надежность, отличные пиковые электрические характеристики в широком диапазоне рабочей температуры при малых размерах ставят многослойные варисторы на первое место при выборе элементов защиты от статических зарядов.

Рис. 2. Внешний вид варисторов.

Рис. 3. Внешний вид мощных варисторов.

Например, в области производства сотовых телефонов многослойные варисторы можно считать уже стандартом в защите от статического электричества.

CN-варисторы могут надежно защищать от статических разрядов: клавиатуры, разъемы для подключения факса и модема, соединители зарядных устройств, входы интегральных аналоговых микросхем, выводы микропроцессоров.

Характеристики варисторов

Основными параметрами , которые используют при описании характеристик варисторов , являются:

  • Un — классификационное напряжение, обычно измеряемое при токе 1 мА, — это условный параметр, который указывается при маркировке элементов;
  • Um - максимально допустимое действующее переменное напряжение (среднеквадратичное);
  • Um= — максимально допустимое постоянное напряжение;
  • Р — номинальная средняя рассеиваемая мощность, это та, которую варистор может рассеивать в течение всего срока службы при сохранении параметров в установленных пределах;
  • W — максимальная допустимая поглощаемая энергия в джоулях (Дж), при воздействии одиночного импульса.
  • Ipp — максимальный импульсный ток, для которого время нарастания/длительность импульса: 8/20 мкс;
  • Со — емкость, измеренная в закрытом состоянии, при работе ее значение зависит от приложенного напряжения, и когда вари-стор пропускает через себя большой ток, она падает до нуля.

От величины W зависит, как долго может действовать перегрузка (с максимальной мощностью Рт) без опасности повредить варистор, т. е.:

Для применения рабочее напряжение у варисторов выбирается исходя из допустимой энергии рассеяния и максимально допустимой амплитуды напряжения. Напряжение ограничения примерно равно квалификационному напряжению (Un) варистора.

Для сети с действующим напряжением 220 В (50 Гц) обычно устанавливают варисторы с классификационным напряжением не ниже 380...430 В. Для варистора с классификационным напряжением 430 В при импульсе тока 100 А напряжение будет ограничено на уровне около 600 В.

В России крупнейшим производителем варисторов (СН2-1, BP-1, СН2-2) является завод «Прогресс» (г. Ухта). Параметры некоторых из таких варисторов приведены в табл. 1.

Таблица 1. Основные параметры варисторов отечественного производства.

Тип варистора

Примечание. Емкость для отечественных варисторов не указывается.

Из всего разнообразия выпускаемых за рубежом варисторов параметры одного из типов, имеющих дисковую конструкцию, приведены в таблице 2 (другие типы имеют близкие параметры).

Они выпускаются на рабочие напряжения от 4 до 1500 В с небольшим шагом, но в продаже вы вряд ли найдете все номиналы из ряда (в случае необходимости можно заказать их изготовление на любое напряжение для поставки больших партий), но обычно можно использовать ближайшие номиналы из ряда в сторону увеличения напряжения.

Таблица 2. Основные параметры дисковых варисторов серии TVR.

варистора

Для повышения рассеиваемой мощности варисторы можно включать последовательно (или параллельно, если подбирать их по идентичным параметрам). Размеры варисторов зависят от мощности, но так как такие элементы работают при импульсной перегрузке, чаще указывают рассеиваемую энергию в джоулях:

которая связана с мощностью соотношением:

Для выбора варистора с необходимой энергией рассеивания для защиты нагрузок, потребляющих мощность более 1...2 кВт, в практических расчетах можно руководствоваться приведенной формулой:

  • W — максимальная мгновенная энергия в джоулях;
  • Р — номинальная мощность нагрузки, приходящаяся на одну фазу, Вт;
  • а — коэффициент нелинейности варистора;
  • f — частота переменного напряжения, Гц;
  • n — КПД защищаемой нагрузки.

Максимально допустимое значение рассеиваемой энергии у примененного варистора должно превышать эту величину.

Так как перегрев варистора приводит к его повреждению, выпускаются такие элементы и с уникальными свойствами, например, имеющие температурную защиту — размыкающий механический контакт в защищаемой цепи, что значительно повышает надежность работы узла.

Сравнение основных характеристик варисторов разных типов можно найти в Интернет. Суть его заключается в том, что отечественные производители выпускают компоненты по техническим параметрам не хуже, чем это делают за рубежом (правда, приобрести их радиолюбителю намного сложней — в продаже чаще можно встретить импортные).

В качестве основного недостатка варистора можно отметить его большую собственную емкость, которая вносится в цепь. В зависимости от конструкции, типа и номинального напряжения эта емкость может составлять от 80 до 30000 пФ.

Впрочем, для некоторых применений большая емкость может быть и достоинством, например в фильтре, совмещающем в себе функцию ограничения напряжения (для таких применений можно заказать изготовление варисторов с повышенной емкостью).

Вторым недостатком является меньшая максимальная допустимая рассеиваемая мощность по сравнению с разрядниками (для увеличения мощности рассеивания изготовители увеличивают размеры корпуса варистора).

Литература: Радиолюбителям полезные схемы, Книга 5. Шелестов И.П.

От перепадов напряжения не застрахована ни одна электросеть, есть множество причин вызывающих это явление, начиная от перегрузки и заканчивая перекосом фаз. Такие броски способны вывести из строя бытовую технику, поэтому практически все современные электронные устройства имеют защиту. Если после очередного перепада в БП какого-нибудь прибора сгорел предохранитель, произведя его замену, не спешите включать технику. На всякий случай проверьте варистор на исправность тестером или мультиметром.

Характеристики

Варистор представляет собой полупроводниковый резистор с нелинейной вольт-амперной характеристикой, ее график показан на рисунке 2.


Рис. 2. Типичные вольт-амперные характеристики: А – варистора, В – обычного резистора

Как видно из графика, когда напряжение на полупроводнике достигает порогового значения, резко увеличивается сила тока, что вызвано понижением сопротивления. Эта характеристика позволяет использовать варистор в качестве защиты от кратковременных скачков напряжения.

Принцип действия, обозначение на схеме, варианты применения

Внешне варистор очень похож на конденсатор, но его внутреннее устройство, как видно из рисунка 3, совершенное иное.


Рисунок 3. Конструкция варистора (1) и его обозначение на схемах (2)

Обозначения:

  • А – два металлических электрода в форме диска;
  • В – вкрапления оксида цинка (размер кристаллов не соблюден);
  • С – оболочка полупроводника, сделанная на основе синтетических отвердителей (эпоксидов);
  • D – керамический изолятор;
  • Е – выводы.

Помимо конструкции, на рисунке 3 показано обозначение элемента на принципиальных схемах (2).

Такой принцип действия позволяет не допустить выход из строя электронных устройств при краткосрочном перепаде напряжения. Длительный импульс вызовет перегрев и разрушение варистора, но на этот процесс требуется время. Хоть оно исчисляется долями секунды, в большинстве случаев, этого достаточно для срабатывания плавкого предохранителя.

Именно поэтому после замены предохранителя необходимо проверять варистор (внешний осмотр и тестирование мультиметром). В противном случае, следующий перепад напряжения, с большой долей вероятности, приведет к разрушению компонентов электронного устройства.

Пример реализации защиты

На рисунке 4 показан фрагмент принципиальной схемы БП компьютера, на котором наглядно показано типовое подключение варистора (выделено красным).


Рисунок 4. Варистор в блоке питания АТХ

Судя по рисунку, в схеме используется элемент TVR 10471К, используем его в качестве примера расшифровки маркировки:

  • первые три буквы обозначают тип, в нашем случае это серия TVR;
  • последующие две цифры указывают диаметр корпуса в миллиметрах, соответственно, у нашей детали диаметр 10 мм;
  • далее идут три цифры, которые указывают действующее напряжение для данного элемента. Расшифровывается следующим образом: XXY = XX*10 y , в нашем случае это 47*10 1 , то есть 470 вольт;
  • последняя буква указывает класс точности, «К» соответствует 10%.

Можно встретить и более простую маркировку, например, К275, в этом случае К – это класс точности (10%), последующие три цифры обозначают величину действующего напряжения, то есть, 275 вольт.

Теперь, когда мы разобрались с основами, можно перейти к проверке варистора

Определяем работоспособность элемента (пошаговая инструкция)

Для данной операции нам потребуются следующие инструменты:

  • Отвертка (как правило, крестовая). Чтобы добраться до платы блока питания, потребуется разобрать корпус электронного устройства, тут без отвертки не обойтись.
  • Щетка, для очистки печатной платы. Как показывает практика, в БП накапливается много пыли. Особенно это характерно для устройств с принудительным охлаждением, типичный пример, – блок питания компьютера.
  • Паяльник. В силовой части БП на плате большие дорожки и нет мелких элементов, поэтому допустимо использовать устройства мощностью до 75 Вт.
  • Канифоль и припой.
  • Мультиметр или другой прибор, позволяющий измерить сопротивление.

Когда все инструменты готовы, можно приступать к процедуре. Действуем по следующему алгоритму:


Важный момент! Прежде, чем измерить сопротивление, убедитесь, что пальцы не касаются стальных наконечников щупов, в этом случае прибор покажет сопротивление кожного покрова.

  1. Произведя замену (если в этом есть необходимость), собираем устройство.

Варистор это пассивный двух выводной, твердотельный полупроводник, который применяется для обеспечения защиты различных схем. В отличие от обычного плавкого предохранителя он обеспечивают защиту от перенапряжения методом стабилизации напряжения, по принципу стабилитрона.

Варистор в дословном переводе с английского означает переменный резистор, но на самом деле это полупроводник, сопротивление которого нелинейно зависит от уровня приложенного напряжения, то есть он обладает нелинейной симметричной вольт-амперной характеристикой и имеет два вывода. Варистор обладает отличным свойством резко и существенно снижать свое сопротивление с единиц ГОм до десятков Ом при росте приложенного к его выводам напряжения выше порогового значения. При дальнейшем увеличении сопротивление варистора уменьшается еще больше. Благодаря отсутствию сопровождающих токов при скачкообразном изменении входного уровня напряжения, варистор является одним из главных элементов защиты электронных устройств от импульсных перенапряжений.


Давайте рассмотрим работу варистора при нормальном рабочем напряжении имеем следующие протекания токов:

Предположим, что в схеме установлен варистор, срабатывающий от 250 вольт. Пока уровень ниже данного значения, сопротивление варистора огромно, и сетевое питание 220 В питает схему, минуя варистор.

При подаче на варистор допустим 300 вольт в аварийной ситуации, сопротивление варистора резко падает, и он начинает принимать всю нагрузку только на себя. Благодаря этому, завышенный потенциал не пройдет на схему, тем самым, защищая ее.

Когда варистор срабатывает, то вся нагрузка идет на предохранитель, и он перегорает, тем самым спасая электронное устройство от перегрузки.

Схемы вкючения варисторов

Все варисторы подсоединяются параллельно нагрузке, правильнее всего их будет включать между фазовым проводом и проводом заземления или нейтралью.


В трехфазной сети переменного тока, при подсоединение нагрузки «звездой», варисторы подключаются между каждой фазой и проводом заземления. А при соединении нагрузки «треугольником», варисторы подключены между фазами.

Маркировка варисторов

Чаще всего на корпусе варистора указана достаточно длинная маркировка, на примере 20D471K расшифруем ее и узнаем основные технические характеристики варистора.


Итак, разложим все по полочкам:

20D – диаметр варистора, в данном примере он равен 20 мм. Чем он выше – тем больше энергии может рассеять прибор. По данному свойству можно косвенно говорить о максимальной энергии, которую может поглотить варистор.
47 - Классификационное напряжение - в данном случае 470 вольт. 1K - разрешенное отклонение квалификационного напряжения варистора, K – это ±10%.

У некоторых производителей варисторов, маркировки отличаются друг от друга, но не существенно. Примеры маркировки этого варистора, но от разных фирм: Epcos - S20K300, TVR -TVR20D471, Fenghua - FNR-20K471, JVR - JVR-20N471K, CNR - CNR20D471.

Как проверить варистор

Первым делом необходимо выполнить внешний осмотр варистора на схеме, пытаемся обнаружить на нем сколы и трещины, почернения и следы нагара. При выявлении таких проблем варистор нужно обязательно заменить, даже если он и пока исправный. Если нет нового можно на непродолжительное время даже выпаять его из схемы, она будет работать и без него. Но при всплеске напряжения выйдут из строя уже другие компоненты устройства и потребуется более дорогой ремонт электронного оборудования.

Если внешний осмотр дефектов не выявил, на всякий случай прозвоните варистор мультиметром, его сопротивление должно быть гораздо больше измерительного диапазана на вашем приборе.

При проверки варистора омметром прибор покажет величину статического сопротивления представляющего собой отношение постоянного напряжения, приложенного к варистору, к постоянному току, протекающему через варистор.

Секреты производства варисторов

Изготавливают варисторы технологическим способом методом спекания полупроводника при температуре около 1700 °C, обычно для этих целий используют порошкообразный карбид кремния или оксида цинка, и какого либо связующего вещества, например глина, жидкое стекло,и т.п. В завершающей стадии поверхность элемента металлизируют и припаивают к ней металлические выводы. Конструктивно варисторы изготавливаются в виде дисков, таблеток и стержней.

Варистор по внешнему виду напоминает конденсатор и его часто путают из-за этого с ним. Но, никакая емкость не способна подавлять скачки напряжения таким же образом. Ведь есле в схеме какогй-либо конструкции возникнет импульс высокого напряжения, то погорит огромное количество радиокомпонентов. Поэтому использование варистора играет огромную роль в реализации защиты чувствительных электронных компонентов от возможных скачков напряжения и высоковольтных переходных процессов в электрических цепях. Всплески напряжения возможны в сетях как переменного так и постоянного тока. Они могут возникнуть и в самой конструкции. Высоковольтные всплески напряжения могут быстро нарастать по амплитуде и доходить даже до потенциала в несколько тысяч вольт, и именно от этих импульсов необходимо защищать радиоэлементы схемы.

Источником подобных импульсов является индуктивный выброс, происходящий из-за переключения катушек индуктивности, выпрямительных трансформаторов, двигателей, скачки от включения высоковольтных схем запуска люминесцентных ламп и т.п.

В нормальном режиме работы, варистор облодает очень высоким сопротивлением, поэтому его ВАХ (вольт-амперная характеристика) напоминает ВАХ стабилитрона. Но в тот момент, когда на варисторе напряжение превысит номинальный уровень, его эффективное сопротивление сильно снижается.


Как мы видим из графика варистор обладает симметричной двунаправленной характеристикой, то есть он работает в обоих направлениях, подобно стабилитрону

Из-за огромного внутреннего сопротивления, варистор не оказывает заметного влияние на схему питания, пока напряжение не привысило номинального уровня. При превышении уровня происходит переход из изолирующего состояния в электропроводящее состояние за счет лавинного эффекта в полупроводнике. При этом ток утечки, протекающий через него,скачкообразно возрастает, но напряжение на нем остается практически на том-же уровне.

Так как варистор, посоединяется к обоим выводам питания, то при нормальном уровни напряжения он обладает определенным значением емкости которая прямо пропорциональна площади и обратно пропорциональна толщине. В случае применения в цепях постоянного напряжения, емкость варистора остается более-менее постоянной.

Выпускаемые электронной промышленностью варисторы имеют широкий диапазон от 10 вольт и до нескольких тысяч, но их лучше выбирать с небольшим запасом, так для стандартных 230 вольт необходимо выбрать варистор на 250-260 вольт.

Варистор – это надежный и недорогой радио элемент. Может прекрасно работать в различных условиях (постоянные и переменные цепи, при высокой частоте), варистор способен с легкостью выдерживать большие перегрузки. Он используется практически во всех нишах связанных с электроникой и не только в роли эффективного защитника от перенапряжения. Варистор в схемах электроники применяют также как: регулятор и стабилизатор, в роли ограничителя напряжения. Из недостатков варисторов, можно отметить: высокий шум на низких частотах, так же со временем, он может незначительно изменять свои параметры работы.

Varistors (название образовано от двух слов Variable Resistors — изменяющиеся сопротивления) — это полупроводниковые (металлооксидные или оксидноцинковые) резисторы, обладающие свойством резко уменьшать свое сопротивление с 1000 МОм до десятков Ом при увеличении на них напряжения выше пороговой величины. В этом случае сопротивление становится тем меньше, чем больше действует напряжение. Типичная вольт-амперная характеристика варистора имеет резко выраженную нелинейную симметричную форму (рис. 1.4), т. е. он может работать и на переменном напряжении.

Рис. 1.4. Вольт-амперная характеристика варистора

Варисторы подсоединяют параллельно нагрузке, и при броске входного напряжения основной ток помехи протекает через них, а не через аппаратуру.

Таким образом, варисторы рассеивают энергию помехи в виде тепла. Так же, как и газоразрядник, варистор является элементом многократного действия, но значительно быстрее восстанавливает свое высокое сопротивление после снятия напряжения.

Достоинством варисторов , по сравнению с газрядниками, являются:

Большее быстродействие;

Безынерционное отслеживание перепадов напряжений;

Выпускаются на более широкий диапазон рабочих напряжений (от 12 до 1800 В); о длительный срок эксплуатации;

Имеют более низкую стоимость.

Они широко применяются в промышленном оборудовании и приборах бытового назначения:

а) для защиты полупроводниковых приборов: тиристоров, симисторов, транзисторов, диодов, стабилитронов;

б) для электростатической защиты входов радиоаппаратуры;

в) для защиты от электромагнитных всплесков в мощных индуктивных элементах;

г) как элемент искрогашения в электромоторах и переключателях.

Типовое значение времени срабатывания варисторов при воздействии перенапряжения составляет не более 25 не, но для защиты некоторых видов оборудования его может оказаться недостаточно (для электростатической защиты необходимо не более 1 не). Поэтому совершенствование технологии изготовления варисторов во всем мире направлено на повышение их быстродействия. Так, например, фирме “S+M Epcos”, благодаря применению при изготовлении варисторов многослойной структуры SIOV-CN и их SMD-исполнения (безвыводная конструкция для поверхностного монтажа), удается добиться времени срабатывания менее 0,5 не (при расположении таких элементов на печатной плате для получения указанного быстродействия уже необходимо минимизировать индуктивности внешних соединительных проводников). В дисковой конструкции варисторов за счет индуктивности выводов время срабатывания увеличивается до нескольких наносекунд.

Малое время срабатывания, высокая надежность, отличные пиковые электрические характеристики в широком диапазоне рабочей температуры при малых размерах ставят многослойные варисторы на первое место при выборе элементов защиты от статических зарядов.

Рис. 1.5. Внешний вид варисторов

Например, в области производства сотовых телефонов многослойные варисторы можно считать уже стандартом в защите от статического электричества. CN-варисторы могут надежно защищать от статических разрядов: клавиатуры, разъемы для подключения факса и модема, соединители зарядных устройств, входы интегральных аналоговых микросхем, выводы микропроцессоров.

Основными параметрами, которые используют при описании характеристик варисторов, являются:

Un — классификационное напряжение, обычно измеряемое при токе 1 мА, — это условный параметр, который указывается при маркировке элементов;

Um – максимально допустимое действующее переменное

напряжение (среднеквадратичное);

Um= — максимально допустимое постоянное напряжение;

Р — номинальная средняя рассеиваемая мощность, это та, которую варистор может рассеивать в течение всего срока службы при сохранении параметров в установленных пределах;

W — максимальная допустимая поглощаемая энергия в джоулях (Дж), при воздействии одиночного импульса. От этой величины зависит, как долго может действовать перегрузка (с максимальной мощностью Рт) без опасности повредить варистор, т. е.:

Ipp — максимальный импульсный ток, для которого время нарастания/длительность импульса: 8/20 мкс;

Со — емкость, измеренная в закрытом состоянии, при работе ее значение зависит от приложенного напряжения, и когда вари-стор пропускает через себя большой ток, она падает до нуля.

Для применения рабочее напряжение у варисторов выбирается исходя из допустимой энергии рассеяния и максимально допустимой амплитуды напряжения. Напряжение ограничения примерно равно квалификационному напряжению (Un) варистора. Для ориентировочных расчетов рекомендуется, чтобы на переменном напряжении оно не превышало Uвх <= 0,6Un, а на постоянном — Uвх < 0,85Un.

Для сети с действующим напряжением 220 В (50 Гц) обычно устанавливают варисторы с классификационным напряжением не ниже 380…430 В. Для варистора с классификационным напряжением 430 В при импульсе тока 100 А напряжение будет ограничено на уровне около 600 В.

В России крупнейшим производителем варисторов (СН2-1, BP-1, СН2-2) является завод «Прогресс» (г. Ухта). Параметры некоторых из них приведены в табл. 1.2.

Таблица 1.2. Основные параметры варисторов отечественного производства

варистора

Примечание. Емкость для отечественных варисторов не указывается.

Из всего разнообразия выпускаемых за рубежом варисторов параметры одного из типов, имеющих дисковую конструкцию, приведены в табл. 1.3 (другие типы имеют близкие параметры). Они выпускаются на рабочие напряжения от 4 до 1500 В с небольшим шагом, но в продаже вы вряд ли найдете все номиналы из ряда (в случае необходимости можно заказать их изготовление на любое напряжение для поставки больших партий), но обычно можно использовать ближайшие номиналы из ряда в сторону увеличения напряжения.

Таблица 1.3. Основные параметры дисковых варисторов серии TVR

варистора

Для повышения рассеиваемой мощности варисторы можно включать последовательно (или параллельно, если подбирать их по идентичным параметрам). Размеры варисторов зависят от мощности, но так как такие элементы работают при импульсной перегрузке, чаще указывают рассеиваемую энергию в джоулях:

которая связана с мощностью соотношением:

Для выбора варистора с необходимой энергией рассеивания для защиты нагрузок, потребляющих мощность более 1…2 кВт, в практических расчетах можно руководствоваться приведенной в формулой:

где W — максимальная мгновенная энергия в джоулях;

Р — номинальная мощность нагрузки, приходящаяся на одну фазу, Вт;

а — коэффициент нелинейности варистора;

f — частота переменного напряжения, Гц;

n — КПД защищаемой нагрузки.

Максимально допустимое значение рассеиваемой энергии у примененного варистора должно превышать эту величину.

Так как перегрев варистора приводит к его повреждению, выпускаются такие элементы и с уникальными свойствами, например, имеющие температурную защиту — размыкающий механический контакт в защищаемой цепи, что значительно повышает надежность работы узла.

Сравнение основных характеристик варисторов разных типов можно найти в Интернет [Л 12]. Суть его заключается в том, что отечественные производители выпускают компоненты по техническим параметрам не хуже, чем это делают за рубежом (правда, приобрести их радиолюбителю намного сложней — в продаже чаще можно встретить импортные).

В качестве основного недостатка варистора можно отметить его большую собственную емкость, которая вносится в цепь. В зависимости от конструкции, типа и номинального напряжения эта емкость может составлять от 80 до 30000 пФ. Впрочем, для некоторых применений большая емкость может быть и достоинством, например в фильтре, совмещающем в себе функцию ограничения напряжения (для таких применений можно заказать изготовление варисторов с повышенной емкостью). Вторым недостатком является меньшая максимальная допустимая рассеиваемая мощность по сравнению с разрядниками (для увеличения мощности рассеивания изготовители увеличивают размеры корпуса варистора).

Литература:
Радиолюбителям: полезные схемы, Книга 5. Шелестов И.П.

Трегубов С.В.,к.т.н.
Пантелеев В.А., к.т.н.
Фрезе О.Г.
http://komi.com/progress/product/varistor/manual/

Введение

Каждая электроустановка имеет изоляцию, соответствующую ее номинальному напряжению. Рабочее напряжение, приложенное к установке, может отличаться от номинального, однако надежная работа обеспечивается только в том случае, если оно не выходит за пределы значений наибольших рабочих напряжений. Часто причиной выхода из строя электрооборудования становится наличие импульсов напряжения. Импульсом напряжения называется резкое изменение напряжения в точке электрической сети, за которым следует восстановление напряжения до первоначального или близкого к нему уровня за промежуток времени до нескольких миллисекунд . Импульсы напряжения, возникающие в электрических сетях подразделяют на коммутационные и грозовые.

Источником энергии коммутационных импульсов напряжения является энергия, запасенная в реактивных (индуктивных и емкостных) элементах системы, которая обуславливает появление импульсов в переходных режимах при нормальных и аварийных коммутациях. Значения импульсных коммутационных напряжений зависят от параметров электрической системы, характеристик коммутирующих аппаратов, а также фазы тока на момент коммутации.

Причиной возникновения грозовых импульсов напряжения являются удары молнии в электроустановку или вблизи нее.

По данным США значения напряжения коммутационных импульсов даже в бытовых сетях могут достигать 20 кВ. Примерно такие же данные приводят японские, французские и другие исследователи. Исследования, проведенные нами по эксплуатации промышленного электрооборудования в сетях 0.4 кВ, позволяют утверждать, что, например, при тяжелых условиях коммутации силовых электродвигателей значение напряжения коммутационных импульсов может превышать 70 кВ. Нет необходимости говорить о последствиях такого воздействия на электрооборудование. Положение часто осложняется тем, что во многих случаях эксплуатация электрических машин производится в тяжелых условиях (загрязнение, увлажнение изоляции, частые пуски и остановки агрегатов), что обуславливает особую уязвимость изоляции электрооборудования из-за ее ускоренного износа и уменьшения электрической прочности.

Для защиты оборудования от импульсных напряжений в разных странах применяются вентильные разрядники, RC-цепочки, LC-фильтры и т.д. Однако в последние десятилетия во всем мире наиболее эффективным (и дешевым) средством защиты от импульсных напряжений любого вида признано использование нелинейных полупроводниковых резисторов, называемых варисторами. Отличительной чертой варистора является симметричная и резко выраженная нелинейная вольт-амперная характеристика (ВАХ — см. рис.1). За счет этого варисторы позволяют просто и эффективно решать задачи защиты различных устройств от импульсных напряжений. Основной принцип действия варистора весьма прост. Варистор включается параллельно защищаемому оборудованию, т.е. при нормальной эксплуатации он находится под действием рабочего напряжения защищаемого устройства. В рабочем режиме (при отсутствии импульсных напряжений) ток через варистор пренебрежимо мал, и поэтому варистор в этих условиях представляет собой изолятор.

Рис.1 Типичная вольтамперная характеристика варистора

При возникновении импульса напряжения варистор в силу нелинейности своей характеристики резко уменьшает свое сопротивление до долей Ома и шунтирует нагрузку, защищая ее, и рассеивая поглощенную энергию в виде тепла. В этом случае через варистор кратковременно может протекать ток, достигающий нескольких тысяч ампер. Так как варистор практически безынерционен, то после гашения импульса напряжения он вновь приобретает очень большое сопротивление. Таким образом, включение варистора параллельно электрооборудованию не влияет на его работу в нормальных условиях, но «срезает» импульсы опасного напряжения, что полностью обеспечивает сохранность даже ослабленной изоляции (см. рис 2).

Наиболее широкое применение находят варисторы на основе оксида цинка, что обусловлено, во-первых, относительной простотой их изготовления и, во-вторых, хорошей способностью оксида цинка поглощать высокоэнергетические импульсы напряжения. Варисторы изготавливают по обычной «керамической» технологии, включающей в себя прессование варисторов (чаще всего имеющих форму диска или шайбы), их обжиг, нанесение электродов, пайку выводов и нанесение электроизоляционных и влагозащитных покрытий. Такая технология в ряде случаев позволяет предприятиям-изготовителям выпускать варисторы по индивидуальным заказам.


Рис.2 Напряжение на нагрузке при коммутации в сети 0,4 кВ

Общие понятия

Важнейшей характеристикой варистора, определяющей его функциональные возможности, является его вольт-амперная характеристика. Ее особенностью является наличие участка малых токов (условно от нуля до нескольких миллиампер), в котором находится рабочая точка варистора и участок больших токов (до тысяч ампер), который в ряде случаев называют туннельным. Туннельный участок во многом определяет защитные свойства и, в частности, напряжение ограничения, т.е. максимальное напряжение, воздействующее на защищаемое электрооборудование при шунтировании его варистором. В области малых токов ВАХ удовлетворительно описывается уравнением

(1) где I — ток, А, U -напряжение, В, В — некоторая постоянная, ? — коэффициент нелинейности.

Для варисторов на основе оксида цинка коэффициент нелинейности обычно составляет 20- 60 единиц. Коэффициент нелинейности характеризует крутизну ВАХ и определяется отношением статического и дифференциального сопротивлений варистора в определенной точке.

(2)

Экспериментально коэффициент нелинейности можно оценить по формуле

(3)

Чаще всего коэффициент нелинейности определяется при токе 1 мА и 10 мА, при этом формула (3) приобретает вид

(4)

Одной из характеристик варистора является классификационное напряжение (Uкл)- это напряжение при определенном токе. Как правило, изготовители варисторов в качестве классификационного напряжения указывают напряжение на варисторе при токе 1мА.

В некоторых случаях указывают коэффициент защиты варистора — это отношение напряжения на варисторе при токе 100А к напряжению при токе 1мА (т.е. к классификационному напряжению). Этот коэффициент для варисторов на основе оксида цинка находится в пределах 1.4 — 1.6, и он характеризует способность варистора ограничивать импульсы перенапряжения. Другими словами- при росте напряжения в 1,4- 1,6 раза ток возрастает в 100 000 раз (!).

Важной характеристикой варистора является допускаемая мощность рассеивания — она характеризует возможность рассеивать поглощаемую электрическую энергию в виде тепла. Этот показатель в основном определяется геометрическими размерами варистора и конструкцией выводов. Для увеличения мощности рассеивания часто применяют массивные выводы, которые играют роль своеобразного радиатора.

Варисторы имеют достаточно большую емкость, определенным образом зависящую от приложенного напряжения. На рис.3 показаны типичные вольт-фарадные характеристики варистора. Как видно из приведенного рисунка, варистор имеет определенную емкость в рабочем режиме (когда нет импульсов напряжения), а при воздействии импульса напряжения емкость варистора практически равна нулю.

Рис.3 Вольтфарадные характеристики варисторов

Информацию о напряжении на варисторе в области больших токов изготовители приводят в технических условиях. Иногда это напряжение называют остающимся напряжением. При этом обязательно указывают длительность (форму) и амплитуду импульса тока, при воздействии которого на варистор эти измерения произведены. Остающееся напряжение при различных амплитудах тока импульса можно измерить на специальных импульсных установках.

Для расчета применения варисторов при грозовом разряде иногда приводят сведения о напряжении на варисторе при воздействии стандартного грозового импульса. На рис. 4 показана форма этого импульса, который часто называют импульсом 8/20 мкс.

Рис.4 Форма испытательного импульса 8/20 мкс

В некоторых случаях указывают коэффициент защиты варистора- это отношение напряжения на варисторе при токе 100 А к напряжению при токе 1 мА (т.е. к классификационному напряжению). Этот коэффициент для варисторов на основе оксида цинка находится в пределах 1,4-1,6, и он характеризует способность варистора ограничивать импульсы напряжения. При амплитуде тока 100 А остающееся напряжение можно рассчитать, умножив классификационное напряжение (номинальное или фактическое значение) на коэффициент защиты. Так, например, варистор с классификационным напряжением 430 В и коэффициентом защиты 1,4 — 1,6 при импульсе тока 100 А ограничит импульсное напряжение до уровня 602 — 688 В.

В России наиболее массовое производство малогабаритных варисторов организовано на Ухтинском заводе «Прогресс» |3,4,5|. Варисторы выполнены в виде дисков толщиной до 10 мм (в зависимости от классификационного напряжения). Варисторы СН2-1 и ВР-1 имеют проволочные однонаправленные выводы диаметром 0,8 мм (варисторы СН2-1 варианта «в» имею выводы диаметром 0,6 мм). Варисторы СН2-2 вариант «А» имеют штуцерные выводы с резьбой М5, вариант «Б» имеет массивные выводы, переходящие в шпильки с резьбой М5, вариант «Г» имеет массивные дисковые выводы с резьбой М5, а варианты «В» и «Д» имеют контактные поверхности, покрытые серебром. Для всех варисторов классификационный ток составляет 1 мА, температурный коэффициент напряжения отрицательный не более 0,05% на один градус Цельсия.

Возможные причины возникновения импульсных напряжений

Импульсные напряжения можно условно разделить внутренние и внешние. Внутренние импульсные напряжения, как правило, возникают при коммутации реактивных (емкостных, индуктивных) нагрузок, при пробое и др. Наибольшую угрозу при этом представляют импульсы напряжения, возникающее при отключении индуктивной нагрузки. В этих ситуациях оптимальный выбор варистора не представляет трудности, — необходимо только рассчитать (или определить экспериментально) форму и длительность импульсов напряжения. В худшем случае можно провести моделирование ситуаций и проверить эффективность варисторной защиты.

Внешние импульсные напряжения — это те, источники которых находятся вне защищаемой варистором системы. Некоторые причины таких ситуаций:

  • гальваническое взаимодействие с источниками высоких напряжений;
  • коммутации в сетях (полное включение-выключение напряжения, включение и отключение компенсирующих конденсаторных установок и др.);
  • грозовые разряды (могут причинить вред на удалении до 20км);
  • влияние индуктивности (проявляется при коротком замыкании нейтрали особенно в сетях с протяженными кабельными соединениями).

Идентифицировать, систематизировать причины возникновения внешних импульсных напряжений практически невозможно. Так фирма «Сименс» для бытовых линий 220 В советует принимать следующие значения внешних импульсных напряжений (но только как ориентировочные и без учета грозовых разрядов):

  • амплитуда- до 6 кВ;
  • частота — 0,05-5 МГц;
  • длительность — 0,1- 100 мкс.

Ориентировочные значения параметров грозовых и коммутационных импульсов напряжения в сетях различного номинального напряжения приведены также в .

Рабочий режим варистора

Расчет рабочего режима варистора в силу его высокой нелинейности не является тривиальной задачей. Цель такого расчета — оптимальный выбор значения классификационного напряжения варистора. Важнейшим параметром при этом является рабочий ток, который должен быть минимальным и не приводить к перегреву варистора. С другой стороны при слишком малом рабочем токе варистора увеличивается напряжение, ограниченное варистором при возникновении импульса напряжения и варистор, по сути, не будет выполнять свою основную функцию.

Для ориентировочных расчетов рекомендуется , чтобы рабочее постоянное напряжение не превышало 0,85 Uкл. и, соответственно, на переменном токе действующее значение рабочего напряжения не превышало 0,6 Uкл. К сожалению, такой простой подход к решению задачи на практике малоприменим.

В технических условиях на варисторы типа СН2-1, СН2-2 указано, что постоянный или переменный предельный рабочий ток не должен превышать 0,1мА. Очевидно, что тепловая мощность, выделяемая на варисторе при протекании через него постоянного тока, будет существенно больше, чем при протекании переменного тока такой же амплитуды. На рис.5 показана форма тока варистора при синусоидальном напряжении.

Рис.5 Форма тока варистора при синусоидальном напряжении

Методика выбора и установки варисторов

Варисторы устанавливаются параллельно защищаемому электрооборудованию. В случае трехфазной нагрузки при соединении «звездой» они включаются в каждую фазу между фазой и землей, а при соединении нагрузки «треугольником» — между фазами. Наиболее предпочтительное место установки варисторов — сразу после коммутационного аппарата со стороны защищаемой нагрузки. Заводом «ПРОГРЕСС» выпускается очень удобный трехфазный ограничитель импульсных напряжений «Импульс-1», который представляет собой устройство для закрепления варисторов на электрощите, содержащее помещенные в корпус приспособления — держатели для трех варисторов, снабженные выводами. Это устройство позволяет легко реализовывать схемы защиты трехфазной нагрузки, соединенной как «звездой», так и «треугольником», а также защищать до трех независимых электроустановок, питающихся от однофазной сети.

Выбор типа используемого варистора и определение его классификационного напряжения осуществляется на основе анализа работы варистора в двух режимах: в рабочем и в импульсном.

1. Анализ работы варистора в рабочем режиме состоит в определении по таблице 1 такого классификационного напряжения, для которого длительное максимальное напряжение на нагрузке наиболее близко к табличному значению, но не превосходит его. Данные таблицы справедливы для варисторов с предельными отклонениями классификационного напряжения не более 10 % . Максимально допустимое длительное действующее переменное напряжение для варисторов зарубежного производства в большинстве случаев указывается в составе маркировки.

2. Анализ работы варистора в импульсном режиме состоит в расчете максимальной мгновенной энергии по формуле:

где E — максимальная мгновенная энергия в джоулях, P — номинальная мощность нагрузки, приходящаяся на одну фазу (Вт), f — частота переменного напряжения (Гц), ? — КПД защищаемой нагрузки. Такие расчеты обычно выполняются для нагрузок в несколько киловатт и более.

По таблице 2 выбирают тип варистора, обеспечивающего рассеивание энергии, значение которой рассчитано по приведенной формуле.

Таблица 1 В вольтах

классифи-
кационное
напряжение
максимально
допустимое
длительное
действующее
переменное
напряжение
максимально
допустимое
длительное
постоянное
напряжение
классифи-
кационное
напряжение
максимально
допустимое
длительное
действующее
переменное
напряжение
максимально
допустимое
длительное
постоянное
напряжение
10 6 8 270 175 225
15 9 12 300 190 245
22 14 18 330 210 270
27 17 22 360 230 300
33 20 26 390 250 320
39 25 31 430 275 350
47 30 38 470 300 385
56 35 45 510 320 420
68 40 56 560 350 460
82 50 65 620 385 505
100 60 85 680 420 560
120 75 100 750 460 615
150 95 125 820 510 670
180 115 150 910 550 745
200 130 170 1000 625 825
220 140 180 1100 680 895
240 150 200 1200 750 1060

Таблица 2

Классифика-
ционное
напряжение,В
Максимальная энергия рассеивания варисторов, Дж
СН2-2А СН2-1а СН2-1б СН2-1в ВР-1-1 ВР-1-2
10 0.18
15 0.26
22 0.56 0.23
27 0.64 0.26
33 0.71 0.30
39 1.3 0.47
47 1.6 0.56
56 1.9 0.66
68 2.3 0.76
82
100 17.0 10 2.7
120 25.2 12 3.0
150 31.5 15 3.8
180 37.8 18 4.5
200 42.0 20 5.0
220 46.2 22 5.5
240 50.4 25 6.0
270 56.7 28
300 63.0 31
330 104 69.3 34
360 115 75.6 37
390 125 81.9 40
430 138 90.3 43
470 152 98.7 47
510 168 107
560 187 118
620 207 130
680 227 143
750 248 158
820 280 172
910 312 191
1000 347 210
1100 385 233
1200 424 252
1300 463
1500 508

Пример 1. Определить марку варисторов для защиты электродвигателя ВАСО16-34-24 при соединении обмоток “звездой” в сети 0.4 кВ.

Решение.

Т.к. обмотки соединены “звездой”, то каждая из них находится под напряжением 220В. Если учесть нормируемое предельно допустимое отклонение напряжения 15 %, то макси- мальное рабочее напряжение составит 253 В. Из таблицы 1 видно, что условию п.1 удов- летворяют варисторы с классификационным напряжением 430 В.

Из паспортных данных электродвигателя известно, что его мощность 90 кВт, КПД 91.8%, а cos? = 0.64. Рассчитаем величину максимальной мгновенной энергии:

Из таблицы 2 видно, что для защиты этого электродвигателя может быть использован ва- ристор СН2-2 (вар. А,Г) с классификационным напряжением 430 В с максимальной мощ- ностью рассеивания 138 Дж.

Пример 2. Определить марку варистора для защиты электродвигателя АО-315-УУ3 при соединении обмоток “треугольником”.

При соединении “треугольником” каждая обмотка находится под напряжением 380В. Если нормируемое предельно допустимое отклонение напряжения составит 15 %, то мак- симальное длительное напряжение составит 437 В. Из таблицы 1 видно, что условие п.1 может быть удовлетворено только при использовании варисторов с классификационным напряжением 750 В и выше.

Мощность двигателя 200 кВт, КПД 90%, cos? = 0.92. Рассчитаем Е:

Из таблицы 2 видно, что уже варистор СН2-2 750 В имеет более высокую энергию рассеяния (248 Дж), поэтому он и должен использоваться.

При использовании двухфазной нагрузки величину мощности не нужно делить на 3. Расчеты показывают, что уже варистор СН2-2 (вар. А,Г) в большинстве случаев обеспечивает защиту электрооборудования мощностью до 30 кВт. Это означает, что для бытовых электроприборов практически достаточно рассмотрение лишь п.1 и применять малогабаритные варисторы типа СН2-1 или аналогичные. На практике есть случаи, когда величина расчетного рабочего тока не совпадает с экспериментальными значениями. Как правило это бывает на переменном токе, когда не учитывают величину реактивного тока, который можно рассчитать по известным формулам. Так реактивный ток варистора СН2-1 с классификационным напряжением 430В (его номи- нальная емкость 600пФ), при установке в бытовую сеть 220В составит 0,04мА (что соиз- меримо с предельным рабочим током 0,1мА).

Совместная работа варисторов

Вполне очевидно, что варисторы могут работать при последовательном включении — при этом в них протекает одинаковый ток, общее напряжение разделится пропорционально сопротивлениям (в первом приближении- пропорционально классификационным напряжениям), в этих же пропорциях разделится поглощаемая энергия. Сложнее обеспечить параллельную работу варисторов — необходимо строгое совпадение ВАХ. Эта задача вполне разрешима при последовательно-параллельной схеме включения — т.е. варисторы последовательно собираются в столбы, а столбы соединяются параллельно. При этом путем подбора варисторов обеспечивают совпадение ВАХ столбов варисторов. Так поступают при создании высоковольтных, мощных ограничителей перенапряжений (ОПН).

Литература

  1. ГОСТ 13109-97 Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения.
  2. Пантелеев В.А. Вольтамперные характеристики силовых варисторов. В кн.: Проблемы освоения природных ресурсов Европейского Севера. Ухта: Изд. УИИ, 1996. с. 12 – 17.
  3. ТУ 11-85. Варисторы постоянные СН2-1. Технические условия. ОЖО.468.171.
  4. ТУ 11-85. Варисторы постоянные ВР-1. Технические условия.ОЖО.468.227.
  5. ТУ 11-85. Варисторы постоянные СН2-2. Технические условия. ОЖО.468.205.
  6. Квасков В.Б. Полупроводниковые приборы с биполярной проводимостью.-М: Энерго- атомиздат. 1988.-128 с.: ил.