Белок: строение и функции. Свойства белков. Состав и строение белков Повторяющиеся звенья белков называются

Это биополимеры, мономерами которых являются аминокислоты.

Аминокислоты представляют собой низкомолекулярные органические соединения, содержащие карбоксильную (-СООН) и аминную (-NH 2) группы, которые связаны с одним и тем же атомом углерода. К атому углерода присоединяется боковая цепь - какой-либо радикал, придающий каждой аминокислоте определенные свойства.

У большей части аминокислот имеется одна карбоксильная группа и одна аминогруппа; эти аминокислоты называются нейтральными . Существуют, однако, и основные аминокислоты - с более чем одной аминогруппой, а также кислые аминокислоты - с более чем одной карбоксильной группой.

Известно около 200 аминокислот, встречающихся в живых организмах, однако только 20 из них входят в состав белков. Это так называемые основные или протеиногенные аминокислоты.

В зависимости от радикала основные аминокислоты делят на 3 группы:

  1. Неполярные (аланин, метионин, валин, пролин, лейцин, изолейцин, триптофан, фенилаланин);
  2. Полярные незаряженные (аспарагин, глутамин, серин, глицин, тирозин, треонин, цистеин);
  3. Заряженные (аргинин, гистидин, лизин - положительно; аспарагиновая и глутаминовая кислота - отрицательно).

Боковые цепи аминокислот (радикал) могут быть гидрофобными и гидрофильными и придают белкам соответствующие свойства.

У растений все необходимые аминокислоты синтезируются из первичных продуктов фотосинтеза. Человек и животные не способны синтезировать ряд протеиногенных аминокислот и должны получать их в готовом виде вместе с пищей. Такие аминокислоты называются незаменимыми. К ним относятся лизин, валин, лейцин, изолейцин, треонин, фенилаланин, триптофан, метионин; аргинин и гистидин - незаменимые для детей.

В растворе аминокислоты могут выступать в роли как кислот, так и оснований, т. е. они являются амфотерными соединениями. Карбоксильная группа (-СООН) способна отдавать протон, функционируя как кислота, а аминная (-NH2) принимать протон, проявляя таким образом свойства основания.

Аминогруппа одной аминокислоты способна вступать в реакцию с карбоксильной группой другой аминокислоты. Образующаяся при этом молекула представляет собой дипептид , а связь -СО-NH- называется пептидной связью.

На одном конце молекулы дипептида находится свободная аминогруппа, а на другом - свободная карбоксильная группа. Благодаря этому дипептид может присоединять к себя другие аминокислоты, образуя олигопептиды. Если таким образом соединяется много аминокислот (более 10), то образуется полипептид .

Пептиды играют важную роль в организме. Многие алигопептиды являются гормонами. Таковы окситоцин, вазопрессин, тиролиберин, тиреотропин и др. К олигопептидам относится также брадикидин (пептид боли) и некоторые опиаты («естественные наркотики» человека), выполняющие функцию обезболивания. Принятие наркотиков разрушает опиатную систему организма, поэтому наркоман без дозы наркотиков испытывает 1 сильную боль - «ломку», которая в норме снимается опиатами.

К олигопептидам относятся некоторые антибиотики (например, грамицидин S).

Многие гормоны (инсулин, адренокортикотропный гормон и др.), антибиотики (например, грамицидин А), токсины (например, дифтерийный токсин) являются полипептидами.

Белки представляют собой полипептиды, в молекулу которых входит от 50 до нескольких тысяч аминокислот с молекулярной массой свыше 10 000.

Каждому белку свойственна в определенной среде своя особая пространственная структура. При характеристике пространственной (трехмерной) структуры выделяют четыре уровня организации молекул белков.

Первичная структура - последовательность аминокислот в полипептид ной цепи. Первичная структура специфична для каждого белка и определяется генетической информацией, т.е. зависит от последовательности нуклеотидов в участке молекулы ДНК, кодирующем данный белок. От первичной структуры зависят все свойства и функции белков. Замена одной единственной аминокислоты в составе молекул белка или изменение их расположения обычно влечет за собой изменение функции белка. Так как в состав белков входит 20 видов аминокислот, число вариантов их комбинаций в пол и пептидной цепи поистине безгранично, что обеспечивает огромное количество видов белков в живых клетках.

В живых клетках молекулы белков или отдельные их участки представляют собой не вытянутую цепь, а скручены в спираль, напоминающую растянутую пружину (это так называемая α-спираль) или сложены в складчатый слой (β-слой). Вторичная структура возникает в результате образования водородных связей между -СО- и -NН 2 -группами двух пептидных связей внутри одной полипептидной цепи (спиральная конфигурация) или между двумя полипептидными цепями (складчатые слои).

Полностью α-спиральную конфигурацию имеет белок кератин. Это структурный белок волос, шерсти, ногтей, когтей, клюва, перьев и рогов. Спиральная вторичная структура характерна, помимо кератина, для таких фибриллярных (нитевидных) белков, как миозин, фибриноген, коллаген.

У большинства белков спиральные и неспиральные участки полипептидной цепи складываются в трехмерное образование шаровидной формы - глобулу (характерна для глобулярных белков). Глобула определенной конфигурации является третичной структурой белка. Третичная структура стабилизируется ионными, водородными связями, ковалентными дисульфидными связями (которые образуются между атомами серы, входящими в состав цистеина), а также гидрофобными взаимодействиями. Наиболее важными в возникновении третичной структуры являются гидрофобные взаимодействия; белок при этом свертывается таким образом, что его гидрофобные боковые цепи скрыты внутри молекулы, т. е. защищены от соприкосновения с водой, а гидрофильные боковые цепи, наоборот, выставлены наружу.

Многие белки с особо сложным строением состоят из нескольких полипептидных цепей, удерживаемых в молекуле вместе за счет гидрофобных взаимодействий, а также при помощи водородных и ионных связей - возникает четвертичная структура . Такая структура имеется, например, у глобулярного белка гемоглобина. Его молекула состоит из четырех отдельных полипептидных субъединиц (протомеров), находящихся в третичной структуре, и небелковой части - гема. Только в такой структуру гемоглобин способен выполнять свою транспортную функцию.

Под влиянием различных химических и физических факторов (обработка спиртом, ацетоном, кислотами, щелочами, высокой температурой, облучением, высоким давлением и т. д.) происходит изменение третичной и четвертичной структуры белка вследствие разрыва водородных и ионных связей. Процесс нарушения нативной (естественной) структуры белка называется денатурацией . При этом наблюдается уменьшение растворимости белка, изменение формы и размеров молекул, потеря ферментативной активности и т. д. Процесс денатурации иногда обратим, т. е. возвращение нормальных условий среды может сопровождаться самопроизвольным восстановлением естественной структуры белка. Такой процесс называется ренатурацией. Отсюда следует, что все особенности строения и функционирования макромолекулы белка определяются его первичной структурой.

По химическому составу выделяют белки простые и сложные. К простым относятся белки, состоящие только из аминокислот, а к сложным - содержащие белковую часть и небелковую (простатическую) - ионы металлов, углеводы, липиды и др. Простыми белками являются сывороточный альбумин крови, иммуноглобулин (антитела), фибрин, некоторые ферменты (трипсин) и др. Сложными белками являются все протеолипиды и гликопротеиды, гемоглобин, большинство ферментов и т.д.

Функции белков

Структурная.

Белки входят в состав клеточных мембран и органелл клетки. Стенки кровеносных сосудов, хрящи, сухожилия, волосы, ногти, когти у высших животных состоят преимущественно из белков.

Каталитическая (ферментативная).

Белки-ферменты катализируют протекание всех химических реакций в организме. Они обеспечивают расщепление питательных веществ в пищеварительном тракте, фиксацию углерода при фотосинтезе, реакции матричного синтеза и т. п.

Транспортная.

Белки способны присоединять и переносить различные вещества. Альбумины крови транспортируют жирные кислоты, глобулины - ионы металлов и гормоны. Гемоглобин переносит кислород и углекислый газ.

Молекулы белков, входящие в состав плазматической мембраны, принимают участие в транспорте веществ в клетку и из нее.

Защитная.

Ее выполняют иммуноглобулины (антитела) крови, обеспечивающие иммунную защиту организма. Фибриноген и тромбин участвуют в свертывании крови и предотвращают кровотечение.

Сократительная.

Обеспечивается движением относительно друг друга нитей белков актина и миозина в мышцах и внутри клеток. Скольжение микротрубочек, построенных из белка тубулина, объясняется движение ресничек и жгутиков.

Регуляторная.

Многие гормоны являются олигопептидами или белками, например: инсулин, глюкагон, аденокортикотропный гормон и др.

Рецепторная.

Некоторые белки, встроенные в клеточную мембрану, способны изменить свою структуру на действие внешней среды. Так происходят прием сигналов из внешней среды и передача информации в клетку. Примером может служить фитохром - светочувствительный белок, регулирующий фотопериодическую реакцию растений, и опсин - составная часть родопсина , пигмента, находящегося в клетках сетчатки глаза.

Это высокомолекулярные органические соединения, биополимеры, построенные из 20 видов L-?-аминокислотных остатков, соединенных в определенной последовательности в длинные цепи. Молекулярная масса белков варьируется от 5 тысяч до 1 миллиона. Название «белки» впервые было дано веществу птичьих яиц, свертывающемуся при нагревании в белую нерастворимую массу. Позднее этот термин был распространен на другие вещества с подобными свойствами, выделенные из животных и растений.

Рис. 1. Наиболее сложными биополимерами являются белки. Их макромолекулы состоят из мономеров, которыми являются аминокислоты. Каждая аминокислота имеет две функциональные группы: карбоксильную и аминогруппу. Все разнообразие белков создается в результате различных сочетаний 20 аминокислот.

Белки преобладают над всеми другими присутствующими в живых организмах соединениями, составляя, как правило, более половины их сухого веса. Предполагается, что в природе существует несколько миллиардов индивидуальных белков (например, только в бактерии кишечной палочки присутствует более 3 тысяч различных белков).

Белки играют ключевую роль в процессах жизнедеятельности любого организма. К числу белков относятся ферменты, при участии которых протекают все химические превращения в клетке (обмен веществ); они управляют действием генов; при их участии реализуется действие гормонов, осуществляется трансмембранный транспорт, в том числе генерация нервных импульсов. Они являются неотъемлемой частью иммунной системы (иммуноглобулины) и системы свертывания , составляют основу костной и соединительной ткани, участвуют в преобразовании и утилизации энергии.

История исследования белков

Первые попытки выделить белки были предприняты еще в 18 веке. К началу 19 века появляются первые работы по химическому изучению белков. Французские ученые Жозеф Луи Гей-Люссак и Луи Жак Тенар попытались установить элементный состав белков из разных источников, что положило начало систематическим аналитическим исследованиям, благодаря которым был сделан вывод о том, что все белки сходны по набору элементов, входящих в их состав. В 1836 голландский химик Г. Я. Мульдер предложил первую теорию строения белковых веществ, согласно которой все белки имеют некий гипотетический радикал (С 40 H 62 N 10 O 12), связанный в различных пропорциях с атомами серы и фосфора. Он назвал этот радикал «протеином» (от греческого protein - первый, главный). Теория Мульдера способствовала увеличению интереса к изучению белков и совершенствованию методов белковой химии. Были разработаны приемы выделения белков путем экстракции растворами нейтральных солей, впервые были получены белки в кристаллической форме ( , некоторые белки растений). Для анализа белков стали использовать их предварительное расщепление с помощью кислот и щелочей.

Одновременно все большее внимание стало уделяться изучению функции белков. Йенс Якоб Берцелиус в 1835 первым высказал предположение о том, что они играют роль биокатализаторов. Вскоре были открыты протеолитические ферменты - пепсин (Т. Шванн, 1836) и трипсин (Л. Корвизар, 1856), что привлекло внимание к физиологии пищеварения и анализу продуктов, образующихся в ходе расщепления пищевых веществ. Дальнейшие исследования структуры белка, работы по химическому синтезу пептидов завершились появлением пептидной гипотезы, согласно которой все белки построены из аминокислот. К концу 19 века было изучено большинство аминокислот, входящих в состав белков.

В начале 20 века немецкий химик Эмиль Герман Фишер впервые применил методы органической химии для изучения белков и доказал, что белки состоят из?-аминокислот, связанных между собой амидной (пептидной) связью. Позже, благодаря использованию физико-химических методов анализа, была определена молекулярная масса многих белков, установлена сферическая форма глобулярных белков, проведен рентгеноструктурный анализ аминокислот и пептидов, разработаны методы хроматографического анализа (см. хроматография).

Был выделен первый белковый гормон - (Фредерик Грант Бантинг, Джон Джеймс Рикард Маклеод, 1922), доказано присутствие гамма -глобулинов в антителах, описана ферментативная функция мышечного белка миозина (Владимир Александрович Энгельгардт, М. Н. Любимова, 1939). Впервые в кристаллическом виде были получены ферменты - уреаза (Дж. Б. Салинер, 1926), пепсин (Дж. Х. Нортрон, 1929), лизоцим (Э. П. Абрахам, Роберт Робинсон, 1937).

Рис. 2. Схема трёхмерной структуры фермента лизоцима. Кружки - аминокислоты; тяжи - пептидные связи; заштрихованные прямоугольники - дисульфидные связи. Видны спирализованные и вытянутые участки полипептидной цепи.

В 1950-х годах была доказана трехуровневая организация белковых молекул - наличие у них первичной, вторичной и третичной структуры; создали автоматический анализатор аминокислот (Станфорд Мур, Уильям Хауард Стайн, 1950). В 60-х годы были предприняты попытки химического синтеза белков (инсулин, рибонуклеаза). Существенно усовершенствовались методы рентгеноструктурного анализа; был создан прибор - секвенатор (П. Эдман, Г. Бэгг, 1967), позволявший определять последовательность аминокислот в полипептидной цепи. Следствием этого явилось установление структуры нескольких сотен белков из самых разных источников. Среди них протеолитические ферменты (пепсин, трипсин, химотрипсин, субтилизин, карбоксипептидазы), миоглобины, гемоглобины, цитохромы, лизоцимы, иммуноглобулины, гистоны, нейротоксины, белки вирусных оболочек, белково-пептидные гормоны. В результате появились предпосылки для решения актуальных проблем энзимологии, иммунологии, эндокринологии и других областей биологической химии.

В конце 20 века значительные успехи были достигнуты в изучении роли белков в ходе матричного синтеза биополимеров, понимания механизмов их действия в различных процессах жизнедеятельности организмов, установления связи между их структурой и функцией. Огромное значение при этом имело совершенствование методов исследования, появление новых способов для разделения белков и пептидов.

Разработка эффективного метода анализа последовательности расположения нуклеотидов в нуклеиновых кислотах позволила значительно облегчить и ускорить определение аминокислотной последовательности в белках. Это оказалось возможным потому, что порядок расположения аминокислот в белке определяется последовательностью нуклеотидов в кодирующем этот белок гене (фрагменте ). Следовательно, зная расстановку нуклеотидов в этом гене и генетический код, можно безошибочно предсказать, в каком порядке располагаются аминокислоты в полипептидной цепи белка. Наряду с успехами в структурном анализе белков значительные результаты были достигнуты в изучении их пространственной организации, механизмов образования и действия надмолекулярных комплексов, в том числе рибосом и других клеточных органелл, хроматина, вирусов и т. д.

Строение белков

Практически все белки построены из 20 ?-аминокислот, принадлежащих к L-ряду, и одинаковых практически у всех организмов. Аминокислоты в белках соединены между собой пептидной связью -СО-NH-, которая образуется карбоксильной и?-аминогруппой соседних аминокислотных остатков: две аминокислоты образуют дипептид, в котором остаются свободными концевые карбоксильная (-СООН) и аминогруппа (H 2 N-), к которым могут присоединяться новые аминокислоты, образуя полипептидную цепь.

Участок цепи, на котором находится концевая Н 2 N-группа, называют N-концевым, а противоположный ему - С-концевым. Огромное разнообразие белков определяется последовательностью расположения и количеством входящих в них аминокислотных остатков. Хотя четкого разграничения не существует, короткие цепи принято называть пептидами или олигопептидами (от олиго…), а под полипептидами (белками) понимают обычно цепи, состоящие из 50 и более . Наиболее часто встречаются белки, включающие 100-400 аминокислотных остатков, но известны и такие, молекула которых образована 1000 и более остатками. Белки могут состоять из нескольких полипептидных цепей. В таких белках каждая полипептидная цепь носит название субъединицы.

Пространственная структура белков

Рис. 3. Белок всех организмов состоит из 20 видов аминокислот. Каждый белок характеризуется определённым ассортиментом и количественным соотношением аминокислот. В молекулах белков аминокислоты соединены между собой пептидными связями (- СО - NH -) в линейной последовательности, составляющей так называемую первичную структуру белка. Верхняя строка - свободные аминокислоты с боковыми группами R1, R2, R3; нижняя строка - аминокислоты соединены пептидными связями.

Полипептидная цепь способна самопроизвольно формировать и удерживать особую пространственную структуру. Исходя из формы белковых молекул белки делят на фибриллярные и глобулярные. В глобулярных белках одна или несколько полипептидных цепей свернуты в компактную структуру сферической формы, или глобулу. Обычно эти белки хорошо растворимы в воде. К их числу относятся почти все ферменты, транспортные белки крови и многие запасные белки. Фибриллярные белки представляют собой нитевидные молекулы, скрепленные друг с другом поперечными связями и образующие длинные волокна или слоистые структуры. Они обладают высокой механической прочностью, нерастворимы в воде и выполняют главным образом структурные и защитные функции. Типичными представителями таких белков являются кератины волос и шерсти, фиброин шелка, коллаген сухожилий.

Порядок расположения ковалентно связанных аминокислот в полипептидной цепи называют аминокислотной последовательностью, или первичной структурой белков. Первичная структура каждого белка, кодируемая соответствующим геном, постоянна и несет в себе всю информацию, необходимую для формирования структур более высокого уровня. Потенциально возможное число белков, которые могут образоваться из 20 аминокислот, практически не ограничено.

В результате взаимодействия боковых групп аминокислотных остатков отдельные относительно небольшие участки полипептидной цепи принимают ту или иную конформацию (тип укладки), известную как вторичная структура белков. Наиболее характерными элементами ее являются периодически повторяющиеся?-спираль и?-структура. Вторичная структура весьма стабильна. Так как она в значительной мере определяется аминокислотной последовательностью соответствующего участка белка, становится возможным ее предсказание с определенной степенью вероятности. Термин «?-спираль» был введен американским биохимиком, физиком и химиком Лайнусом Карлом Полингом, описавшим укладку полипептидной цепи в белке?-кератине в виде правосторонней спирали (?-спираль можно сравнить со шнуром от телефонной трубки). На каждый виток такой спирали в белке приходится 3,6 аминокислотных остатков. Это означает, что группа -С= О одной пептидной связи образует водородную связь с группой -NH другой пептидной связи, отстоящей от первой на четыре аминокислотных остатка. В среднем каждый?-спиральный участок включает до 15 аминокислот, что соответствует 3-4 оборотам спирали. Но в каждом отдельном белке длина спирали может сильно отличаться от этой величины. В поперечном сечении?-спираль имеет вид диска, от которого наружу направлены боковые цепи аминокислот.

Структура, или? -складчатый слой, может быть образована несколькими участками полипептидной цепи. Эти участки растянуты и уложены параллельно друг другу, связываясь между собой водородными связями, которые возникают между пептидными связями. Они могут быть ориентированы в одном и том же или в противоположных направлениях (направление движения вдоль полипептидной цепи принято считать от N-конца к С-концу). В первом случае складчатый слой называют параллельным, во втором - антипараллельным. Последний образуется, когда пептидная цепь делает резкий поворот вспять, образуя изгиб (? -изгиб). Боковые цепи аминокислот ориентированы перпендикулярно плоскости? -слоя.

Относительное содержание? -спиральных участков и? -структур может широко варьироваться в разных белках. Существуют белки с преобладанием?-спиралей (около 75% аминокислот в миоглобине и гемоглобине), а основным типом укладки цепи во многих фибриллярных белках (в том числе фиброин шелка, ?-кератин) является? -структура. Участки полипептидной цепи, которые нельзя отнести ни к одной из вышеописанных конформаций, называют соединительными петлями. Их структура определяется главным образом взаимодействиями между боковыми цепями аминокислот, и в молекуле любого белка она укладывается строго определенным образом.

Третичной структурой называют пространственное строение глобулярных белков. Но часто это понятие относят к характерному для каждого конкретного белка способу сворачивания полипептидной цепи в пространстве. Третичная структура формируется полипептидной цепью белка самопроизвольно, по-видимому, по определенному пути (путям) свертывания с предварительным образованием элементов вторичной структуры. Если стабильность вторичной структуры обусловлена водородными связями, то третичная структура фиксируется разнообразной системой нековалентных взаимодействий: водородными, ионными, межмолекулярными взаимодействиями, а также гидрофобными контактами между боковыми цепями неполярных аминокислотных остатков.

В некоторых белках третичная структура дополнительно стабилизируется за счет образования дисульфидных связей (-S-S--связей) между остатками цистеина. Как правило, внутри белковой глобулы расположены боковые цепи гидрофобных аминокислот, собранные в ядро (их перенос внутрь глобулы белка выгоден термодинамически), а на периферии находятся гидрофильные остатки и часть гидрофобных. Белковую глобулу окружает несколько сотен молекул гидратной воды, необходимой для стабильности молекулы белка и нередко участвующей в его функционировании. Третичная структура подвижна, отдельные ее участки могут смещаться, что приводит к конформационным переходам, которые играют значительную роль во взаимодействии белка с другими молекулами.

Третичная структура является основой функциональных свойств белка. Она определяет образование в белке ансамблей функциональных групп - активных центров и зон связывания, придает им необходимую геометрию, позволяет создать внутреннюю среду, являющуюся предпосылкой протекания многих реакций, обеспечивает взаимодействие с другими белками.

Третичная структура белков однозначно соответствует его первичной структуре; вероятно, существует еще нерасшифрованный стереохимический код, определяющий характер свертывания белка. Однако один и тот же способ укладки в пространстве обычно соответствует не единственной первичной структуре, а целому семейству структур, в которых совпадать может лишь небольшая доля (до 20-30%) аминокислотных остатков, но при этом в определенных местах цепи сходство аминокислотных остатков сохраняется. Результатом является образование обширных семейств белков, характеризующихся близкой третичной и более или менее сходной первичной структурой и, как правило, общностью функции. Таковы, например, белки организмов разных видов, несущие одинаковую функцию и эволюционно родственные: миоглобины и гемоглобины, трипсин, химотрипсин, эластаза и другие протеиназы животных.

Рис. 4. В результате соединения нескольких белковых макромолекул, обладающих третичной структурой, в сложный комплекс формируется четвертичная структура белка. Примером таких сложных белков является гемоглобин, состоящий из четырех макромолекул.

Нередко, особенно в крупных белках, сворачивание полипептидной цепи проходит через формирование отдельными участками цепи более или менее автономных элементов пространственной структуры - доменов, которые могут обладать функциональной автономией, будучи ответственными за ту или иную биологическую активность белка. Так, N-концевые домены белков системы свертывания крови обеспечивают их присоединение к клеточной мембране.

Существует много белков, молекулы которых представляют собой ансамбль из глобул (субъединиц), удерживаемых вместе за счет гидрофобных взаимодействий, водородных или ионных связей. Такие комплексы называют олигомерными, мультимерными или субъединичными белками. Укладку субъединиц в функционально активном белковом комплексе называют четвертичной структурой белка. Некоторые белки способны образовывать структуры более высоких порядков, например, полиферментные комплексы, протяженные структуры (белки оболочек бактериофагов), надмолекулярные комплексы, функционирующие как единое целое (например, рибосомы или компоненты дыхательной цепи митохондрий).

Четвертичная структура позволяет создать молекулы необычной геометрии. Так, у ферритина, образованного 24 субъединицами, имеется внутренняя полость, благодаря которой белку удается связать до 3000 ионов железа. Кроме того, четвертичная структура позволяет в одной молекуле выполнять несколько различных функций. В триптофансинтетазе совмещены ферменты, ответственные за несколько последовательных стадий синтеза аминокислоты триптофана.

Методы исследования структуры белков

Первичная структура белков определяет все остальные уровни организации белковой молекулы. Поэтому при изучении биологической функции различных белков важно знание этой структуры. Первым белком, для которого была установлена аминокислотная последовательность, был гормон поджелудочной железы - инсулин. Эта работа, потребовавшая 11 лет, была выполнена английским биохимиком Фредериком Сенгером (1954). Он определил расположение 51 аминокислоты в молекуле гормона и показал, что она состоит из 2-х цепей, соединенных дисульфидными связями. Позже большая часть работ по установлению первичной структуры белков была автоматизирована.

С развитием методов генетической инженерии появилась возможность еще более ускорить этот процесс, определяя первичную структуру белков в соответствии с результатами анализа нуклеотидной последовательности в генах, кодирующих эти белки. Вторичную и третичную структуру белков исследуют с помощью достаточно сложных физических методов, например, кругового дихроизма или рентгеноструктурного анализа белковых кристаллов. Третичная структура была впервые установлена английским биохимиком Джоном Коудери Кендрю (1957) для белка мышц - миоглобина.

Рис. 5. Модель молекулы миоглобина (пространственная конфигурация молекулы)

Денатурация белков

Сравнительно слабые связи, ответственные за стабилизацию вторичной, третичной и четвертичной структур белка, легко разрушаются, что сопровождается потерей его биологической активности. Разрушение исходной (нативной) структуры белка, называемое денатурацией, происходит в присутствии кислот и оснований, при нагревании, изменении ионной силы и других воздействиях. Как правило, денатурированные белки плохо или совсем не растворяются в воде. При непродолжительном действии и быстром устранении денатурирующих факторов возможна ренатурация белка с полным или частичным восстановлением исходной структуры и биологических свойств.

Классификация белков

Сложность строения белковых молекул, чрезвычайное разнообразие выполняемых ими функций затрудняют создание единой и четкой их классификации, хотя попытки сделать это предпринимались неоднократно, начиная с конца 19 века. Исходя из химического состава белки делят на простые и сложные (иногда их называют протеидами). Молекулы первых состоят только из аминокислот. В составе же сложных белков помимо собственно полипептидной цепи имеются небелковые компоненты, представленные углеводами (гликопротеиды), липидами (липопротеиды), нуклеиновыми кислоты (нуклеопротеиды), ионами металла (металлопротеиды), фосфатной группой (фосфопротеиды), пигментами (хромопротеиды) и т. д.

В зависимости от выполняемых функций различают несколько классов белков . Самый многообразный и наиболее специализированный класс составляют белки с каталитической функцией - ферменты, обладающие способностью ускорять химические реакции, протекающие в живых организмах. В этом качестве белки участвуют во всех процессах синтеза и распада различных соединении в ходе обмена веществ, в биосинтезе белков и нуклеиновых кислот, регуляции развития и дифференцировки клеток. Транспортные белки обладают способностью избирательно связывать жирные кислоты, гормоны и другие органические и неорганические соединения и ионы, а затем переносить их с током в нужное место (например, гемоглобин участвует в переносе кислорода от легких ко всем клеткам организма). Транспортные белки осуществляют также активный транспорт через биологические мембраны ионов, липидов, сахаров и аминокислот.

Структурные белки выполняют опорную или защитную функцию; они участвуют в формировании клеточного скелета. Наиболее распространены среди них коллаген соединительной ткани, кератин , ногтей и перьев, эластин клеток сосудов и многие другие. В комплексе с липидами они являются структурной основой клеточных и внутриклеточных мембран.

Ряд белков выполняет защитную функцию. Например, иммуноглобулины (антитела) позвоночных, обладая способностью связывать чужеродные патогенные микроорганизмы и вещества, нейтрализуют их болезнетворное воздействие на организм, препятствует размножению клеток. Фибриноген и тромбин участвуют в процессе свертывания крови. Многие вещества белковой природы, выделяемые бактериями, а также компоненты и некоторых беспозвоночных относятся к числу токсинов.

Некоторые белки (регуляторные) участвуют в регуляции физиологической активности организма в целом, отдельных органов, клеток или процессов. Они контролируют транскрипцию генов и синтез белка; к их числу относятся пептидно-белковые гормоны, секретируемые эндокринными железами. Запасные белки семян обеспечивают питательными веществами начальные этапы развития зародыша. К ним относят также казеин , альбумин яичного белка (овальбумин) и многие другие. Благодаря белкам мышечные клетки приобретают способность сокращаться и в конечном итоге обеспечивать движения организма. Примером таких сократительных белков могут служить актин и миозин скелетных мышц, а также тубулин, являющиеся компонентом ресничек и жгутиков одноклеточных организмов; они же обеспечивают расхождение хромосом при делении клеток.

Белки-рецепторы являются мишенью действия гормонов и других биологически активных соединений. С их помощью клеткой воспринимается информация о состоянии внешней среды. Они играют важную роль в передаче нервного возбуждения и в ориентированном движении клетки (хемотаксисе). Преобразование и утилизация энергии, поступающей в организм , а также энергии тоже происходит при участии белков биоэнергетической системы (например, зрительного пигмента родопсина, цитохромов дыхательной цепи). Существует также множество белков с другими, порой довольно необычными функциями (например, в плазме некоторых антарктических рыб содержатся белки, обладающие свойствами антифриза).

Биосинтез белка

Вся информация о структуре того или иного белка «хранится» в соответствующих генах в виде последовательности нуклеотидов и реализуется в процессе матричного синтеза. Сначала информация с помощью фермента ДНК-зависимой РНК-полимеразы передается (считывается) с молекулы ДНК на матричную РНК (мРНК), а затем в рибосоме на мРНК, как на матрице в соответствии с генетическим кодом при участии транспортных РНК, доставляющих аминокислоты, происходит формирование полипептидной цепи.

Выходящие из рибоcoмы синтезированные полипептидные цепи, самопроизвольно сворачиваясь, принимают свойственную данному белку конформацию и могут подвергаться посттрансляционной модификации. Модификациям могут подвергаться боковые цепи отдельных аминокислот (гидроксилированию, фосфорилированию и т. д.). Именно поэтому в коллагене, например, встречается гидроксипролин и гидроксилизин (см. ). Модификация может сопровождаться и разрывом полипептидных связей. Таким путем, например, происходит образование активной молекулы инсулина, состоящего из двух цепей, соединенных дисульфидными связями.

Рис. 6. Общая схема биосинтеза белков.

Значение белков в питании

Белки являются важнейшими компонентами пищи животных и человека. Пищевая ценность белков определяется содержанием в них незаменимых аминокислот, которые в самом организме не образуются. В этом отношении растительные белки менее ценны, чем животные: они беднее лизином, метионином и триптофаном, труднее перевариваются в желудочно-кишечном тракте. Отсутствие незаменимых аминокислот в пище приводит к тяжелым нарушениям азотистого обмена.

В белки расщепляются до свободных аминокислот, которые после всасывания в кишечнике поступают и разносятся ко всем клеткам. Часть из них распадается до простых соединений с выделением энергии, используемой на разные нужды клеткой, а часть идет на синтез новых белков, свойственных данному организму. (Р. А. Матвеева, Энциклопедия Кирилл и Мефодий)

Перечисление белков

  • амилоидный — amyloid;
  • анионный — anionic ;
  • антивирусный — antiviral;
  • аутоиммунный — autoimmune;
  • аутологичный — autologic;
  • бактериальный — bacterial;
  • белок Бенс-Джонса — Bence Jones protein;
  • вирусиндуцируемый — virus induced;
  • вирусный — virus;
  • вирусный неструктурный — virus nonstructural;
  • вирусный структурный — virus structural;
  • вирусоспецифический — virus specific;
  • высокомолекулярный — high molecular weight;
  • гемсодержащий — heme;
  • гетерологичный — foreign ;
  • гибридный — hybrid;
  • гликозилированный — glycated;
  • глобулярный — globular;
  • денатурированный — denaturated;
  • железосодержащий — iron;
  • желточный — yolk;
  • животный белок — animal protein;
  • защитный — defensive ;
  • иммунный — immune;
  • иммуногенный — immunologically relevant;
  • кальцийсвязывающий — calcium binding;
  • кислый — acidic;
  • корпускулярный — corpuscular;
  • мембранный — membrane;
  • миеломный — myeloma;
  • микросомный — microsomal;
  • белок молока — milk protein;
  • моноклональный — monoclonal immunoglobulin;
  • мышечный белок — muscle protein;
  • нативный — native;
  • негистоновый — nonhistone;
  • неполноценный — partial ;
  • нерастворимый — insoluble;
  • неусвояемый — insoluble;
  • неферментный — nonenzyme;
  • низкомолекулярный — low molecular weight;
  • новый белок — new protein;
  • общий — whole ;
  • онкогенный — oncoprotein;
  • белок основной фазы — anionic ;
  • белок острой фазы (воспаления) — protein of acute phase;
  • пищевой — food;
  • белок плазмы крови — plasma protein;
  • плацентарный — placenta;
  • разобщающий — uncoupling;
  • белок регенерирующего нерва — protein of regenerating nerve;
  • регуляторный — regulatory;
  • рекомбинационный — recombinant;
  • рецепторный — receptor;
  • рибосомный — ribosomal;
  • связывающий — binding;
  • секреторный белок — secretory protein;
  • С-реактивный — C-reactive;
  • белок сыворотки молока — whey protein, lactoprotein;
  • тканевый — tissue;
  • токсический — toxic;
  • химерный — chimeric;
  • цельный — whole;
  • цитозольный — cytosolic;
  • щелочной белок — anionic protein;
  • экзогенный — exogenous ;
  • эндогенный — endogenous protein.

Более подробно о белках читайте в литературе:

  • Волькенштейн М. В., Молекулы и , М., 1965, гл. 3 - 5;
  • Гауровиц Ф., Химия и функции белков, пер. с англ., , Москва , 1965;
  • Сисакян Н. М. и Гладилин К. Л., Биохимические аспекты синтеза белка, в кн.: Успехи биологической химии , т. 7, М., 1965, с. 3;
  • Степанов В. М. Молекулярная биология. Структура и функция белков. М., 1996;
  • Шамин А. Н., Развитие химии белка, М., 1966;
  • Белки и пептиды. М., 1995-2000. Т. 1-3;
  • Биосинтез белка и нуклеиновых кислот, под ред. А. С. Спирина, М., 1965;
  • Введение в молекулярную биологию, пер. с англ., М., 1967
  • Молекулы и клетки. [Сб. ст.], пер. с англ., М., 1966, с. 7 - 27, 94 - 106;
  • Основы биохимии: Перевод с английского М., 1981. Т. 1;
  • Проблема белка. М., 1995. Т. 1-5;
  • The Proteins. New York, 1975-79. 3 ed. V. 1-4.

Найти ещё что-нибудь интересное:


В основе жизнедеятельности клетки лежат биохимические процессы, протекающие на молекулярном уровне и служащие предметом изучения биохимии. Соответственно и явления наследственности и изменчивости тоже связаны с молекулами органических веществ, и в первую очередь с нуклеиновыми кислотами и белками.

Состав белков

Белки представляют собой большие молекулы, состоящие из сотен и тысяч элементарных звеньев - аминокислот. Такие вещества, состоящие из повторяющихся элементарных звеньев - мономеров, называются полимерами. Соответственно белки можно назвать полимерами, мономерами которых служат аминокислоты.

Всего в живой клетке известно 20 видов аминокислот. Название аминокислоты получили из-за содержания в своем составе аминной группы NHy, обладающей основными свойствами, и карбоксильной группы СООН, имеющей кислотные свойства. Все аминокислоты имеют одинаковую группу NH2-СН-СООН и отличаются друг от друга химической группой, называемой радикалом - R. Соединение аминокислот в полимерную цепь происходит благодаря образованию пептидной связи (СО - NH) между карбоксильной группой одной аминокислоты и аминогруппой другой аминокислоты. При этом выделяется молекула воды. Если образовавшаяся полимерная цепь короткая, она называется олигопептидной, если длинная - полипептидной.

Строение белков

При рассмотрении строения белков выделяют первичную, вторичную, третичную структуры.

Первичная структура определяется порядком чередования аминокислот в цепи. Изменение в расположении даже одной аминокислоты ведет к образованию совершенно новой молекулы белка. Число белковых молекул, которое образуется при сочетании 20 разных аминокислот, достигает астрономической цифры.

Если бы большие молекулы (макромолекулы) белка располагались в клетке в вытянутом состоянии, они занимали бы в ней слишком много места, что затруднило бы жизнедеятельность клетки. В связи с этим молекулы белка скручиваются, изгибаются, свертываются в самые различные конфигурации. Так на основе первичной структуры возникает вторичная структура - белковая цепь укладывается в спираль, состоящую из равномерных витков. Соседние витки соединены между собой слабыми водородными связями, которые при многократном повторении придают устойчивость молекулам белков с этой структурой.

Спираль вторичной структуры укладывается в клубок, образуя третичную структуру. Форма клубка у каждого вида белков строго специфична и полностью зависит от первичной структуры, т. е. от порядка расположения аминокислот в цепи. Третичная структура удерживается благодаря множеству слабых электростатических связей: положительно и отрицательно заряженные группы аминокислот притягиваются и сближают даже далеко отстоящие друг от друга участки белковой цепи. Сближаются и иные участки белковой молекулы, несущие, например, гидрофобные (водоотталкивающие) группы.

Некоторые белки, например гемоглобин, состоят из нескольких цепей, различающихся по первичной структуре. Объединяясь вместе, они создают сложный белок, обладающий не только третичной, но и четвертичной структурой (рис. 2).

В структурах белковых молекул наблюдается следующая закономерность: чем выше структурный уровень, тем слабее поддерживающие их химические связи. Связи, образующие четвертичную, третичную, вторичную структуру, крайне чувствительны к физико-химическим условиям среды, температуре, радиации и т. д. Под их воздействием структуры молекул белков разрушаются до первичной - исходной структуры. Такое нарушение природной структуры белковых молекул называется денатурацией. При удалении денатурирующего агента многие белки способны самопроизвольно восстанавливать исходную структуру. Если же природный белок подвергается действию вьюокой температуры или интенсивному действию других факторов, то он необратимо денатурируется. Именно фактом наличия необратимой денатурации белков клеток объясняется невозможность жизни в условиях очень высокой температуры.

Биологическая роль белков в клетке

Белки, называемые также протеинами (греч. протос - первый}, в клетках животных и растений выполняют многообразные и очень важные функции, к которым можно отнести следующие.

Каталитическая. Природные катализаторы - ферменты представляют собой полностью или почти полностью белки. Благодаря ферментам химические процессы в живых тканях ускоряются в сотни тысяч или в миллионы раз. Под их действием все процессы идут мгновенно в «мягких» условиях: при нормальной температуре тела, в нейтральной для живой ткани среде. Быстродействие, точность и избирательность ферментов несопоставимы ни с одним из искусственных катализаторов. Например, одна молекула фермента за одну минуту осуществляет реакцию распада 5 млн. молекул пероксида водорода (Н202). Ферментам характерна избирательность. Так, жиры расщепляются специальным ферментом, который не действует на белки и полисахариды (крахмал, гликоген). В свою очередь, фермент, расщепляющий только крахмал или гликоген, не действует на жиры.

Процесс расщепления или синтеза любого вещества в клетке, как правило, разделен на ряд химических операций. Каждую операцию выполняет отдельный фермент. Группа таких ферментов составляет биохимический конвейер.

Считают, что каталитическая функция белков зависит от их третичной структуры, при ее разрушении каталитическая активность фермента исчезает.

Защитная. Некоторые виды белков защищают клетку и в целом организм от попадания в них болезнетворных микроорганизмов и чужеродных тел. Такие белки носят название антител. Антитела связываются с чужеродными для организма белками бактерий и вирусов, что подавляет их размножение. На каждый чужеродный белок организм вырабатывает специальные «антибелки» - антитела. Такой механизм сопротивления возбудителям заболеваний называется иммунитетом.

Чтобы предупредить заболевание, людям и животным вводят ослабленные или убитые возбудители (вакцины), которые не вызывают болезнь, но заставляют специальные клетки организма производить антитела против этих возбудителей. Если через некоторое время болезнетворные вирусы и бактерии попадают в такой организм, они встречают прочный защитный барьер из антител.

Гормональная. Многие гормоны также представляют собой белки. Наряду с нервной системой гормоны управляют работой разных органов (и всего организма) через систему химических реакций.

Отражательная. Белки клетки осуществляют прием сигналов, идущих извне. При этом различные факторы среды (температурный, химический, механический и др.) вызывают изменения в структуре белков - обратимую денатурацию, которая, в свою очередь, способствует возникновению химических реакций, обеспечивающих ответ клетки на внешнее раздражение. Эта способность белков лежит в основе работы нервной системы, мозга.

Двигательная. Все виды движений клетки и организма: мерцание ресничек у простейших, сокращение мышц у высших животных и другие двигательные процессы - производятся особым видом белков.

Энергетическая. Белки могут служить источником энергии для клетки. При недостатке углеводов или жиров окисляются молекулы аминокислот. Освободившаяся при этом энергия используется на поддержание процессов жизнедеятельности организма.

Транспортная. Белок гемоглобин крови способен связывать кислород воздуха и транспортировать его по всему телу. Эта важнейшая функция свойственна и некоторым другим белкам.

Пластическая. Белки - основной строительный материал клеток (их мембран) и организмов (их кровеносных сосудов, нервов, пищеварительного тракта и др.). При этом белки обладают индивидуальной специфичностью, т. е. в организмах отдельных людей содержатся некоторые, характерные лишь для него, белки-

Таким образом, белки - эти важнейший компонент клетки, без которого невозможно проявление свойств жизни. Однако воспроизведение живого, явление наследственности, как мы увидим позже, связано с молекулярными структурами нуклеиновых кислот. Это открытие - результат новейших достижений биологии. Теперь известно, что живая клетка обязательно обладает двумя видами полимеров-белками и нуклеиновыми кислотами. В их взаимодействии заключены самые глубокие стороны явления жизни.



1. Почему белки считаются полимерами?

Ответ. Белки - это полимеры, то есть молекулы, построенные, как цепи, из повторяющихся мономерных звеньев, или субъединиц, состоящие из аминокислот, соединенных в определенной последовательности пептидной связью. Они - основные и необходимые составные части всех организмов.

Различают белки простые (протеины) и сложные (протеиды) . Протеины - белки, молекулы которых содержат только белковые компоненты. При полном их гидролизе образуются аминокислоты.

Протеидами называют сложные белки, молекулы которых существенно отличаются от молекул протеинов тем, что помимо собственно белкового компонента содержат низкомолекулярный компонент небелковой природы

2. Какие функции белков вам известны?

Ответ. Белки выполняют следующие функции: строительную, энергетическую, каталитическую, защитную, транспортную, сократительную, сигнальную и другие.

Вопросы после § 11

1. Какие вещества называются белками?

Ответ. Белки, или протеины, представляют собой биологические полимеры, мономерами которых являются аминокислоты. Все аминокислоты имеют аминогруппу (-NH2) и карбоксильную группу (-СООН) и различаются строением и свойствами радикалов. Аминокислоты связаны между собой пептидными связями, поэтому белки называют еще поли­пептидами.

Ответ. Молекулы белков могут принимать различные пространственные формы – конформации, которые представляют собой четыре уровня их организации. Линейная последовательность аминокислот в составе полипептидной цепи представляет первичную структуру белка. Она уникальна для любого белка и определяет его форму, свойства и функции.

3. Как образуются вторичная, третичная и четвертичная структуры белка?

Ответ. Вторичная структура белка формируется при образовании водородных связей между -СО- и -NH- группами. При этом полипептидная цепь закручивается в спираль. Спираль может приобретать конфигурацию глобулы, так как между радикалами аминокислот в спирали возникают разнообразные связи. Глобула - третичная структура белка. Если несколько глобул объединяются в единый сложный комплекс, то возникает четвертичная структура. Например, гемоглобин крови человека образован четырьмя глобулами.

4. Что такое денатурация белка?

Ответ. Нарушение природной структуры белка называется денатурацией. Под действием ряда факторов (химических, радиоактивных, температурных и др.) может разрушиться четвертичная, третичная и вторичная структуры белка. В случае, если действие фактора прекращается, белок может восстановить свою структуру. Если же действие фактора нарастает, разрушается и первичная структура белка - полипептидная цепь. Это уже необратимый процесс - восстановить структуру белок не может

5. По какому признаку белки делятся на простые и сложные?

Ответ. Простые белки состоят исключительно из аминокислот. В состав сложных белков могут входить другие органические вещества: углеводы (тогда они называются гликопротеинами), жиры (липопротеины), нуклеиновые кислоты (нуклеопротеины).

6. Какие функции белков вам известны?

Ответ. Строительная (пластическая) функция. Белки являются структурным компонентом биологических мембран и органоидов клетки, а также входят в состав опорных структур организма, волос, ногтей, сосудов. Ферментативная функция. Белки служат ферментами, т. е. биологическими катализаторами, ускоряющими скорость биохимических реакций в десятки и сотни миллионов раз. Примером может служить амилаза, расщепляющая крахмал до моносахаридов. Сократительная (двигательная) функция. Ее выполняют особые сократительные белки, обеспечивающие движение клеток и внутриклеточных структур. Благодаря им перемещаются хромосомы при делении клетки, а жгутики и реснички приводят в движение клетки простейших. Сократительные свойства белков актина и миозина лежат в основе работы мышц. Транспортная функция. Белки участвуют в транспорте молекул и ионов в пределах организма (гемоглобин переносит кислород из легких к органам и тканям, альбумин сыворотки крови участвует в транспорте жирных кислот). Защитная функция. Она заключается в предохранении организма от повреждений и вторжения чужеродных белков и бактерий. Белки-антитела, вырабатываемые лимфоцитами, создают защиту организма от чужеродной инфекции, тромбин и фибрин участвуют в образовании тромба, тем самым помогая организму избежать больших потерь крови. Регуляторная функция. Ее выполняют белки-гормоны. Они участвуют в регуляции активности клетки и всех жизненных процессов организма. Так, инсулин регулирует уровень сахара в крови и поддерживает его на определенном уровне. Сигнальная функция. Белки, встроенные в мембрану клетки, способны менять свою структуру в ответ на раздражение. Тем самым передаются сигналы из внешней среды внутрь клетки. Энергетическая функция. Она реализуется белками крайне редко. При полном расщеплении 1 г белка способно выделиться 17,6 кДж энергии. Однако белки для организма - очень ценное соединение. Поэтому расщепление белка происходит обычно до аминокислот, из которых строятся новые полипептидные цепочки. Белки-гормоны регулируют активность клетки и всех жизненных процессов организма. Так, в организме человека соматотропин участвует в регуляции роста тела, инсулин поддерживает на постоянном уровне содержание глюкозы в крови.

7. Какую роль выполняют белки-гормоны?

Ответ. Регуляторная функция присуща белкам-гормонам (регуляторам). Они регулируют различные физиологические процессы. Например, наиболее известным гормоном является инсулин, регулирующий содержание глюкозы в крови. При недостатке инсулина в организме возникает заболевание, известное как сахарный диабет.

8. Какую функцию выполняют белки-ферменты?

Ответ. Ферменты являются биологическими катализаторами, то есть ускорителями химических реакций в сотни миллионов раз. Ферменты обладают строгой специфичностью по отношению к веществу, вступающему в реакцию. Каждая реакция катализируется своим ферментом.

9. Почему белки редко используются в качестве источника энергии?

Ответ. Мономеры белков аминокислоты - ценное сырье для построения новых белковых молекул. Поэтому полное расщепление полипептидов до неорганических веществ происходит редко. Следовательно, энергетическая функция, заключающаяся в выделении энергии при полном расщеплении, выполняется белками до­вольно редко.

Белок яйца является типичным протеином. Выясните, что с ним произойдёт, если на него подействовать водой, спиртом, ацетоном, кислотой, щёлочью, растительным маслом, высокой температурой и т. д.

Ответ. В результате действия высокой температуры на белок яйца произойдет денатурация белка. При действии спирта, ацетона, кислотами или щелочами происходит примерно то же самое: белок сворачивается. Это процесс, при котором происходит нарушение третичной и четвертичной структуры белка вследствие разрыва водородных и ионных связей.

В воде и растительном масле белок сохраняет свою структуру.

Измельчите клубень сырого картофеля до состояния кашицы. Возьмите три пробирки и в каждую положите небольшое количество измельчённого картофеля.

Первую пробирку поместите в морозилку холодильника, вторую – на нижнюю полку холодильника, а третью – в банку с тёплой водой (t = 40 °С). Через 30 мин достаньте пробирки и в каждую капните небольшое количество пероксида водорода. Пронаблюдайте, что будет происходить в каждой пробирке. Объясните полученные результаты

Ответ. Данный опыт иллюстрирует активность фермента каталазы живой клетки на перекись водорода. В результате реакции выделяется кислород. По динамике выделения пузырьков можно судить об активности фермента.

Опыт позволил зафиксировать следующие результаты:

Активность каталазы зависит от температуры:

1. Пробирка 1: пузырьков нет - это потому, при низкой температуре клетки картофеля разрушились.

2. Пробирка 2: пузырьков небольшое количество - потому, что активность фермента при низкой температуре невысока.

3. Пробирка 3: пузырьков много, температура оптимальна, каталаза очень активна.

В первую пробирку с картофелем капните несколько капель воды, во вторую – несколько капель кислоты (столовый уксус), а в третью – щёлочи.

Пронаблюдайте, что будет происходить в каждой пробирке. Объясните полученные результаты. Сделайте выводы.

Ответ. При добавлении воды ничего не происходит, при добавлении кислоты происходит некоторое потемнение, при добавлении щелочи «вспенивание» - щелочной гидролиз.

Как известно, белки - основа зарождения жизни на нашей планете. По именно коацерватная капля, состоящая из молекул пептидов, стала основой зарождения живого. Это и не вызывает сомнений, ведь анализ внутреннего состава любого представителя биомассы показывает, что эти вещества есть во всем: растениях, животных, микроорганизмах, грибах, вирусах. Причем они очень разнообразны и макромолекулярны по природе.

Названий у этих структур четыре, все они являются синонимами:

  • белки;
  • протеины;
  • полипептиды;
  • пептиды.

Белковые молекулы

Их количество поистине неисчислимо. При этом все белковые молекулы можно разделить на две большие группы:

  • простые - состоят только из аминокислотных последовательностей, соединенных пептидными связями;
  • сложные - строение и структура белка характеризуются дополнительными протолитическими (простетическими) группами, называемыми еще кофакторами.

При этом сложные молекулы также имеют свою классификацию.

Градация сложных пептидов

  1. Гликопротеиды - тесно связанные соединения белка и углевода. В структуру молекулы вплетаются простетические группы мукополисахаридов.
  2. Липопротеиды - комплексное соединение из белка и липида.
  3. Металлопротеиды - в качестве простетической группы выступают ионы металлов (железо, марганец, медь и другие).
  4. Нуклеопротеиды - связь белка и нуклеиновых кислот (ДНК, РНК).
  5. Фосфопротеиды - конформация протеина и остатка ортофосфорной кислоты.
  6. Хромопротеиды - очень схожи с металлопротеидами, однако элемент, входящий в состав простетической группы, представляет собой целый окрашенный комплекс (красный - гемоглобин, зеленый - хлорофилл и так далее).

У каждой рассмотренной группы строение и свойства белков различны. Функции, которые они выполняют, также варьируются в зависимости от типа молекулы.

Химическое строение белков

С данной точки зрения протеины - это длинная, массивная цепь аминокислотных остатков, соединяющихся между собой специфическими связями, называемыми пептидными. От боковых структур кислот отходят ответвления - радикалы. Такое строение молекулы было открыто Э. Фишером в начале XXI века.

Позже более подробно были изучены белки, строение и функции белков. Стало ясно, что аминокислот, образующих структуру пептида, всего 20, но они способны комбинироваться самым разным способом. Отсюда и разнообразие полипептидных структур. Кроме того, в процессе жизнедеятельности и выполнения своих функций белки способны претерпевать ряд химических превращений. В результате они меняют структуру, и появляется уже совсем новый тип соединения.

Чтобы разорвать пептидную связь, то есть нарушить белок, строение цепей, нужно подобрать очень жесткие условия (действие высоких температур, кислот или щелочей, катализатора). Это объясняется высокой прочностью в молекуле, а именно в пептидной группе.

Обнаружение белковой структуры в условиях лаборатории проводится при помощи биуретовой реакции - воздействия на полипептид свежеосажденным (II). Комплекс пептидной группы и иона меди дает ярко-фиолетовую окраску.

Существует четыре основные структурные организации, каждая из которых имеет свои особенности строения белков.

Уровни организации: первичная структура

Как уже упоминалось выше, пептид - это последовательность аминокислотных остатков с включениями, коферментами или же без них. Так вот первичной называют такую структуру молекулы, которая является природной, естественной, представляет собой истинно аминокислоты, соединенные пептидными связями, и больше ничего. То есть полипептид линейного строения. При этом особенности строения белков такого плана - в том, что такое сочетание кислот является определяющим для выполнения функций белковой молекулы. Благодаря наличию данных особенностей возможно не только идентифицировать пептид, но и предсказать свойства и роль совершенно нового, еще не открытого. Примеры пептидов, обладающих природным первичным строением, - инсулин, пепсин, химотрипсин и другие.

Вторичная конформация

Строение и свойства белков этой категории несколько меняются. Такая структура может сформироваться изначально от природы либо при воздействии на первичную жестким гидролизом, температурой или иными условиями.

Данная конформация имеет три разновидности:

  1. Ровные, правильные, стереорегулярные витки, построенные из остатков аминокислот, которые закручиваются вокруг основной оси соединения. Удерживаются вместе только возникающими между кислородом одной пептидной группировки и водородом другой. Причем строение считается правильным из-за того, что витки равномерно повторяются через каждые 4 звена. Такая структура может быть как левозакрученной, так и правозакрученной. Но в большинстве известных белков преобладает правовращающий изомер. Такие конформации принято называть альфа-структурами.
  2. Состав и строение белков следующего типа отличается от предыдущего тем, что водородные связи образуются не между рядом стоящими по одной стороне молекулы остатками, а между значительно удаленными, причем на достаточно большое расстояние. По этой причине вся структура принимает вид нескольких волнообразных, извитых змейкой полипептидных цепочек. Есть одна особенность, которую должен проявлять белок. Строение аминокислот на ответвлениях должно быть максимально коротким, как у глицина или аланина, например. Этот тип вторичной конформации носит название бета-листов за способность будто слипаться при образовании общей структуры.
  3. Относящееся к третьему типу строение белка биология обозначает как сложные, разноразбросанные, неупорядоченные фрагменты, не обладающие стереорегулярностью и способные изменять структуру под воздействием внешних условий.

Примеров белков, имеющих вторичную структуру от природы, не выявлено.

Третичное образование

Это достаточно сложная конформация, имеющая название "глобула". Что собой представляет такой белок? Строение его основывается на вторичной структуре, однако добавляются новые типы взаимодействий между атомами группировок, и вся молекула словно сворачивается, ориентируясь, таким образом, на то, чтобы гидрофильные группировки были направлены внутрь глобулы, а гидрофобные - наружу.

Этим объясняется заряд белковой молекулы в коллоидных растворах воды. Какие же типы взаимодействий здесь присутствуют?

  1. Водородные связи - остаются без изменений между теми же самыми частями, что и во вторичной структуре.
  2. взаимодействия - возникают при растворении полипептида в воде.
  3. Ионные притяжения - образуются между разнозаряженными группами аминокислотных остатков (радикалов).
  4. Ковалентные взаимодействия - способны формироваться между конкретными кислотными участками - молекулами цистеина, вернее, их хвостами.

Таким образом, состав и строение белков, обладающих третичной структурой, можно описать как свернутые в глобулы полипептидные цепи, удерживающие и стабилизирующие свою конформацию за счет разных типов химических взаимодействий. Примеры таких пептидов: фосфоглицераткеназа, тРНК, альфа-кератин, фиброин шелка и другие.

Четвертичная структура

Это одна из самых сложных глобул, которую образуют белки. Строение и функции белков подобного плана очень многогранны и специфичны.

Что собой представляет такая конформация? Это несколько (в некоторых случаях десятки) крупных и мелких полипептидных цепей, которые формируются независимо друг от друга. Но затем за счет тех же взаимодействий, что мы рассматривали для третичной структуры, все эти пептиды скручиваются и переплетаются между собой. Таким образом получаются сложные конформационные глобулы, которые могут содержать и атомы металлов, и липидные группировки, и углеводные. Примеры таких белков: ДНК-полимераза, белковая оболочка табачного вируса, гемоглобин и другие.

Все рассмотренные нами структуры пептидов имеют свои методы идентификации в лабораторных условиях, основанные на современных возможностях использования хроматографии, центрифугирования, электронной и оптической микроскопии и высоких компьютерных технологиях.

Выполняемые функции

Строение и функции белков тесно коррелируют друг с другом. То есть каждый пептид играет определенную роль, уникальную и специфическую. Встречаются и такие, которые способны выполнять в одной живой клетке сразу несколько значительных операций. Однако можно в обобщенном виде выразить основные функции белковых молекул в организмах живых существ:

  1. Обеспечение движения. Одноклеточные организмы, либо органеллы, или некоторые виды клеток способны к передвижениям, сокращениям, перемещениям. Это обеспечивается белками, входящими в состав структуры их двигательного аппарата: ресничек, жгутиков, цитоплазматической мембраны. Если же говорить о неспособных к перемещениям клетках, то белки могут способствовать их сокращению (миозин мышц).
  2. Питательная или резервная функция. Представляет собой накопление белковых молекул в яйцеклетках, зародышах и семенах растений для дальнейшего восполнения недостающих питательных веществ. При расщеплении пептиды дают аминокислоты и биологически активные вещества, которые необходимы для нормального развития живых организмов.
  3. Энергетическая функция. Помимо углеводов, силы организму могут давать и белки. При распаде 1 г пептида высвобождается 17,6 кДж полезной энергии в форме аденозинтрифосфорной кислоты (АТФ), которая расходуется на процессы жизнедеятельности.
  4. Сигнальная и Заключается в осуществлении тщательного контроля за происходящими процессами и передачи сигналов от клеток к тканям, от них к органам, от последних к системам и так далее. Типичным примером может служить инсулин, который строго фиксирует количество глюкозы в крови.
  5. Рецепторная функция. Осуществляется путем изменения конформации пептида с одной стороны мембраны и вовлечения в реструктуризацию другого конца. При этом и происходит передача сигнала и необходимой информации. Чаще всего такие белки встраиваются в цитоплазматические мембраны клеток и осуществляют строгий контроль над всеми веществами, проходящими через нее. Также оповещают о химических и физических изменениях окружающей среды.
  6. Транспортная функция пептидов. Ее осуществляют белки-каналы и белки-переносчики. Роль их очевидна - транспортировка необходимых молекул к местам с низкой концентрацией из частей с высокой. Типичным примером служит перенос кислорода и диоксида углерода по органам и тканям белком гемоглобином. Ими же осуществляется доставка соединений с невысокой молекулярной массой через мембрану клетки внутрь.
  7. Структурная функция. Одна из важнейших из тех, которые выполняет белок. Строение всех клеток, их органелл обеспечивается именно пептидами. Они подобно каркасу задают форму и структуру. Кроме того, они же ее поддерживают и видоизменяют в случае необходимости. Поэтому для роста и развития всем живым организмам необходимы белки в рационе питания. К таким пептидам можно отнести эластин, тубулин, коллаген, актин, кератин и другие.
  8. Каталитическая функция. Ее выполняют ферменты. Многочисленные и разнообразные, они ускоряют все химические и биохимические реакции в организме. Без их участия обычное яблоко в желудке смогло бы перевариться только за два дня, с большой вероятностью загнив при этом. Под действием каталазы, пероксидазы и других ферментов этот процесс происходит за два часа. В целом именно благодаря такой роли белков осуществляется анаболизм и катаболизм, то есть пластический и

Защитная роль

Существует несколько типов угроз, от которых белки призваны оберегать организм.

Во-первых, травмирующих реагентов, газов, молекул, веществ различного спектра действия. Пептиды способны вступать с ними в химическое взаимодействие, переводя в безобидную форму или же просто нейтрализуя.

Во-вторых, физическая угроза со стороны ран - если белок фибриноген вовремя не трансформируется в фибрин на месте травмы, то кровь не свернется, а значит, закупорка не произойдет. Затем, наоборот, понадобится пептид плазмин, способный сгусток рассосать и восстановить проходимость сосуда.

В-третьих, угроза иммунитету. Строение и значение белков, формирующих иммунную защиту, крайне важны. Антитела, иммуноглобулины, интерфероны - все это важные и значимые элементы лимфатической и иммунной системы человека. Любая чужеродная частица, вредоносная молекула, отмершая часть клетки или целая структура подвергается немедленному исследованию со стороны пептидного соединения. Именно поэтому человек может самостоятельно, без помощи лекарственных средств, ежедневно защищать себя от инфекций и несложных вирусов.

Физические свойства

Строение белка клетки весьма специфично и зависит от выполняемой функции. А вот физические свойства всех пептидов схожи и сводятся к следующим характеристикам.

  1. Вес молекулы - до 1000000 Дальтон.
  2. В водном растворе формируют коллоидные системы. Там структура приобретает заряд, способный варьироваться в зависимости от кислотности среды.
  3. При воздействии жестких условий (облучение, кислота или щелочь, температура и так далее) способны переходить на другие уровни конформаций, то есть денатурировать. Данный процесс в 90% случаев необратим. Однако существует и обратный сдвиг - ренатурация.

Это основные свойства физической характеристики пептидов.